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We investigate dilute solutions of different salts (KClO3, K2SO4, and CdCl2H2O) dissolved in Milli-Q 

deionized water in the context of the fractional diffusion equations and equivalent circuits. The 

experimental results show that in the low frequency limit the behavior of the impedance is suitable 

described in terms of the boundary conditons which can be connected to constant phase elements 

(CPE). In addition, they also indicate that salts with similar characteristics, such as the ionic potential 

for the negative ion, present essentially the same frequency dependence of the impedance in the low 

frequency limit.  
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1. INTRODUCTION 

One of the most fundamental mechanisms for transport of materials, present in almost 

everywhere in nature, is the diffusion. This phenomenon has been widely investigated in various fields 

of science such as physics, biology, chemistry, and engineering. The main aspect of the diffusion 

processes, when Markovian characteristics are present, is the linear dependence on time exhibited by 

the mean square displacement, i.e.,   txx 
2

. In other cases, such as diffusion on fractals [1], 

relaxation to equilibrium in systems with long temporal memory [2,3], transport in porous media [4], 

fluctuations in financial systems [5], development of tumors [6], micelles dissolved in salt water [7], 

ferrofluids [8], and colloids [9], non-Markovian aspects are manifested leading us to a nonlinear time 
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dependence  for the mean square displacement, e.g.,   txx 
2

. This nonlinear behavior is often 

a consequence of the presence of memory effects [10,11], long-range correlations and long-range 

interactions [12-14] or surface effects [15-18]. The last aspect plays an important role in the 

electrochemistry context, particularly in the low frequency limit where the system may present an 

anomalous electrical response, i.e.,  iZ 1~  with 10   . In this sense, the fractional approach 

applied to anomalous diffusion [19] with suitable boundary conditions [20-23] has been used to 

investigate the electrical response of an experimental scenario when the stationary state is considered. 

Another approach frequently used to analyze the electrical response of materials is based on equivalent 

circuits and, an important extension used in this framework is the CPE, whose presence can be linked 

to the necessity of describing unusual effects in many solid electrode/electrolyte interfaces. In addition, 

these two approaches can be connected in the low frequency limit as discussed in Ref. [24]. 

The aim of this work is to investigate, by using the fractional approach and equivalent circuits, 

the electrical response obtained from ionic solutions of KClO3, K2SO4 and CdCl2H2O dissolved in 

Milli-Q deionized water and also to relate the results with the properties of these ions. In particular, the 

agreement between the prediction and the experimental data suggests that the formalism essentially 

based on the Debye relaxation has to be modified in order to incorporate the behavior exhibited by the 

experimental data in all frequency range. Furthermore, the results presented for these salts also indicate 

the role of the ionic radius and potential on the behavior of the electrical response in the low frequency 

limit. These developments are performed in the Sec. 2 and Sec. 3. Sec. 4 is devoted to our discussions 

and in Sec. 5 the conclusions are presented.  

 

 

 

2. FRACTIONAL DIFFUSION AND EQUIVALENT CIRCUIT 

Let us start our discussion by presenting the approach used here to investigate the electrical 

response of the ionic solutions obtained from the salts previously mentioned. It is based on the 

fractional diffusion equation and its connection with equivalent circuits with CPE elements. In this 

regard, it is interesting to mention that, the presence of these elements depend on the boundary 

conditions requeired by the system, i.e., the surface effects.   

The approach considers the densities of the ions n  (α = + for positive and  α =  for negative) 

governed by the fractional diffusion equation of distributed order  
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where D  is the diffusion coefficient for the mobile ions of charge q  (for simplicity, D  = D = D ) 

and V is the actual electric potential, determined by the Poisson´s equation, across a sample of 

thickness d. Considering that the electrodes are positioned in z =  d/2 of a Cartesian reference frame, 

the boundary condition considered here is  
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Note the that the integro-differential form of Eq.(3) has as particular case several situations and 

the choice of the  ta  depends on the physical system to be investigated (see, for example, the cases 

considered in Refs. [16, 25 – 27]). For the above set of equations,  it is possible to find an analytical 

solution of  the linear approximation for the steady state (A. C. small-signal limit) and, consequently, 

to obtain an analytical expression for the electrical impedance. In this limit, we consider 

)()( tz,ntz,n  δN   with )( tz,nδN  , where N represents the number of ions per unit of volume. 

This result allows us to search for solutions in the form tieδ 
  )()( ztz,n   and 

tieV  )()( ztz,   in 

order to analyze the impedance when the electrolytic cell is subject to a time-dependent potential 

    tieVtdV 2,2 0  since the steady-state is reached. After some calculations, it is possible to show 

that the impedance, for the case discussed here, is given by 
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where S is the electrode area,  is the Debye´s screening length,      tanh / 2a d     E i i i  

in which  

1

0

 )( )(


 idi , and 
22 1)(   Di .  

The connection with an equivalent circuit can be performed in the low frequency limit. For 

simplicity, by considering )()1()(   BAτ γδγ ,  in this limit, Eq. (4) yields:  
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Figure 1. Electrical circuit, where the first part is a parallel association between an element resistive 

(R) and element capacitive (C). The second part (Z1, Z2, Z3, …, Zn) of the circuit connected to 

the surface effects. 
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By comparing the impedance given by Eq. (5) and the one obtained by considering the circuit 

of Fig. 1, we obtain: 

  

)]([

12 2


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S
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Z                                                         (6) 

where 
n

is ZZ 11  and  R = λ
2
d/(εSD)  is related with bulk effect, i.e., the first part  of the circuit of 

Fig. 1. By using Eq. (6), it is possible to establish a connection between surface effects represented by 

)(  ia  and the circuit elements or association ZS. Consequently, for each )(  ia  it is possible to 

search for a simple circuit or an association of circuit elements with the same or equivalent behavior 

for the impedance, when the low frequency limit is considered. Physical processes related to different 

surface effects and, consequently, to different elements contributing for Zs may be considered by 

means of de suitable choice of )(  ia . Specifically, a relationship between CPE and the boundary 

conditions used in the model described above can be established by rewriting Zs as: 
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By performing the choice 
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we have that 
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which represents the association illustrated in Fig. 1 whose elements correspond to a capacitive 

element (Z1) and n CPE (Z2, Z3, …, Zn), i.e., Z1 = 1/(iωC1), with C1 = εS/(2λ), and ])/[(1 2
1

2
1 Ci

ζ
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3
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1
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ζ
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 , and so on. Another 

choices to )(  ia  are also possible, leading us to different equivalent circuits. In particular, the case 

)1()(  iia   is connected to an adsorption – desorption process governed by a first order 

kinetic equation playing an important role in several scenarios (see Refs.  [25], [26], and [27]). This 

choice  leads us to 
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and, consequently, the association between capacitive and resistive elements (see Fig. 2) which 

represents the surface terms indicated in Fig. 1 
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Figure 2. This figure represents the association connected to the choice )1()(  iia   for the 

part related to the surface terms of the circuit illustrated in Fig. 1. 

 

with C1 = εS/(2λ),  )2( 2

2 λεSC  , and )(2 2

2  SR  . Thus, we observe that different choices for 

)(  ia  may be connected to different surface effects and consequently, to different equivalent 

circuits.  

 

 

 

3. EXPERIMENTAL DATA AND MODELS 

In this section, we compare the experimental data obtained by means of impedance 

spectroscopy technique of the electrical response of electrolytic cells of salts KClO3, K2SO4 and 

CdCl2H2O dissolved in Milli-Q deionized water, with the theoretical results obtained from the model 

presented in the previous section. Further details description of the experimental procedure can be 

found in Ref. [22]. In addition, the concentration used for these salts were 1.12×10
-4

 mol/L, 1.14×10
-4

 

mol/L and, consequently, 1.10×10
-4

 mol/L. The Figs. 3a and 3b show a comparison between the 

experimental data, black symbols, and the values predicted by the model (colorful lines), for the real 

and imaginary parts of impedance as a function of the frequency, respectively. As one can see, for the 

frequency range shown in these figures, there is a good agreement between experimental and predicted 

values when Eq. (4) is used, with )()1()(   BAτ γδγ  and the first two terms of Eq. (12), i.e., 

1 2

,1 1 1 ,2 2 2( ) / ( ) ( )
ζ ζ

a a ai i i         .  Note that these choices imply in the presence of two terms 

in Eq. 1 leading us to the presence of different regimes connected with the bulk effects and different 

surface effects with characteristics  lengths  ( 11a  and 22a ) and range of integrations 1  and 2 . 

The agreement between the experimental data and the phenomenological model predictions indicates 

that the behavior for the dynamics of the ions in the low frequency limit is influenced by the surface 

effects and requires the presence of Eq. 3. In particular, the presence ( ) 0a i    establishes for Zs the 

presence of capacitive and CPE elements as discussed in the previous section. Thus, to employ 

equivalent circuits with CPE elements can be equivalent to use extensions of the usual Poisson-Nerst-

Plack (PNP) model to investigate the experimental data. 
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Figure 3. Real and imaginary parts of impedance as a function of frequency. The black dots (square, 

circle and triangle) represent the experimental data obtained by the impedance spectroscopy 

technique, while the colorful lines (blue, red and green) represent the values predicted by the 

model. The parameter values obtained by fitting the experimental data are given  in  Table 1  

with DKClO3 =1.14 DKSO4= 1.62 DCdCl2H2O, DCdCl2H2O = 3.05 × 10
-9

 m
2
/s, d = 10

-3
m and S = 

3.14×10
-4 

m
2
. 
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The parameters values estimated using the model, that lead to the best agreement with the 

experimental data, are shown in Table 1. The fit was obtained by using the particle swarm optimization 

method (see Refs. [28] and [29]), where the real and imaginary part of impedance are simultaneous 

adjusted with the experimental data in order to obtain the best set of parameters which minimize the  
2
. For this case,  the value of R

2
 (see Refs. [30] and [31]) points out that, in all the cases, the model 

account for about 99.9% of the observed variance in the experimental data.  We can observe in Table 1 

that 11a > 22a  ( may represent an intrinsic thickness related to the surface effect on the ions) for 

the three ionic solutions presented here, implying that the characteristic length 22a  is closer to the 

surface of electrode than 11a .  

 

Table 1. Best fit parameters values in SI units. 

 

Parameters KClO3 K2SO4 CdCl2H2O 

a1 6.49  10
-5

 2.28  10
-5

 6.74  10
-5

 

a2 8.62 × 10
-8

 1.17 × 10
-7

 5.95 × 10
-8

 

 2.91 × 10
-3

 8.10 × 10
-3

 2.16 × 10
-3

 

ζ1 1.91 × 10
-1

 1.14 × 10
-1

 1.61 × 10
-1

 

ζ2 9.00 × 10
-1

 8.18 × 10
-1

 8.99 × 10
-1

 

γ 9.68 × 10
-1

 1.00 9.33 × 10
-1

 

 3.90 × 10
-8

 2.49 × 10
-8

 2.77 × 10
-8

 

A 9.69 × 10
-1

 9.00 × 10
-1

 9.89 × 10
-1

 

 

In Table 2, we show how these parameters, related to surface effects, influence the capacitance 

of these layers near to surface of electrode, making it C2 > C3. The connection with an equivalent 

circuit implies in two different CPE elements governing the behavior of the system in the low 

frequency regime.  

 

Table 2. Electric quantities obtained from the equivalence between circuits, Fig.1, and the fractional 

diffusion equation. 

 

 

 

In this point, it is interesting to mention that the behavior obtained for the impedance, i.e., 
)/(1~ iZ  with 10  , resembles the ones discussed in Refs. [32] and [33] for semiconductor 

materials from the trapping mechanisms. For the ionic solutions of KClO3 and CdCl2H2O, the value of 

C2 and C3 are very close, meaning that the behavior of the layers in the neighborhood of the electrodes 

in these two cases is essentially the same. This feature may be related, observing the Table 3, to the 

 KClO3 K2SO4 CdCl2H2O 

C1 = S/2 3.18 × 10
5
 3.81 × 10

5
 4.53 × 10

5
 

C2 = ((S/2) a,11/)
1-

 
ζ1

 1.36 × 10
4
 3.98 × 10

4
 1.38 × 10

4
 

C3 = ((S/2) a,22/)
1-

 
ζ2

 1.14 × 10
3
 6.05 × 10

3
 1.13 × 10

3
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fact that these two salts dissolved in water exhibit similar characteristics in respect to ionic radius and 

also the ionic potential for the negative ions, i.e.,  R- and - . However, the values obtained for KClO3 

and CdCl2H2O differ significantly from the values obtained for K2SO4 as well as the data presented in 

the Table 1. 

 

 

     

 

Figure 4. These figures (A and B) give a qualitative illustration of the combination of the ions ClO3
1-

 

and SO4
2-

 (obtained from the salts KClO3 and K2SO4) with the water molecules. 

 

 

This difference in behavior exhibited for the K2SO4, compared to KClO3 and CdCl2H2O may 

be related to differences in the combination of ions with water molecules (see, Fig. 4) and their 

response to applied potential where the ionic radius and also the ionic potential seems to play an 

important role. In addition, the predict values of the constant  for KClO3 and CdCl2H2O (80.07 and 

79.24, respectively) are very close, however, differ significantly from the value obtained for the K2SO4 

( = 60.56).  

 

Table 3. Some properties of the species: KClO3(s); K2SO4(s); CdCl2∙H2O(s) in solid state and water 

solution of 0.200g/100 mL. 

 

Substance     Radius Molar 

weight 

Ionic Potential  

  R+ R- M  = (q/R) 10
3  

  (pm) (pm) (g/mol) + - 

       
KClO3(s)  133 200 122.5 7.52 5.00 

K2SO4(s)  133 244 174.25 7.52 8.20 

CdCl2∙H2O(s)  96 181 201.3 10.4 5.52 
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4. DISCUSSIONS 

The agreement between the experimental data and the models discussed here indicates the 

presence of processes which are not suitable described in all frequency range in terms of the 

approaches only based on the usual diffusion equation with standard boundary conditions or equivalent 

circuits with a simple association of resistive and capacitive elements. Using the equivalent circuit 

illustrated in Fig.1, we have observed that the salts KClO3 and CdCl2H2O have presented similar 

values for C2 and C3 and different from the ones obtained for K2SO4 as show in Tab. 2. This feature 

may be connected to the radius R- and to the ionic potential - which is smaller for these anions, 

chlorate (ClO3
-
) and chloride (Cl

-
) of the salts KClO3 and CdCl2H2O. Thus, the electrical response for 

the situations analyzed here seems to indicate that characteristics of the negative ions, when Table 2 is 

compared with Table 3, in the low frequency limit have a relevant influence on the dynamic of the 

system. This point may also be observed from the inset present in Figs. 3a and 3b which shows that the 

red and the blue dotted lines are essentially parallels in the low frequency limit. Note that the 

imaginary part of the impedance in this limit may be connected to the surface effects, i.e., with 

boundary conditions or the capacitive elements (C1, C2, C3) present in Fig. 1.  

 

 

5. CONCLUSIONS 

We have investigated by using the phenomenological models presented in Sec. 2 the 

experimental data obtained by means impedance spectroscopy technique for the electrical response of 

electrolytic cells of salts KClO3, K2SO4 and CdCl2H2O dissolved in Milli-Q deionized water. The 

results obtained for these salts indicate the presence of processes which deserve special attention and 

are not suitable described in all frequency range in terms of the approaches based on the usual 

diffusion equation with standard boundary conditions or equivalent circuits with a simple association 

of resistive and capacitive elements as discussed previously. Another interesting feature which 

emerges by using approaches discussed in Sec. 2 and observing the numerical values presented in 

Tables 2 and 3 is the effect of the negative ion on the electrical response. Finally, we hope that the 

framework presented here based on fractional approach and their connection with equivalent circuits 

can be useful to investigate the electrical response of other systems. 
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