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This work report on the fabrication of titania nanotube array film anodized in a fluoride-based 

electrolyte mixture of dimethyl sulfoxide and ethanol. Optimization of the anodization parameters has 

been examined and reported in a 3D surface plot, with the achieved result that the improved nanotube 

length is up to six times, as using the similar conditions reported in the previous work (Ruan et al. 

2005 J. Phys. Chem. B 109, 15754.) With a systematically designed experiment, we demonstrate the 

more insight into interaction and solvation effect in the anodization electrolyte, particularly elucidating 

how electrolyte history and properties has a strong effect on the anodization current behavior. In a 

parallel illustration of nanotube length mapping analysis, we also investigate evolution of nanotube 

morphology in freshly prepared and used electrolytes in relation to the change in real-time current 

density for titanium anodization in dimethyl sulfoxide/ethanol mixture. It is believed that reactivity of 

DMSO could be inhibited by the effect of ethanol incorporation that could possibly be a drawback in 

slowing down those ion movements in the electrolyte, consequently affecting the pore growth and thus 

the nanotube length.  

 

 

Keywords: TiO2 nanotube array films, electrochemical anodization current response, solvation, 

dimethyl sulfoxide electrolyte 

 

 

1. INTRODUCTION 

Uniform titania nanotube arrays with precisely controlled dimensions can be obtained by 

tailoring electrochemical conditions, while properties of the nanotubes can vary dramatically with the 

electrolyte chemistry in which they were formed. For example, close-packed hexagonal tubes are 

formed when using an ethylene glycol electrolyte;[1-2] removal of the tube ‘plug’ by an acid rinse 
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enables fabrication of free-standing, self-supportive membranes that can be used for biofiltration.[3, 4] 

In contrast, nanotubes grown from dimethyl sulfoxide (DMSO) electrolytes have weak tube-to-tube 

binding, as well as weak adhesion to the underlying barrier layer.[5] Hence the DMSO synthesized 

tubes can be easily dispersed enabling their use, for example, in enhancing blood clotting to control 

hemorrhage.[6] Furthermore, A mixture of DMSO and ethylene glycol was found to recently give a 

single-walled morphology of titania nanotubes with significantly enhanced electronic properties for 

higher efficiency dye-sensitized solar cells.[7] Tuning effects of 12% DMSO content in ethylene 

glycol or glycerol matrix on nanotube length, wall thickness, dimension and morphology was also 

studied; incorporation of DMSO was found to display a high sensitivity to hydrogen at room 

temperature compared to the condition with the absence of DMSO.[8] 

The anodic formation of TiO2 nanotube arrays in DMSO were studied and first reported by 

Ruan et al in 2005.[5] Ruan and co-workers reported the synthesis of TiO2 nanotube arrays in a 

fluorinated DMSO based electrolyte.[5]  Fabrication in DMSO:EtOH (1:1)4.0% HF electrolyte at 20 

V for 70 h at room temperature, a maximum nanotube length of 2.3 µm ( 0.3) was obtained. The 

nanotube array film obtained from this work appears to have debris clogging the nanotube pores. 

Washing the as-anodized samples in DMSOHF solution following with sonication could help to 

remove such debris, consequently leading to the nanotubes with open pores. However, the tube length 

obtained from Ruan’s work is still shorter than the several micron-length one obtained from the 

aqueous electrolytes using a suitable pH.[9] An attempt has been pursue on the use of DMSO to 

fabricate the titania nanotube array films grown in the electrolyte with the condition in absence of 

ethanol; the significant increase in tube length was obtained. According to this evidence, it has been 

presumed that ethanol might probably have a significant effect of limiting the nanotube length; 

however, this point of question has not yet identified. Thus, the focus of this study is to clarify this 

question. With a set of designed experiment considering how to systematically manipulate the 

synthesis parameters, we aim to better understand the electrolyte behavior through considering solvent 

interactions and solvation effect. This work also present the study of anodization current behavior in 

DMSO containing ethanol electrolye and clarify why titanium anodization in this mixture results in a 

patterned current-time behavior different from those observed in other electrolyte systems.  

The typical anodization current-time responses during anodization in aqueous electrolytes [10] 

and organic electrolytes, such as ethylene glycol/ NH4F/H2O, formamide/H2O containing different 

cationic species, [3, 5, 11-15] as a function of voltage and fluoride species have been extensively 

reported in a combination study on mechanism of nanotube formation. The current behavior observed 

for the organic electrolytes is mostly similar to the typical one observed for the water-based 

electrolyte. Particularly for that observed for dimethyl sulfoxide (DMSO), fluctuation with dynamics 

pattern of anodization current behavior is usually seen; however, such unclear fluctuation behavior 

over a period of anodization time has never been well clarified. Thus, this report focuses on showing a 

systematic result obtained from a designed experiment in order to better understand the formation 

mechanism of nanotube array growth; evolution of nanotube morphology relating to the change in 

current density for titanium anodization in DMSO are to be investigated.  

In some literatures, there was some evidence showing that use of the previously used 

electrolyte could affect the length and pore size of the anodic oxide film.[16, 17] It is believed that 
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anodization leads to the titanium dissolution into the electrolyte,[9, 18, 19] while the fluoride 

concentration in the anodized electrolyte was found to decrease because the fluorine element is lost 

from the solution to the as-anodized film during the film formation.[20, 21] This work also study the 

effect of the used electrolyte on the resulting tubes by re-anodizing the ‘first-time’ used electrolyte as 

the second time and the third time of anodization.  

 

2.  EXPERIMENTAL 

Titanium sheet (250 µm, 99.7%, Sigma-Aldrich) were rinsed with acetone, soap and deionized 

water prior to potentiostatic anodization, and the platinum foil was used as a counter electrode. It is 

necessary that the distance between the two electrodes is maintained constant; herein the 2-cm distance 

was fixed.[22] Anodization using different inter-electrode spacing would lead to variation in 

morphology of the resulting nanotube arrays, with closer spacing leading to the stronger electric field 

strength hence facilitating the electrochemical anodization process.[23] The anodization current was 

monitored using a Keithley (model 2000) digital multimeter interfaced with a computer. In the 

experiment, the electrolyte base was prepared by mixing dimethyl sulfoxide (DMSO; 99.9%, Sigma-

Aldrich) and ethanol in a 1:1 ratio, a fixed fluoride content of 4% hydrofluoric acid (HF; 48 % aqueous 

solution, JT Baker). Anodization was performed in different conditions; i.e. varying anodization 

voltage, time and electrolyte history. The dipped area of the foil samples into electrolyte was fixed at 

3.0 cm
2
. After anodization, the samples were rinsed thoroughly with isopropanol and blow-dried with 

99.99% pure nitrogen. The anodized nanotube array films were characterized by field emission 

scanning electron microscope (FE-SEM, Leo 1530). 

 

 

 

3.  RESULT AND DISCUSSION 

3.1 Optimization of Anodization Parameters 

The evolution of surface morphology was investigated as a function of applied voltage and 

anodization time. Table 1 shows the effect of anodization voltage and time on the nanotube length. 

Compared to the previous report, the maximum tube length of 11 µm is almost five times longer than 

the 2.3-µm length reported by Ruan, as using the anodization conditions based on those used in Ruan’s 

report. [5] Noted that, the 11-µm length sample was obtained from using the freshly prepared 

electrolyte. When using the previously used electrolyte in which conductivity is relatively higher, the 

tube length is known to significantly decrease. [15, 24] 

 

Table 1.  Tube length of TiO2 nanotube arrays obtained from anodizing in the fresh DMSO:EtOH 

(1:1)4.0% HF electrolytes at different voltages and different anodization times. 

 

Voltage (V) Anodization time (h) Tube length (µm) 
10 24 0.5 
20 1 0.4 

10 3.7 
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20 3.6 
24 4.0 
70 11.0 
90 4.0 

25 24 4.5 
70 6.4 

 
 

Figure 1.  A 3D-surface plot of TiO2 nanotube length as functions of anodization voltage and time for 

those data presented in Table 1. 

 

3.2  Evolution of TiO2 Nanotube Array Films Grown in Fresh and Used Electrolytes 

Figure 2 demonstrates evolution of titania nanotube array films grown in the freshly prepared 

and the previously used electrolytes. Variation of nanotube length plotted against anodization time for 

the freshly prepared and the used electrolytes is shown in Figure 8. The higher conductivity of used 

electrolytes is useful in the initiation of nanotube growth; therefore we observed faster initial rates of 

nanotube formation in used electrolytes during the first 20 h anodization. Between 10 h to 20 h 

duration, the chemical etching rate may have started to dominate the process due to the improved 

electrolyte conductivity. From there the covering oxide layer becomes more porous at the 20 h 

anodization, as seen in Figure 2 (c). During this time, the top debris may be broken down abruptly 

reducing the nanotube length, as the sharp decrease in tube length seen in Figure 2 (b) during the 10 h 

to 20 h. The thickness of nanotube array films obtained from the used electrolyte is normally shorter 

than that obtained from the fresh electrolyte.  
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 (a) 

 

 (b) 

 

 (c) 
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 (d) 

 

 (e) 

 

Figure 2.  FESEM images showing cross-sectional and top views of TiO2 nanotube arrays fabricated 

from the ‘fresh-prepared electrolytes’ (left, DMSOEtOH electrolyte containing 4.0% HF at 20 

V) and the ‘used electrolytes’ (right, reanodizing the first used DMSOEtOH electrolyte 

containing 4.0% HF (20 V, 70 h) as the second time at 20 V).  For both fresh and used 

electrolytes, the anodized nanotube array films were collected at different anodization times; 

i.e. (a) 1h, (b) 10 h, (c) 20 h, (d) 35 h, and (e) 70 h. 

 

For the fresh electrolyte, the tube length was found to continually increase with anodization 

time, see Figure 2 (a). The chemical dissolution reaction also occurs but is not significant in the fresh 

electrolyte due to the relatively lower conductivity suppressing the dissolution rate. The nanotube 

arrays obtained from the fresh electrolytes always have the thick oxide layer covering the top surface 

of the arrays unless at least 5.0 % water is added resulting in the open top surface.   
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Figure 3.  Variation of nanotube length as a function of anodization time of TiO2 nanotube arrays 

obtained from anodizing in (a) fresh electrolytes ( ) and (b) used electrolytes ( ).  Electrolyte 

and anodization conditions for figures (a) and (b) are as same as those explained in Figure 2. 

 

In Figure 1, the surface plot of titania nanotube length tends to shift to the higher regime of 

anodization voltage and time. Through optimizing the anodization parameters, this particular mixture 

of electrolyte allowed the optimum length of nanotubes to be obtained, implying that the electrolyte 

properties have a meaningful effect on the nanotube length. In other words, the effect of the electrolyte 

nature is attributed to play a predominant role in governing the growth kinetics of nanotube. 

In the EtOH-H2O-DMSO mixture, EtOH has a proton affinity (185.6 kcal mol
-1

)[25] higher 

than water (38.1 kcal mol
-1

)[26] and lower than DMSO (> 211 kcal mol
-1

);[27] hence EtOH can easily 

form the large protonated ethanol clusters (EtOH2
+
) in the mixture. The form of EtOH2

+
 is a little more 

acidic than H3O
+
 and so the clusters can react selectively with DMSO. DMSO favors a specific and 

strong interaction with a dipolar hydrogen bond donor like EtOH due to its strong hydrogen bond 

acceptor nature.[28] Accordingly, it is believed that reactivity of DMSO is reduced because of the 

solvation effect of ethanol clusters; as a consequence, mobility of transport ions could be decreased 

resulting in the reduced conductivity. Considering the solvents donor number (DN) value, DN is a 

measure of solvent polarity, with the high DN reflecting the high polarity of solvent. The DN also 

shows the ability of solvent to solvate cations, M
n+

 and other Lewis acid.[29, 30] The DN of EtOH is 

higher than that of DMSO, implying that the dissolved Ti
4+

 ions and/or H
+
 are more likely to be 

solvated by EtOH with respect to DMSO. The fluoride ion can also have a strong association forming 

ion pairs with alcohol molecules, which makes it difficult to obtain the free F
-
 available in the bulk 

aprotic solvent.[31] To this point of view, incorporation of ethanol into the DMSO could possibly be a 

drawback in slowing down those ion movements in the electrolyte, consequently affecting the pore 

growth. A key to increase the nanotube length is necessarily to reduce the chemical dissolution of the 

oxide at the pore mouth, while maintaining the active growth at the bottom of the pore. Thus, mobility 

and availability of F
-
 and OH

-
 at the oxide/electrolyte interface is essential in the oxide growth process.  

Addition of water to the electrolyte ensures field assisted etching of the Ti foil at the pore 

bottom. The formation of the barrier oxide layer or the compact layer of TiO2 at the bottom of the 

arrays was found to be affected by water content.[32] Considering interaction and solvation effect as 

water presenting in DMSO, the ordered orientation between DMSODMSO molecules is disturbed; 
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i.e. the S=O∙∙∙S=O bond between DMSO molecules tends to gradually break up and water molecules 

will subsequently insert or associate to the DMSO molecule.[33]  The formation structures of water 

and DMSO molecules in the mixtures are shown in Figure 4.   

 

 
 

Figure 4.  Intermolecular associations between DMSO and water molecules in the mixed solution.
24

 

(Me represents the methyl (CH3-) group in DMSO molecule). 

 

Kirchner and Reiher found that DMSO has strong preferential coordination with water forming 

clusters (see Figure 5); i.e. at least two molecules of water are added to a DMSO molecule in the first 

hydration shell and three to four in the outer adjacent shells as schematically shown in Figure 6.[34] 

Since the local electron-donating ability of DMSO is slightly greater than that of water, forming of a 

hydrogen bond between DMSO and water is attributed to the increased electrostatic contribution due 

to the stronger polarization of the oxygen atom in DMSO. Although the S═O bond in DMSO structure 

is strong, a slight S−O elongation could be observed for more coordination of water molecules.[35] 

When two or more water molecules interact with DMSO, the S−O∙∙∙H−OH distance (186.5 pm) is 

found to be longer such as 197 pm for 2 molecules having the relatively lower interaction energy 

between O∙∙∙H.[34]   

 

   
Figure 5.  (a) A configuration of DMSO-water cluster.

31
 (b) A proposed structure of two 

DMSOwater clusters, where the numbers show deviations distances (pm) from intermolecular 

bond lengths in each cluster.
30
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Figure 6.  A schematic representation of a solvated metal ion or cation. 

 

According to the strong interactions and the clusters forming in the electrolyte, the ion mobility 

and the mass transport to the electrode surface are consequently affected by these solvation effects.[36]  

In the case of large water content in the DMSOwater mixture, the solvation of F
-
 will increase due to 

the increased hydrogen bond strength between F
-
 and solvent molecules, thus inhibiting fluoride ion 

availability.[37] Furthermore, the reactivity of OH
-
 may be reduced to some extent with larger water 

composition because water can effectively stabilize the anions by hydrogen bonding; see Figure 7.  

The activity of OH
-
 in the mixture of DMSO/water solutions increases with increasing DMSO 

composition.[38] In the oxide growth process, the hydroxyl ion (OH
-
) is an essential source for the 

oxidation reaction. 

 

 
 

Figure 7.  Three possible arrangements of three water molecules to a hydroxyl ion (OH
-
).

34
 

 

3.3  Analysis of Anodization Current Behavior in Freshly Prepared DMSO/EtOH Electrolytes  

Figure 8 shows the anodization current of a titanium foil anodized in freshly prepared DMSO-

EtOH (1:1)4.0% HF electrolyte (40 V, 70 h). Apparently, the directional slope of current density 

could explain the mechanistic rate of electrochemical anodization. After potential application, the 

anodization current increases gradually before dropping down at about 1.5 h.  Anodization in the first 

period resulted in the porous oxide film of ~0.3 m thick. During this time, the oxide layer is formed 
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rapidly where the coating ratio increases and the film becomes denser.  Noted that the coating ratio is 

the ratio of the coating weight to the metal loss.[39] At this first stage, the oxide formation rate should 

dominate the process.  

In the first 3 h, The oxide layer becomes more porous forming the fine-featured nanochannels 

downward to the metal substrate. During this time, the current density decreases, indicating that the 

oxide dissolution rate starts to arise that thins the barrier oxide layer. Once the current reaches it 

equilibrium at about 3 h, the current starts to increase again due to the electric field effect. The field-

assisted electrochemical process will try to adjust itself to a new equilibrium until it reaches the 

maximum point of the second hump. Each individual path further propagates through the barrier oxide 

layer forming the larger pore heads. The oxide film with 3.5-m length was obtained after 10 h 

anodization duration. The increasing slope during 3-10 h is higher than that of the first 1.5 h duration; 

i.e. 73.3 mA cm
-2

 h
-1

 and 63.3 mA cm
-2

 h
-1

, respectively. The steeper slope means that more ionic 

species pass across an area of the oxide layer, while the barrier oxide thickness tends to be thicker 

because of the dominating oxidation reaction.[40]  

While the oxide growth continues to propagate during 10-20 h, the rate of ion penetration 

through the oxide layer slows down with increasing film thickness; thus the oxide formation rate in 

turn tends to decrease accordingly.  After 20 h, a slightly thicker film of 4 m was obtained. After 24 

h, the process is trying to adjust itself by transferring the non-uniform porous oxide structure into the 

more homogeneous pore formation.  While the current density gradually decreases, the tube grows 

continuously from 4 m to 7 m at 35 h and from 7 m to 11 m at 70 h; that is, the growth rates 

decrease with anodization time that are 0.2 m h
-1

 and 0.11 m h
-1

, respectively.  Small fluctuations 

are observed due to the non-uniform pore penetration in both lateral and downward directions.[10] 

Whereas the large fluctuation is probably because the steady-state pore formation is disturbed. 

 

3.4  Analysis of Anodization Current Behavior in Used DMSO/EtOH Electrolytes  

The anodization current behavior of the used electrolyte shown in Figure 9 is broadly similar to 

that of the fresh electrolyte as shown in Figure 8 for the fresh electrolyte. After 1.5 h, the current 

decreases rapidly showing the fast speed of the oxide formation.  The growth rate (1.07 m h
-1

) is 

greater than that of the fresh electrolyte (0.36 m h
-1

) in Figure 8.  During this time, the oxide film 

grows continuously from 0.4 m to 10 m at 10 h.  In the highlighted box of the 10-m image, the 

pore formation revealed the fine-featured nanochannels to be observed; each individual nanotube cell 

is not yet separated from each other completely.  The oxidation and the oxide etching processes are 

more significant in the downward direction. 

Over the duration of 20 h, the reactions of the oxide growth and the chemical dissolution are 

more competitive in the used electrolyte. When the dissolution process tends to govern the process, the 

lateral oxide etching at the top surface of the arrays is more pronounced. After 10 h, the debris layer 

starts to break down and is subsequently removed; the shorter tube length of ~ 4 m was obtained.  

Meanwhile the individual nanotubes start to separate from each other. 



Int. J. Electrochem. Sci., Vol. 9, 2014 

  

7192 

 
 

Figure 8.  A current density for titanium anodization in a fresh-prepared electrolyte (DMSOEtOH 

(1:1)4% HF) using 20 V and 70 h, with the overlay FESEM images of the as-anodized TiO2 

nanotube array films obtained at different anodization. 

 

The sudden increase of current density seen before 20 h is probably due to the debris 

collapse.[41] Thus, it is possible that the open top surface will allow more diffusing ions in the 

electrolyte to penetrate more deeply to the bottom of the arrays. As a result, the oxidation reaction is 

enhanced and then the current starts to rise again. From 20 h to 70 h, there is a slight increase in tube 

length from 4 m to 5 m, respectively.  This clearly indicates that the anodization duration did not 

improve the nanotube length. For long anodization duration, the chemical dissolution is believed to 

dominate the process due to the electrolyte conductivity that increases with time and consequently 

determines the oxide growth process. 

Figure 10 shows the overlay plot of the anodization currents obtained from the fresh electrolyte 

and the used electrolytes. In fresh electrolyte, two humps of current density are always observed for 

the anodization of titanium in DMSOEtOH electrolytes, when the zenith of the second hump 

normally locates in the higher current region compared to that of the first hump.  After the equilibrium 

point of the lowest current density (A1−1
st
), the overall process is governed by the oxidation reaction; 

the hemi-spherical shape of pore heads becomes larger. The tube length continuously increases with 

anodization time.  

In a used electrolyte, the end point of the first hump delays to the longer anodization time 

compared to that of the fresh electrolyte. The point B1−2
nd

 appears at the time sooner than the point 

C1−3
rd

, which could be explained that the pore pitting process reaches the equilibrium faster and then 

the pore enlargement will take place.[10]  
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Figure 9.  A current density for titanium anodization in a 2
nd

-time used electrolyte (after the electrolyte 

in Figure  was first used), using 20 V and 70 h, with the overlay FESEM images of the as-

anodized TiO2 nanotube array films obtained at different anodization time. 

 

 Compared the points A1−1
st
 of fresh electrolyte to B1−2

nd
 and C1−3

rd
 of used electrolytes, 

A1−1
st
 reaches the equilibrium faster than those two points of the used electrolytes. This could be 

explained that the pore pitting process for the fresh electrolyte reaches the stable state faster than that 

of the used electrolytes before transferring into a new equilibrium in the second hump. In the fresh 

electrolyte, it is probably due to the significant effect of diffusion limit in the long pore channels across 

the oxide film.[42] For longer anodization durations, the diffusion controlled process may also affect 

the anodization current leading to the similar dynamic pattern; i.e. after ~ 50 h the point A2-1
st
 also 

turns into its new equilibrium sooner than B2-2
nd

 and C2-3
rd

.   

Several humps or current fluctuation are obviously seen in the used electrolytes. This is probably 

because of many possible effects of higher electrolyte conductivity, debris collapse, self-adjusting 

anodization current resulting from the change in electrolyte properties during anodization.[43] Hassan 

and co-workers also observed the current fluctuation for titanium anodization in high conductivity 

electrolytes containing 2-propanol/NH4F/H2O.[32] Additionally, in some literatures the so-called 

current oscillation was observed in the electrolyte containing strong acid such as H2SO4, normally 

occurring after 24-h anodization.[41]
, 
[44]   
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Figure 10.  An overlay plot of anodization currents obtained from the fresh electrolyte (black-colored 

line) (DMSOEtOH (1:1)4.0% HF) and the used electrolytes.  History of the second-time 

used electrolytes is that after the first-time anodization (20 V, 70 h) using the fresh-prepared 

electrolyte, this electrolyte was then reused as the second-time anodization (brown-colored 

line) at 20 V and 70 h.  Whereas the third-time used electrolyte is that, the electrolyte after the 

second anodization was reused as the third-time anodization (green-colored line). 

 

3.5  Effect of Acid Additive in Fresh DMSOEtOHHF Electrolyte on Anodization Current 

This work also investigated the effect of acid on the anodization current behavior of Ti 

anodization in the DMSO/EtOH/HF electrolyte. Herein the trace amount of nitric acid was added. The 

solution is not only contain more dissociated protons, but also contain the NO3
-
 species contributing 

more charge carriers to enhance the electrolyte conductivity.  
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Figure 11.  Current-time responses obtained from anodization of a Ti foil samples in DMSO:EtOH 

(1:1)4.0% HF electrolytes (solution A). For solution B, the electrolyte condition is the same as 

solution A, only a 10 L HNO3 is added into it. Both electrolytes were anodized at 20 V for 70 

h. (a) An overlay of the current-time responses of both solutions A and B during anodization 

over 70 h. (b) A magnified plot of figure (a) showing the slope determination (left), FESEM 

images of the resulting nanotube array films (right), and the proposed schematic drawings 

(middle) showing the formation of nanopores during the growth stages of A’ and B’ for 

solution A and B, respectively. 

 

As shown in Figure 11 (a), the current density behaviors of the electrolytes both with and 

without acid addition seem to be similar. The current density during the first hump in Figure 11 (a) was 

magnified and shown in Figure 11 (b).  The decreasing current density is an indication of the oxide 

formation rate at the bottom of the nanotube arrays, where the dissolution at the top end of nanotube is 

negligible.[41] The larger slope means a faster rate of oxide pore formation. As highlighted in colors, 

the pore formation duration of the acid-added electrolyte covers a longer period of time; i.e. the 

distance B’ is larger than A’. Due to the effects of the increased proton concentration enhancing 

electrolyte conductivity, this indicates that addition of nitric acid to the solution B is more effective in 

penetrating the oxide nanochannels. Thus, it was expected that the solution B should also provide the 

nanotubes with a larger pore size. The behavior that the current drop with extended anodization time is 

typically observed in the oxide formation in acidic electrolytes with 3-10 % acid contents; the plot is 

available elsewhere.[45]   

It can be seen clearly that the steady state line B’’ (solution with acid) locates in the region 

higher than line A’’, meaning that the molar rate of ions passing through the barrier oxide layer in the 

solution B is higher for a given area and time.[46] When the anodization current reaches the steady 

state, the oxidation rate is equal to the dissolution rate. If the steady state takes place over the long 

anodization duration, the pore will grow into the substrate with constant growth rate and without 

changing the thickness of the barrier layer. Then the thickness of the oxide film will increase with 

anodization time. 
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4.  CONCLUSION 

This work provided a deeper insight into the electrochemical anodic growth process of TiO2 

nanotube array films in the DMSO/EtOH-based electrolyte. The works showed how anodization 

parameters determine the resulting architectural features of the nanotube arrays. Evolution of titania 

nanotube array films was presented in terms of the film growth in the freshly prepared and the used 

electrolytes. With this systematically designed experiment, the achieved results helped elucidate how 

the anodization current behavior relates to the formation of nanotube arrays, when the films were 

grown under different anodizing conditions. The interaction and solvation effect happening in the 

anoization electrolyte were found to play important roles in controlling ion mobility, nanotube growth 

rate and thus tube length. Analysis of current transients, particularly in the early stages of nanotube 

growth process, agrees well with the proposed models[41, 45] for diffusion controlled growth of 

nanotubes.  
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