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Artificial Neural Networks (ANNs) are computational models used to predict the properties of the 

organic compounds. In this study, we successfully established a model for predicting polarizability and 

absolute permittivity of hydrocarbon compounds by analyzing 281 typical hydrocarbon compounds 

using General Regression Neural Network (GRNN) and Multilayer Feedfoward Neural Network 

(MLFN) methods. Within permissible error range (30% tolerance) , our results show that GRNN 

model is an effective model in predicting materials' polarizabilities, 100% tested samples showed 

accurate results. In addition, MLFN model with nine nodes is demonstrated to be a valid model in 

predicting the absolute permittivities of hydrocarbon compounds, 97.22% tested samples showed 

accurate results. Taking together, our results indicated that ANN models can be applied in predicting 

the polarizability and absolute permittivity values of hydrocarbon compounds. 
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1. INTRODUCTION 

Polarizability is the ability for a molecule to be polarized. As an essential matter property, it 

determines the dynamical response of a bound system to external fields. The analysis of the 

polarizability of a material could provide insight into the internal molecular structure[1]. Permittivity is 

a measure of the resistance that encountered when forming an electric field in a medium. It is a 
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measure of how an electric field affects, and it is affected by the dielectric medium. The permittivity of 

a medium describes how much the electric field (more correctly, flux) is 'generated' per unit charge in 

that medium [2-3]. 

In the field of electrochemistry, polarizability and permittivity are significant properties of 

relative materials. However, the value of polarizability and permittivity of electrochemical materials 

such as hydrocarbon compounds is so incomplete and complex to determine that makes a great 

obstacle of the related studies. Having realized that a quick and effective model to predict the two 

properties is needed, we paid our attention to find a suitable method to distinguish the structure 

characteristics of different hydrocarbons. And at last, we trained the accurate Artificial Neural 

Networks (ANNs) by means of the module of software in order to obtain the accurate ANN models to 

predict the polarizabilities and absolute permittivities of hydrocarbons.  

Artificial Neural Networks are computational models inspired by animals' central nervous 

systems that are capable of machine learning and pattern recognition [4-6]. They are usually presented 

as systems of interconnected "neurons" that can calculate different values from inputs by feeding 

information through the network. As the development of the algorithm, this method is mature and has 

been packed into a module of the software. Represented by nonlinear functions, Artificial Neural 

network analysis is an artificial intelligence (AI) approach to modeling. Polarizability and absolute 

permittivity are classified nonlinear functions that too complicated to describe by analytical methods or 

empirical rules. Nevertheless, in this study, we are trying to predict these two properties by applying 

artificial neural networks into the issue [7-8]. 

In natural conditions, elements form groups and connect each other as neurons within the 

discrete layer. Each connection of them has its identified weight coefficient. The multiple layer 

consisted of the structure of such network. Usually, there are one or more than one layers of the 

elements followed by an output layer [8-12]. Multiple layers of elements can drive the network to learn 

nonlinear and linear relationships between input and output vectors [13].  

 

 

 
 

Figure 1. A schematic view of artificial neural network structure. 
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The figure above shows the main structure of the ANN. It is mainly made up of the input layer 

and the output layer. The input layer introduces the input variables to the network [14]. The output of 

the nodes in this layer represents the predictions made by the network for the response variables. In 

addition, it contains hidden layers. The optimal number of neurons in the hidden layers depends on the 

type and complexity of the process or experimentation and it's usually iteratively determined [15]. 

 

 

2. COMPUTATIONAL METHODS 

2.1. A new distinction method of hydrocarbon compounds 

 

To ensure the ANN model can recognize the different structure of different hydrocarbons, we 

designed a new distinction method of hydrocarbon compounds. The regulation of definition is show as 

follows: 

 

Table 1. The description of the distinction method 

 

Element Description 

Type Identify different types of hydrocarbons  

Molecular Mass Relative molecular mass 

Total Carbon Number The overall carbon number of a single molecule 

Total Hydrogen Number The overall hydrogen number of a single molecule 

Backbone's Carbon Number The overall carbon number of backbone 
a 

Number of Side Chain The quantity of the side chain 
b
 

Identifier of Side Chain's Position（I） The position number in accordance with the defined rule 
c 

Carbon Number of Side Chain I The carbon number of Side Chain I 

Identifier of Side Chain's Position（II） The position number in accordance with the defined rule c 

Carbon number of Side Chain II The carbon number of Side Chain II 

Identifier of Side Chain's Position（III） The position number in accordance with the defined rule c 

Carbon Number of Side Chain III The carbon number of Side Chain III 

Double Bond‘s Position The position number in accordance with the defined rule 
c 

Number of Double Bond(s) The position number in accordance with the defined rule 
c 

Triple Bond’s Position The position number in accordance with the defined rule 
c 

Number of Triple Bond(s) The total number of triple bond(s) 

Carbon Numbers of Ring(s) The total carbon number of the ring(s) 

Number of Ring(s) The quantity of the ring(s) 

 

a: If there exists ring(s), the backbone should be considered with rings as possible, if there exists 

double/triple bond(s) together with rings, the chain with more double/triple bonds would be the 

backbone;  

b: The definition of the side chains is based on the rule a;  

c: The location method is based on rule a and the nomenclature of organic defined by IUPAC[16]; 
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Parameters of hydrocarbon molecules can be input into the form below, which constructs a 

database as the evidence of the ANN prediction model. The distinction rules above bases on the 

repeated trials of the training. Rules have been simplified in order to be easy understanding and more 

applicable.  

 

2.2. Training process of the neural network 

The ANN prediction model is constructed by the NeuralTools
®
 software (Trial Version, 

Palisade Corporation, NY, USA)[17]. We chose the General Regression Neural Networks [18-21] 

(GRNN) module and Multilayer Feedfoward Neural Networks [22-26] (MLFN) module as the training 

modules. The training results are shown as follows (Data source: CRC Handbook of Chemistry and 

Physics2012-2013[27] and Wingch Database [28]): 

 

Table 2. The training process of the samples 

 
Physical Properties Trained Cases Number of Trials

 
Tested Cases

 

Polarizability 211 680000 53 

Absolute Permittivity 145 1000000 36 

 

 The data of training process, including the number of trained cases and tested cases, as well as 

the number of trials, were presented in Table 2. There were 281 hydrocarbon compounds were taken 

into consideration for the training process.  

 

Table 3. The training result of polarizability in different ANN models 

 
ANN Model RMS Error Training Time

 
Finished Reason

 

Linear Prediction 13.53 0:00:00 Auto 

GRNN 13.35 0:00:00 Auto 

MLFN: 2 Nodes 16.38 0:00:59 Auto 

MLFN: 3 Nodes 14.58 0:00:49 Auto 

MLFN: 4 Nodes 14.98 0:00:50 Auto 

MLFN: 5 Nodes 14.78 0:00:59 Auto 

MLFN: 6 Nodes 13.89 0:01:24 Auto 

MLFN: 7 Nodes 14.79 0:01:36 Auto 

MLFN: 8 Nodes 14.87 0:01:41 Auto 

MLFN: 9 Nodes 14.42 0:01:55 Auto 

MLFN: 10 Nodes 15.34 0:02:13 Auto 

MLFN:11 Nodes 14.50 0:02:52 Auto 

MLFN: 12 Nodes 13.61 0:02:36 Auto 

MLFN:13 Nodes 15.70 0:03:21 Auto 

MLFN: 14 Nodes 13.89 0:03:46 Auto 

MLFN: 15 Nodes 14.18 0:04:32 Auto 

MLFN: 16 Nodes 14.79 0:05:41 Auto 

MLFN: 17 Nodes 14.29 0:06:22 Auto 

MLFN: 18 Nodes 16.11 0:06:21 Auto 

MLFN: 19 Nodes 14.69 0:06:17 Auto 

MLFN: 20 Nodes 14.55 0:07:22 Auto 
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 As displayed in Table 3, the prediction model developed by GRNN method has the minimum 

RMS errors, which are lower than the linear prediction methods. These phenomena indicate that the 

polarizabilities of hydrocarbons can be well predicted by the non-linear model. 

 

Table 4. The training result of absolute permittivity in different ANN models 

 
ANN Model RMS Error Training Time

 
Finished Reason

 

Linear Prediction 10.21 0:00:00 Auto 

GRNN 0.29 0:00:00 Auto 

MLFN: 2 Nodes 0.34 0:00:39 Auto 

MLFN: 3 Nodes 0.34 0:00:38 Auto 

MLFN: 4 Nodes 0.32 0:00:49 Auto 

MLFN: 5 Nodes 0.40 0:00:53 Auto 

MLFN: 6 Nodes 0.27 0:01:24 Auto 

MLFN: 7 Nodes 0.33 0:01:32 Auto 

MLFN: 8 Nodes 0.30 0:02:29 Auto 

MLFN: 9 Nodes 0.26 0:02:30 Auto 

MLFN: 10 Nodes 0.32 0:03:11 Auto 

MLFN: 11 Nodes 0.33 0:02:49 Auto 

MLFN: 12 Nodes 0.37 0:04:18 Auto 

MLFN: 13 Nodes 0.34 0:03:52 Auto 

MLFN: 14 Nodes 0.50 0:05:16 Auto 

MLFN: 15 Nodes 0.40 0:06:56 Auto 

MLFN: 16 Nodes 0.34 0:08:50 Auto 

MLFN: 17 Nodes 0.42 0:13:42 Auto 

MLFN: 18 Nodes 0.42 0:33:27 Auto 

MLFN: 19 Nodes 6.40 1:45:49 Auto 

MLFN: 20 Nodes 0.42 1:45:30 Auto 

 

Table 4 summarizes the MLFN model testing results, which indicate that 9 nodes has the 

minimum RMS error. In addition, we found that the RMS error of linear prediction is much greater in 

value than those obtained using ANN models. Thus, the absolute permittivities of hydrocarbon 

compounds are not fitting linear laws in these cases. Therefore, non-linear methods are supposed to be 

superior in predicting the values of absolute permittivity.  

 

3. RESULTS AND DISCUSSION 

 

3.1 Multiple model training  

 

 According to training and testing results, the best prediction model of polarizability is the 

GRNN model and the best prediction model of absolute permittivity is the MLFN model with 9 nodes 

(MLFN-9). As special distinction method for hydrocarbon compounds, the trained results are 

acknowledged to be as important as accurate tested results. Therefore, in this article, we presented all 

the training results to show comparison between predicted values and actual values, the comparison 

between residual errors and actual values, as well as the relationship between residual values and 

predicted values. 
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The outcomes of GRNN model of polarizability values were shown as follow (Figure 2 to 

Figure 4): 

 
 

Figure 2. A comparison of the predicted values with actual values of polarizability of hydrocarbon 

compounds using GRNN model. 

 

 
 

Figure 3. A comparison of the residual errors with actual values of polarizability of hydrocarbon 

compounds using GRNN model. 

 

 
 

Figure 4. The relationship between the residual values and predicted values of polarizability of 

hydrocarbon compounds using GRNN model. 
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 As displayed in Figure 2 to Figure 4, the trained result of polarizability values by GRNN model 

exhibited a linear trend. All the three groups of data fit well with the linear law consistently, indicating 

the training results of the GRNN model became a precise model after implanting our new distinction 

method. Likewise, the results of MLFN-9 model of absolute permittivity are shown in Figure 5 to 

Figure 7. As can be seen in these three figures, the three groups of data follow the linear law 

excellently with dispersion to small extent. These training results indicate that MLFN-9 model is 

precise by using our new distinction method. 

 

 
 

Figure 5. The relationship between the predicted value and actual value of absolute permittivity of 

hydrocarbon compounds in MLFN-9 model. 

 

 
 

Figure 6. The relationship between the residual errors and actual values of absolute permittivity of 

hydrocarbon compounds in MLFN-9 model. 
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Figure 7. The relationship between the residual errors and predicted values of absolute permittivity of 

hydrocarbon compounds in MLFN-9 model. 

 

According to the training results above, we considered the GRNN module is a better module to 

predict the values of polarizability (standard error: 13.35). 100% tested samples showed accurate 

results within permissible error range (30% tolerance). Besides, the MLFN module with 9 nodes is a 

better module to predict the values of absolute permittivity (standard error: 0.2563). 97.22% tested 

samples showed accurate results. Based on this analysis, we conducted the studies to obtain and 

analysis the prediction model using these two modules. 

 

3.2 Accuracy and serviceability of hydrocarbon compounds testing  

The GRNN and MLFN-9 prediction models were developed by the operation above. According 

to the generated report, the average relative errors of the two models are 4.7103% (polarizability, 

GRNN model) and 3.7736% (absolute permittivity, MLFN-9 model) respectively. To estimate the 

accuracy and serviceability, new data of the hydrocarbon compounds were inputted into the model. 

The testing results show as follows: 

 

Table 5. The test result of the prediction on polarizability in GRNN model 

 
Sample Experimental 

Value 

Predicted 

Value
 

Absolute 

Error 

Relative 

Error 

2,3-Dimethylbutane 11.79 11.75 0.04 0.339% 

3,3-Dimethylpentane 13.65 13.76 0.10 0.733% 

Amylcyclohexane 20.17 20.17 0.00 0.000% 

2-Pentene 10.01 10.13 0.12 1.20% 

Cyclooctene 14.46 14.44 0.02 0.138% 

2-Methylbutadiene 9.71 8.98 0.27 2.78% 

1,4-Decadiyne 17.52 17.44 0.08 0.457% 

3,9-Dodecadiyne 21.26 21.11 0.15 0.706% 

2-Methyl-1-buten-3-yen 8.96 9.10 0.14 1.56% 
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Table 6. The test result of the prediction on absolute permittivity in MLFN-9 model 

 
Sample Experimental 

Value 

Predicted 

Value
 

Absolute 

Error 

Relative 

Error 

2,3-Dimethylbutane 1.88 1.81 0.07 3.72% 

3,3-Dimethylpentane 1.92 1.86 0.06 3.13% 

Amylcyclohexane 2.06 2.11 0.05 2.43% 

2-Pentene 2.60 2.59 0.01 0.385% 

Cyclooctene 2.14 2.13 0.01 0.467% 

2-Methylbutadiene 2.18 2.18 0.00 0.000% 

1,4-Decadiyne 2.57 2.57 0.00 0.000% 

3,9-Dodecadiyne 2.37 2.38 0.01 0.422% 

2-Methyl-1-buten-3-yen 2.63 2.61 0.02 0.760% 

 

 A comparison of polarizabilities between experimental values and predicted values for these 9 

new samples were summarized in Table 5. At the same time, the absolute error and relative error were 

we calculated from these data also listed in the table. On the other hand, the comparison of absolute 

permittivities between experimental values and predicted values for these 9 new samples were 

summarized in Table 6. On the basis of these testing data above, the overall relative error of the 

prediction on polarizability in GRNN model is 0.8792%. While the overall relative error of the 

prediction on absolute permittivity in MLFN-9 model is 1.2571% , and they're proved to be applicable.  

According to previous studies [29-39], we found out the similar researches on the prediction 

models of polarizabilities and permittivities. In the field of polarizability. Stout and his co-workers 

[29] have developed a model to predict the static dipole polarizabilities, using electronic structure 

calculations, with 30 organic molecules, which average error was around 3%. Another study shows the 

further research on the calculation of static dipole polarizabilities of polyene  by  abinitio coupled‐

perturbed Hartree–Fock theory [30], and  Thole [31] has created a modified dipole interaction to 

calculate the polarizabilities of different molecules. Some references[32-33] reported empirical 

methods to calculate the molecular polarizabilities. In addition, some scientists focused on the studies 

of calculating the polarizabilities of inorganic substances [34-36]. Apropos of permittivity,  Smith and 

his co-workers [37] have developed three different methods to calculate the permittivity of left-handed 

metamaterial, which is based on finite-difference simulations. Stern and Feller [38] developed a 

calculation method of the dielectric permittivity profile for a nonuniform system as an application to a 

lipid bilayer simulation. Besides, Paddison and his co-workers [39] have established an equilibrium 

statistical mechanical model for the calculation of the permittivity of water in hydrated polymer 

electrolyte membrane pores.  

These previous studies were successful and can be used for reference to our study, which have 

different advantages respectively by using different prediction models or calculation methods. 

However, there is still no report on prediction of the two properties by using Artificial Neural 

Networks. Compared to the previous researches above, using ANN models to predict the 

polarizabilities and absolute permittivities is a more convenient and easy-operated method, without 

complex calculations. Interestingly, we found that ANN models of hydrocarbon compounds are more 

precise than other similar studies reported before. What's worth mentioning is that using ANN models 
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to predict such properties with the new distinction method of hydrocarbon compounds is easy to 

understand for operators.  

 In the field of electrochemistry, polarizability and permittivity are significant properties of 

hydrocarbon compound, playing important roles in every branch. Different from other studies, we 

concentrated our research on the hydrocarbon compounds, which is difficult to be described by the 

existing equations or calculation methods. The great error of linear fitting suggested that the 

polarizability and absolute permittivity of hydrocarbon compounds cannot be predicted by linear 

prediction. Our study shows that ANN model is a precise model to predict the polarizabilities and 

absolute permittivitis of hydrocarbon compounds. 

 

 

4. CONCLUSION 

Instead of measuring the values of polarizabilities and absolute permittivities of hydrocarbons 

from experiments in the lab, it is now possible to use the artificial neural networks with known 

experimental data to predict such properties of organic compounds. Our study has proved that the 

neural network can effectively generalize correct responses that only broadly resemble the data in the 

training set. The neural network can now be put to use with the actual data, which involves the values 

of polarizability and absolute permittivity.   
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