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The influence of   potential    dependent   relative permittivity of   Stern  layer  on the capacitance  of  

electrode-electrolyte interface  is studied theoretically.  A  decrease of  capacitance at  larger 

magnitudes  of   electrode  surface potential  is  predicted.   At  large electrode surface potentials the 

capacitance of  metal-electrolyte interface is  determined solely by the capacitance of  Stern layer, 

whereas   the contribution of  the     capacitance of  diffuse layer  is   negligible.  
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1. INTRODUCTION 

When   metal  electrode comes  into  contact  with electrolyte solution   an   electric double 

layer (EDL),  composed  of   charged    surface  of  electrode  and   counter-ions  is created  (Figure 1). 

Counter-ions,  i.e. ions with  the sign of   charge opposite to  that of  electrode  surface,     are     

accumulated  at   electrode  surface, while   co-ions,  having   the same sign of   the charge  as the  

electrode metal surface,  are  depleted  from  the metal-electrolyte  interface.  As a consequence  the  

potential difference  over  the metal-electrolyte  interface  is  generated [1,2].   The  drop  of electric  

potential  at  metal-electrolyte interface  occurs  mostly in electrolyte  [2].   
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Figure 1. Schematic figure of   the Stern  layer  ( 0 x b  ) and diffuse electric double layer 

(b x  ) .  Outer  Helmholtz  plane (OHP) is located at the distance of closest approach (b) 

which is   approximately equal to the hydrated radius of  the counter-ions. The water dipoles 

are oriented  within Stern layer as well as around  counter-ions and co-ions in the bulk solution.  

The symbol     denotes  the surface charge  density of  the metal  surface.   

 

Most  of  the  theoretical  models  of  electrolyte solution in contact with charged surface 

assume that the relative (dielectric)    permittivity  is  constant   everywhere in the  electrolyte solution 

[2-7] and  do   not consider  the space dependence  of   relative  permittivity  of  electrolyte  solution 

near  the charged surface [1] . Therefore   the classical    Gouy-Chapman   theory  of electric double 

layer  [8,9]   has been generalized  by  taking into account  the  water  polarization  in electrolyte 

solution  near  the  charged    surface  resulting   in spatial decay of   relative permittivity  in close 

vicinity of  the charged surface [10-16] .   

In this work  we adopted  Stern   model  [17]  as a combination of  Gouy-Chapman  and  

Hemholtz  models [18]  where  the  outer  Helmholtz   plane (OHP)  define   a border  between  Stern 

layer  and  diffuse  layer  (Figure 1).  The  relative  permittivity  of  Stern layer  is  calculated  for 

different values of  surface charge  density of  the metal surface  within a  simple theoretical  model of  

orientational ordering of  water. The total  (differential)  capacitance  of   the  metal-electrolyte 

interface   ( diffC )   is   calculated   using  the formula [19]: 

1 1 1

diff S DLC C C
        ,                                                                                                         (1.1) 
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assuming  that  diffC   is  the  capacitance of   two capacitors  in series, i.e.  Stern layer  capacitor (
SC ) 

and diffuse layer capacitor (
DLC ).  

 

 

 

2. THEORETICAL  MODEL   

2.1. Capacitance of   metal-electrolyte interface  

In the above Equation  1.1  the  influence  of  the final size  of  molecules  is  taken   into 

account  only  by    the  distance of  closest approach  ( b )  (Figure 1)  in the first  term   for  the 

capacitance   of   Stern layer  0 /S SC b  . Here  
0  is  the permittivity of  the free space  and  S    

the  electric field  dependent  relative permittivity  of   the  Helmholtz/Stern layer.  The capacitance  of  

the  diffuse layer  ( x b )  in the  second term   ( DLC )    also  depends  on  the size of molecules,  

which can be described  within  different  theoretical  approaches  [20-21,10,11,5] . However, in this 

work we would like to keep all formulas analytical and simple. To this end  
DLC  is  calculated within   

Gouy-Chapman  model  for   point-like ions    from   Grahame equation  [1,16,19]: 

 
1

2 2
0 0 0 02 cosh( ( ) / 2)

( )
DL r

d
C e n e x b

d x b


    


  


       .                                            (2.1)                               

Hence 

 
1

20 2
0 0 0 0

1 1

2 cosh( ( ) / 2)diff S
r

b

C
e n e x b

 
    

 



.                                                      (2.2)      

Here    0n  is  the bulk number density of  salt ions, 0e  is the unit charge,  r  is  the constant 

permittivity  of   diffuse electric double layer  in  the region  b x   and  1/ kT  , where  kT  is 

the thermal energy.   

Close to  the  charged  metallic  surface,  i.e. for small    values of  x ,  the  relative  permittivity  

r   strongly depends  on  the  distance  from  the charged  metallic  surface  [10,11,13-16] . For  

simplicity  reasons in this work   the permittivity   of  diffuse layer  (for  x b )   in  Equation  2.1  

( r )    is  considered   independent on  the electric field strength   [1,19] ,  while  due to  strong 

orientation of  water molecules in Stern layer   the  dependence  of  relative  permittivity  of  Stern 

layer   ( S ) on the   electric field  strength [15]  is taken into account.  This means that also the 

capacitance of  Stern layer (1
st
  term on the right hand side of  the Equation 2.2)  depends  on the 

electric  field  strength.  

 

2.2. Capacitance  of   Helmholtz/Stern layer  

In  this subsection  we  shall first  derive  the  electric field  dependence  of  relative  

permittivity  in Stern layer   ( S ).  In the second step  the dependence of    capacitance  of  Stern layer 

0 /S SC b    on  the  electric field  strength  will be determined.   
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In  the  model a single water molecule is considered as  the sphere  with the  point-like rigid  

(permanent)  water dipole located  at  its centre   [13,16].  The permittivity of  the sphere  is  2n , where  

1.33n      is the optical refractive index of  water  [13] . The polarization  of water molecules  P  in 

Stern layer  ( 0 x b  )   can be    expressed as  [13,16]  : 
2

0 0 0

2
    ( )

3
wP

n
En p p 

 
  

 
L       ,                                                                                      (2.3) 

where  
0wn  is the constant (bulk) number density of  water molecules,    E is the magnitude of  the 

electric field strength, 2n  is the optical refractive index of water, 
0p  is the magnitude of  the water 

external dipole moment,      coth –  1/u u uL   is the Langevin function and  22 / 2n   .  In 

Stern layer  ( 0 x b  )   the magnitude of electric field strength E  is constant  for  given  ,  therefore    

also  relative permittivity ( S )    is  constant for given   .   The relative permittivity in Stern layer can 

then be written as (see also [13]) : 
2

2 2

0

0 0 0

0

( )2
 

3
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n n
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En 


 
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




L
    ,                                                            (2.4) 

and finally  the capacitance  of  Stern layer in the region  0 x b  : 

0

2
2 0

0 0

( )2
 

3

1

w

S pn

b

C E
n n p

E




 
  



 

L
     .                                                                        (2.5) 

For x b  we  assume constant  relative  permittivity 78.5r   at room temperature. 

 

2.3. Boundary  conditions  

The boundary conditions  at  0x   and  x b  are : 

 

0 0x S

d

dx

 

 

       ,        0 0S r

x b x b

d d

dx dx

 
   

  

     ,     
x b x b

 
  
     ,                       (2.6)                                                                                              

where    is  the surface charge density of  the metallic surface at   0x  . Due to  constant  electric 

field strength in Stern layer  
0x x b

d d

dx dx

 

 

  it  follows  from   Equations  2.6 : 

0x b r

d

dx

 

 


     .                                                           (2.7) 

The boundary condition   2.7  can be used in the region b x   to solve Gouy-Chapman equation 

and calculate the value  of   electric  potential   ( )x b  .    

 

 

 

3. RESULTS  AND DISCUSSION   

Boundary condition at   0x    (see Equation 2.6) and  Equation  2.4  together  yields  the non-

linear  equation  for   the magnitude of  electric field ( E )  in  Stern layer :  
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Inserting   the calculated  value of  E   in  Equation  2.4  yields  the  value  of   relative permittivity  in 

Stern layer  ( S ) for given surface  charge  density  .  Figure  2  shows the  relative permittivity  S   

as a function   of   surface charge  density  .  It can be  seen  that  S  strongly decreases  with 

increasing magnitude  of    , which can be explained  by  saturation of   orientational  ordering  of 

water dipoles  in strong electric field  at  large  values  of     [16,24,25].  For illustration Figure 3 

shows  the  space dependence of  relative permittivity for three  different values  of     .   

 

 
 

Figure 2. The relative permittivity S   in  Stern  layer   0 x b    as a function  of  the magnitude of  

the surface charge density of electrode  surface  ( ).  The values of model parameters are : 

distance of closest  approach 0.4b   nm, 
0    3.1p   D  and  concentration of  water  

0 / Awn N  = 55 

mol/l. 

 

 
 

Figure 3. The space dependence  of  relative permittivity  in  Stern ( 0 x b  ) and diffuse   layer  

(b x  )  calculated for  three values  of  electrode  surface charge density ( ).  The values 

of  other parameters  are  the same as in Figure 2.  
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The electric potential dependence in the diffuse region   b x      is calculated  from Gouy-

Chapman equation  [1,3,4]: 
2

0 0
02

0

2
sinh( ( ))

r

e nd
e x

dx


 

 
       ,                                                                                       (3.2) 

where the volume charge density  of  electrolyte  solution  
0 0 02 sinh( ( ))e n e x     is taken into 

account. To calculate from  Equation 3.2 the dependence   ( )x   for  x b ,   the boundary condition  

defined  by  Equation  2.7  should  also be considered. 

 

 
 

Figure 4. The calculated  electric potential ( )x   as a function of  the distance from the charged 

metallic  surface. The model parameters are:  surface charge density  20.21 As / m  ,  bulk 

concentration of  ions  0 / An N  = 0.1  mol/l,  distance of closest  approach 0.4b   nm, 
0    3.1p   D  

and  concentration of  water   0 / Awn N = 55 mol/l.  The inset  shows  the interdependence  between  

the  potentials  ( )x b    and  ( 0)x   calculated for different   . 

 

Figure 4 shows  the space dependence of  the  electric potential  ( )x .  The linear space 

dependence of electric potential  in  Stern layer  0 x b    was determined  by integration  from the 

boundary  conditions  0x    (first  Equation 2.6) and  not  from Eqution 3.2.   The inset in Figure 4  

shows  the  interdependence between  electric   potentials   at  0x   and  x b . Note that in Equation 

2.1 for  capacitance of  diffuse  layer  DLC   appears  the potential   ( )x b   [19] and  not  ( 0)x  .  

For better understanding  Figure 5 shows also  the dependences   of  the surface potentials  ( 0)x   

and ( )x b   on   surface charge  density    . 
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Figure 5. The calculated  electric potential  ( 0)x   as a function  of   the  electrode surface charge 

density   .   Inset shows  the dependence  of    ( )x b   on   .   The values  of  model 

parameters  0 / An N , b ,  
0  p  and  

0 / Awn N    are  the  same as in Figure 4. 

 

Figure 6  shows  the  capacitances  of   Stern (
SC )  and  diffuse layer  (

DLC ) and  the total 

capacitance  ( diffC )  as  functions  of  the surface potential  ( 0)x  . It  can be seen in Figure  6  that  

diffuse layer capacitance  DLC  increases, while Stern layer capacitance   SC   decreases   with 

increasing   magnitude  of   ( 0)x  .   As the  capacitance  diffC  is calculated by Equation 1.1,   this  

explains  why   at  larger  magnitudes of   surface potential  ( 0)x   the contribution  of   DLC   to  

diffC   is  negligible  and  diff SC C  as  presented  in  Figure 6. 

  

 
 

Figure 6. Differential capacitance of  Stern ( SC ) and diffuse layer ( DLC )  and  the total capacitance 

( diffC ) as a function of  the surface potential  ( 0)x  . The values of  model parameters  

0 / An N , b ,  0  p  and  0 / Awn N    are  the  same as in Figure 4. 
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Figure  7  shows the  calculated  capacitance  of  electrode-electrolyte  interface ( diffC )   for  

relative permittivity  in Stern layer  which depends  on  surface charge density  of  electrode  ( )(S  ) , 

determined as described above,  and for  the case of constant  value  of  relative  permittivity  in Stern 

layer  ( 30S  ). It  can be seen  that in  the first case of   )(S    the capacitance  diffC  exhibit a 

maximum  and  subsequent  monotonous  decreasing   of     diffC     with increasing  magnitude  of   

( 0)x  .  On  the contrary,  for  constant  30S     there is no maximum in   diffC   and  its  decrease   

at   large  magnitudes  of   ( 0)x  .   The maximum  in dependence  of  diffC   on  surface potential   

( 0)x    and  decrease   of   diffC   at    large  magnitudes  of   ( 0)x    can be predicted    also  at  

constant  relative permittivity  by  taking into account    the  finite size of   ions  (volume excluded  

effect)  within Bikerman model   [6,16,23].  In  accordance,  it was shown recently [16], that   

combination  of   volume excluded  effect   [20]  and    space dependence of  relative permittivity  in 

electrolyte solution  [13]   predict  stronger  decrease  of  diffC   at    large  magnitudes  of   ( 0)x   as 

predicted  within pure  Bikerman model .  

 

 

 
 

Figure 7. Differential  capacitance   of    metal-electrolyte interface    ( diffC ) as a function of  the 

surface potential  ( 0)x   for  the case  voltage/surface charge  dependent  relative 

permittivity of  Stern layer  (Figures  2 and 3)  and  constant  permittivity in Stern layer.  The  

values  of  the model parameters  are  the  same as  in   Figure   4.  

 

 

4. CONCLUSIONS  

Water is one of  the most  important    molecules in  biological systems  [26]. In this work  we 

attempt  to  uncover    the   relation  between  the  electric potential  dependent   orientational ordering 

of  water molecules in Stern layer  and  the capacitance of  metal electrode-electrolyte interface.   In 

order   to  keep  our  theory  analytical and  appropriate  for  analysis of  experimental  results  as much 

as possible   the finite volume of  molecules was  taken into account  by  the distance of  closest 
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approach  only. In addition, also the transport  phenomena in  Stern and diffuse layers  [27] are totally  

neglected . To this end  the influence  of conductivity of  diffuse layer on the capacitance of  Stern 

layer can not be described  within  the presented model.   

Obtaining  the  charge/potential dependence of  relative permittivity in   Stern  layer,  the 

capacitance of  electrode-electrolyte  interface as a function  of   electrode charge/potential  is  

calculated. A  decrease of  capacitance at  larger magnitudes  of   electrode surface potential  is  

predicted.  It is also shown  that at large electrode surface potentials the capacitance of  metal-

electrolyte interface is determined solely by the capacitance of  Stern layer, whereas  the contribution 

of  the  capacitance of  diffuse layer  becomes  negligible.  
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