
  

Int. J. Electrochem. Sci., 8 (2013) 10022 - 10043 

 

International Journal of 

ELECTROCHEMICAL 
SCIENCE 

www.electrochemsci.org 

 

 

Using Molecular Dynamics Simulations and Genetic Function 

Approximation to Model Corrosion Inhibition of Iron in 

Chloride Solutions 
 

K.F. Khaled
1,2,*

 and A.M. El-Sherik
3 

1
Electrochemistry Research Laboratory, Chemistry Department, Faculty of Education, Ain Shams 

Univ., Roxy, Cairo, Egypt 
2
Materials and Corrosion Laboratory, Chemistry Department, Faculty of Science, Taif University, 

Saudi Arabia 
3
Research and Development Center, Saudi Aramco, Dhahran, Saudi Arabia 31311 

*
E-mail: khaledrice2003@yahoo.com  

 

Received: 14 April 2013  /  Accepted: 30 May 2013  /  Published: 1 July 2013 

 

 

Density functional theory (DFT) calculations have been used to investigate the minimum energy 

structures of asparagine molecules on iron (Fe) (111) surface. Adsorption of the asparagine molecule 

on a Fe (111) surface has been studied computationally to generate adsorption configurations and to 

use the force field method to obtain a ranking of the energies for each generated configuration, thereby 

indicating the preferred adsorption sites. In this article Monte Carlo simulation has been used to find 

low energy adsorption sites on both adsorbate (asparagines) — substrate (Fe 111) — systems as the 

temperature of the system is gradually decreased. The results indicated that asparagine could adsorb on 

a Fe surface through the nitrogen/oxygen atoms with the lone pair of electrons in its molecule.The 

Quantitative Structure Activity Relationship (QSAR) method is becoming more desirable for 

predicting corrosion inhibition properties. The inhibition efficiency of organic compounds is 

dependent on many basic molecular descriptors, such as dipole moments, molecular surface area, 

molecular volume, electronic parameters as EHOMO (highest occupied molecular orbital energy); ELUMO 

(lowest unoccupied molecular orbital energy); and energy gap (ELUMO - EHOMO). A Genetic Function 

Approximation (GFA) method was used to run the regression analysis and establish correlations 

between different types of descriptors and the measured corrosion inhibition efficiencies of 28 amino 

acids and their related compounds. Similarly, a QSAR equation was developed and used to predict the 

corrosion inhibition efficiencies of 28 amino acids and their related compounds. The prediction of 

corrosion efficiencies of these compounds nicely matched the experimental measurements. 
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1. INTRODUCTION 

Iron and its alloys are widely used in many applications, which have resulted in research into 

their resistance to corrosion in various environments [1]. In efforts to mitigate metal corrosion, the 

primary strategy is to isolate the metal from the corrosive agents. Among the different methods 

available, to mitigate corrosion, is the use of corrosion inhibitors [1]. Quantum chemical calculations 

have been widely used as a powerful tool for studying the reaction mechanisms of corrosion inhibition 

[2-4]. The relationships between structural parameters, such as electronic properties of inhibitors, the 

frontier molecular orbital energy (EHOMO, ELUMO) and the hydrophobic/hydrophilic nature, the charge 

distribution of the studied inhibitors and their inhibition efficiencies were investigated in these studies.  

Quantum chemical descriptors have obvious advantages, they are not restricted closely to 

related compounds, as is often the case with group theoretical, topological and others, and they make 

interpretation of Quantitative Structure and Activity Relationship (QSAR) equations more 

straightforward. In addition, they can be obtained without laboratory measurements, thereby saving 

time and equipment, alleviating safety and disposal concerns [5]. 

Inhibition of metal corrosion occurs via adsorption of the organic molecules on the metal 

surface with the polar groups acting as the reactive centers in the inhibiting molecules. The resulting 

adsorption layer acts as a barrier that isolates the metal surface from the corrosive environment and the 

protection efficiency depends on the characteristics of the adsorbed layer under the experimental 

conditions. 

Despite several experimental and computational tools that have been designed to study the 

structural characteristics of the inhibitor molecules, little is known about the interaction between the 

adsorbed inhibitor molecules and the corroding metal surface. A practical route to study these complex 

processes is computer simulations using suitable models.  

Computer simulations are suitable for more complex systems, such as those involving a 

relatively large number of molecules where the quantum chemistry computing method is no longer 

suitable. We have concluded [6] that the quantum mechanical approach may well be able to predict 

certain molecule structures that are better for corrosion inhibition purposes. This ability to predict is 

only possible by making the following assumptions: (i) the effect depends only on the inhibitor 

molecule properties, and (ii) everything else in the inhibitor vicinity is uninvolved either with respect 

to competition for the surface or with respect to itself. Also, it is clear that there is no general approach 

for predicting compound usefulness to be a potentially effective corrosion inhibitor or find some 

universal type of correlation. A number of excluded parameters that should be involved include the 

effect of solvent molecules, surface nature, and adsorption sites of the metal atoms or oxide sites or 

vacancies, competitive adsorption with other chemical species in the fluid phase and solubility. In this 

circumstance, a molecular simulation method is the best choice in an attempt to take into account the 

effect some of these excluded parameters [7]. 
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Table 1. Inhibition efficiencies and molecular structures of the studied inhibitor series 

 

 Inhibitor name Structure Inhibition 

Efficiency 

[20, 21] 

1 Glycine 

 

50 

2 Alanine 

 

51 

3 Valine 

 

47 

4 Leucine 

 

63 

5 Isoleucine 

 

59 

6 Threonine 

 

59 

7 Serine 

 

63 
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 Inhibitor name Structure Inhibition 

Efficiency 

[20, 21] 

8 Phenylalanine 

 

0 

9 Tyrosine 

 

39 

10 5,3-

Diiodotyrosine 

 

87 

11 Tryptophane 

 

80 

12 Aspartic acid 

 

52 
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 Inhibitor name Structure Inhibition 

Efficiency 

[20, 21] 

13 Asparagine 

 

73 

14 Glutamic acid 

 

53 

15 Glutamine 

 

75 

16 Proline 

 

34 

17 Hydroxyproline 

 

-140 

18 Histamine 

 

67 

19 Creatinine 

 

43 
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 Inhibitor name Structure Inhibition 

Efficiency 

[20, 21] 

20 4-nitropyrazole 

 

77.4 

21 4--

Sulfopyrazole 

 

75.1 

22 Cystine 

 

-55 

23 Cysteine 

 

-179 

24 Methionine 

 

59 

25 Lysine 

 

71 

26 Creatine 

 

-10 
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 Inhibitor name Structure Inhibition 

Efficiency 

[20, 21] 

27 Histidine 

 

41 

28 Arginine 

 

16 

 

QSAR correlates and predicts physical and chemical properties of chemicals and plays an 

important role in effective assessment of organic inhibitors. Detailed description of QSAR has 

previously been presented elsewhere [4, 8-14]. 

In this work, molecular simulation studies were performed to simulate the adsorption of the 

asparagine amino acid on an iron surface. Also, the goal of this study is to encapsulate knowledge 

about how the selected amino acid, which is used as corrosion inhibitors for iron in molar hydrochloric 

(HCl) acid [15, 16], perform in a structure-activity relationship (SAR) model using the Genetic 

Function Approximation (GFA) algorithm.  

 

 

 

2. COMPUTATIONAL DETAILS 

There is no doubt that the recent progress in density functional theory (DFT) has provided a 

very useful tool for understanding molecular properties and for describing the behavior of atoms in 

molecules. DFT methods have become very popular in the last decade due to their accuracy, which is 

similar to other methods (ab initio method), but DFT requires less computational cost from the 

computational point of view. In agreement with  DFT, the energy of the fundamental state of 

polyelectronic systems can be expressed through the total electronic density, and in fact the use of the 

electronic density instead of the wave function for the calculation of the energy constitutes the 

fundamental basis of DFT [17, 18]. Monte Carlo simulations help in finding the most stable adsorption 

sites on metal surfaces through finding the low-energy adsorption sites on both periodic and 

nonperiodic substrates or to investigate the preferential adsorption of mixtures of adsorbate 

components [19]. 

In the current study, selected amino acids have been simulated as adsorbate on an iron (Fe) 

(111) surface substrate to find the low energy adsorption sites and to investigate the preferential 

adsorption of the studied inhibitors. To calculate the adsorption density as well as the binding energy 



Int. J. Electrochem. Sci., Vol. 8, 2013 

  

10029 

of the studied inhibitor, the Monte Carlo method has been used. In this computational work, possible 

adsorption configurations have been identified by carrying out Monte Carlo searches of the 

configurational space of the iron/asparagine inhibitor system as the temperature is gradually decreased. 

Asparagine is constructed and its energy was optimized using Forcite classical simulation engine [20, 

21]. The geometry optimization process is carried out using an iterative process, in which the atomic 

coordinates are adjusted until the total energy of a structure is minimized, i.e., it corresponds to a local 

minimum in the potential energy surface. Geometry optimization is based on reducing the magnitude 

of the calculated forces until they become smaller than defined convergence tolerances [22]. The 

forces on the atoms in the studied inhibitors are calculated from the potential energy expression and 

will, therefore, depend on the force field that is selected [22]. 

The molecular dynamic (MD) simulations were performed using the software, Materials Studio 

[23]. The MD simulation of the interaction between the asparagine inhibitor molecule and Fe (111) 

surface was carried out in a simulation box (17.38 Å × 17.38 Å × 44.57 Å) with periodic boundary 

conditions to model a representative part of the interface devoid of any arbitrary boundary effects [22]. 

The Fe (111) was first built and relaxed by minimizing its energy using molecular mechanics, then the 

surface area of Fe (111) was increased and its periodicity is changed by constructing a super cell, and 

then a vacuum slab with 15 Å thicknesses was built on the Fe (111) surface [22]. The number of layers 

in the structure was chosen so that the depth of the surface is greater than the non-bond cutoff used in 

calculation. Using six layers of iron atoms gives a sufficient depth that the inhibitor molecules will 

only be involved in non-bond interactions with iron atoms in the layers of the surface, without 

increasing the calculation time unreasonably. This structure is then converted to exhibit 3D periodicity. 

As 3D periodic boundry conditions are used, it is important that the size of the vacuum slab is enough 

(15 Å) that the non-bond calculation for the adsorbate does not interact with the periodic image of the 

bottom layer of atoms in the surface. After minimizing the Fe (111) surface and the amino acids 

molecules, the corrosion system will be built by layer builder to place the inhibitor molecules on the Fe 

(111) surface, and the behaviors of these molecules on the Fe (111) surface were simulated using the 

COMPASS (condensed phase optimized molecular potentials for atomistic simulation studies) force 

field. The adsorption locator module in Materials Studio 6.0 [22, 24] has been used to model the 

adsorption of the inhibitor molecules onto the Fe (111) surface and therefore provides access to the 

energy of the adsorption and its effects on the inhibition efficiencies of the studied amino acid [19, 25-

30]. The binding energy between the asparagine inhibitor and the Fe (111) surface were calculated 

using the following equation [1, 31]: 

binding total surface inhibitorE =E -(E +E )     (1) 

Where totalE  is the total energy of the surface and inhibitor, surfaceE  is the energy of the surface 

without the inhibitor, and inhibitorE  is the energy of the inhibitor without the surface. 

The GFA algorithm approach has a number of important advantages over other standard 

regression analysis techniques. It builds multiple models rather than a single model [22, 32]. It 

automatically selects which features are to be used in the models and is better at discovering 

combinations of features that take advantage of correlations between multiple features [22]. GFA 

incorporates Friedman’s lack-of-fit (LOF) error measure, which estimates the most appropriate number 
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of features, resists over fitting, and allows control over the smoothness of fit. Also, it can use a larger 

variety of equation term types in construction of its models and finally, it provides, through study of 

the evolving models, additional information not available from standard regression analysis [22, 32]. 

 

 

 

3. INHIBITORS 

Corrosion inhibition experiments for the 28 amino acids and their related compounds presented 

in Table 1 were conducted in a laboratory [15, 16]. The experimental data was collected from literature 

[15, 16], and the experimental details are presented briefly in this paper. Measurements were 

performed with a Gamry Instrument Potentiostat/Galvanostat/ZRA with a Gamry Framework system 

based on the ESA400 and the VFP600 and Gamry applications, namely DC105 corrosion and EIS300 

electrochemical impedance spectroscopy measurements. A computer collected the data, and Echem 

Analyst 4.0 software was used for plotting, graphing, and fitting data. Tafel curves were obtained by 

changing the electrode potential automatically from -250 to +250 mV vs. open circuit potential (Eoc) at 

a scan rate of 1 mV/s. The inhibitor concentration was 10
-2

 M. Corrosion tests have been carried out on 

electrodes cut from iron (Puratronic 99.9999%, from Johnson Mattey Ltd.). Iron rods were mounted in 

Teflon (surface area 0.28 cm
2
).Corrosion inhibition efficiency of the studied amino acids was 

measured in HCl acid (1 M) solutions in the presence of the 28 amino acids and related compounds  at 

10
-2

 M concentration. The temperature of the solutions was maintained at 25 °C. The corrosion rate 

was determined using the Tafel polarization method [15, 16].  

 

 

 

4. RESULTS AND DISCUSSION 

4.1. Molecular dynamics simulation study 

Before performing the Monte Carlo simulation, molecular dynamics techniques are applied on 

a system comprising an asparagine amino acid, solvent molecules and iron surface. The selected amino 

acid is placed on the iron surface, optimized and then run quench molecular dynamics. Figure 1 shows 

the optimization energy curves for the asparagine amino acid before putting it on the iron surface. It 

can be seen from Fig. 1 that asparagine is energy optimized as well as the total energy; average total 

energy; van der Waals energy, electrostatic energy and intramolecular energy for 

asparagine/solvent/iron surface are calculated by optimizing the whole system and are presented in 

Fig. 2. 
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Figure 1. Optimization energy curves for the asparagine molecule before putting it on the iron surface. 

 

The Monte Carlo simulation process tries to find the lowest energy for the whole system. The 

structures of the adsorbate (asparagine) are minimized until it satisfies certain specified criteria. The 

Metropolis Monte Carlo method used in this simulation, samples the configurations in an ensemble by 

generating a chain of configurations, for example m, n, .... The step that transforms configuration m to 

n is a two-stage process [32]. 

First, a trial configuration is generated with probability αmn. Then, either the proposed 

configuration, n, is accepted with a probability Pmn or the original configuration, m, is retained with a 

probability 1−Pmn. The overall transition probability, πmn, is thereby obtained from Eq. 2 [32]: 

πmn  = αmn. Pmn      (2) 

Using the Adsorption locator simulation module distributed by Accelrys [33], the asparagine 

molecule – Fe (111) configuration are sampled from a canonical ensemble. In the canonical ensemble, 

the loading of all asparagine molecules on the Fe (111) substrate, as well as the temperature, are fixed. 
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Figure 2. Total energy distributions for asparagine/solvent/iron system. 

 

The probability of a configuration, m, in the canonical ensemble is given by Eq. 3 [34]: 
m- E

 emP C



     (3)

 

where C is an arbitrary normalization constant, β is the reciprocal temperature, and Em is the 

total energy of configuration m. 

The reciprocal temperature is given by: 

1

Bk T
 

     (4)
 

where kB is the Boltzmann constant and T is the absolute temperature. 

The total energy of configuration m is calculated according to the following sum [28, 32]: 
AA AS A

m m m mE E E U  
    (5)

 

where AA

mE is the intermolecular energy between the asparagine molecules, AS

mE is the 

interaction energy between the asparagine molecules and the Fe (111), and A

mU  is the total 

intramolecular energy of the asparagine  molecules. The intramolecular energy of the asparagine is not 

included as its structure is fixed throughout the simulation; therefore, this energy contribution is fixed 

and vanishes, since only energy differences play a role in Adsorption Locator calculations. 
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The total intramolecular energy, AU , is the sum of the intramolecular energy of all adsorbates 

of all components [28, 32]: 

int

{ }m

A

ra

N

U u       (6)
 

Where { }
m

N  denotes the set of adsorbate loadings of all components in configuration m. 

 
 

Figure 3. Equilibrium adsorption configurations of asparagines on Fe (111) surfaces obtained by 

molecular dynamics simulations. 

 

As the simulation starts with a clean Fe (111) substrate, the first stage is to adsorb the specified 

number of asparagine molecules. This is accomplished by a random series of insertion steps and 

equilibration moves (only moves that do not change the loading are permitted) until the specified 

loading has been reached. During this stage, only insertion steps that do not create structures with 

intermolecular close contacts and that pass all adsorbate location constraints are accepted [28, 32]. 

The starting configuration will take several steps to adjust to the current temperature. A 

simulation is, therefore, separated into an equilibration and a production stage. The properties returned 

at the end of the run are based on the production stage only [32]. 

In the equilibration and production stages of an Adsorption Locator simulation, each step starts 

with the selection of a step type using the weights set at the start of the run. The step type can be either 

a translation or a rotation. After a step type is selected, a random component is chosen and the step 

type is applied to a random adsorbate of that component [32]. The Metropolis Monte Carlo method is 

then used to decide whether to accept or reject the change [32]. 
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Figure 4. The adsorption energy distribution of the adsorbate (asparagine molecules) on Fe (111) 

surface. 

 

The Metropolis Monte Carlo method in Adsorption Locator provides four step types for a 

canonical ensemble: conformer, rotation, translation and regrowth [35]. Figure 3 shows the most 

suitable asparagine conformation adsorbed on Fe (111) substrate obtained by adsorption locator 

module [36-38]. The adsorption density of asparagine on the Fe (111) substrate is  presented in Fig. 4. 

As can be seen from Figs. 3 and 4 the asparagine molecule shows the ability to adsorb on a Fe (111) 

surface. Also, it has high binding energy to the Fe surface as seen in Table 2. 

The outputs and descriptors calculated by the Monte Carlo simulation are presented in Table 2. 

 
Figure 5. Adsorption density field of asparagine on the Fe (111) substrate. 
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Table 2. Different adsorption structures and the corresponding adsorption energy 

 
Structures Total Energy Adsorption Energy Rigid Adsorption Energy Deformation Energy Asparagine (2): dEad/dNi 

Substrate 0     

asparagine (2) -46.3684     

asparagine - 1 -59.3531 -12.9846 -13.0882 0.103588 -12.9846 

asparagine - 2 -58.0856 -11.7172 -12.5598 0.842595 -11.7172 

asparagine - 3 -57.7907 -11.4222 -11.5475 0.125256 -11.4222 

asparagine - 4 -57.653 -11.2846 -12.6871 1.402535 -11.2846 

asparagine - 5 -57.6458 -11.2773 -12.0287 0.751371 -11.2773 

asparagine - 6 -57.4457 -11.0773 -11.2408 0.163543 -11.0773 

asparagine - 7 -57.4327 -11.0643 -11.3543 0.290057 -11.0643 

asparagine - 8 -57.431 -11.0625 -11.2698 0.207297 -11.0625 

asparagine - 9 -57.4242 -11.0558 -11.3005 0.244678 -11.0558 

asparagine - 10 -57.2306 -10.8622 -11.0224 0.160206 -10.8622 

 

 The parameters presented in Table 2 include total energy, in kJ mol
−1

, of the substrate-

adsorbate configuration. The total energy is defined as the sum of the energies of the adsorbate 

components, the rigid adsorption energy and the deformation energy. In this study, the substrate energy 

(iron surface) is taken as zero. In addition, adsorption energy in kJ mol
−1

, reports energy released (or 

required) when the relaxed adsorbate components (asparagine in H2O) are adsorbed on the substrate. 

The adsorption energy is defined as the sum of the rigid adsorption energy and the deformation energy 

for the adsorbate components. The rigid adsorption energy reports the energy, in kJ mol
−1

, released (or 

required) when the unrelaxed adsorbate components (i.e., before the geometry optimization step) are 

adsorbed on the substrate. The deformation energy reports the energy, in kJ mol
−1

, released when the 

adsorbed adsorbate components are relaxed on the substrate surface. Table 2 shows also that 

(dEads/dNi), which reports the energy, in kJ mol
−1

, of substrate-adsorbate configurations where one of 

the adsorbate components has been removed.  

Figure 5 shows the adsorption energy distribution of the asparagine molecules on Fe (111). As 

can be seen in Fig. 5, the adsorption energy of asparagine reaches (-75 KJ mole
-1

), which shows the 

adsorption power for asparagine molecules on Fe (111) surface. 

 

4.2. QSAR  

The main problem for QSAR resides not in performing the correlation itself but setting the 

variable selection for it [22, 39]; the mathematical counterpart for such a problem is known as the 

“factor indeterminacy” [40, 41] and affirms that the same degree of correlation may be reached with in 

principle an infinity of latent variable combinations [39]. Fortunately, in chemical-physics there are 

limited (although sufficient) indicators to be considered with a clear-cut meaning in molecular 
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structure that allows for rationale of reactivity and bindings [42, 43]. Subsequently, the main point is 

that given a set of N-molecules, one can choose to correlate their observed activities 
1,i N

A


with M-

selected structural indicators in as many combinations as [39]:  
M

k k

M M

k=1

!
C= C ,  C

!( )!

M

k M k



      (7) 

linked by different endpoint paths, as many as [39]: 

1

M k

Mk
K C


       (8) 

indexing the numbers of paths built from connected distinct models with orders (dimension of 

correlation) from k=1 to k=M [39]. 

 

In the present study we developed the best QSAR model to explain the correlations between the 

physicochemical parameters and corrosion inhibition efficiency for 28 amino acids and some related 

organic compounds as corrosion inhibitors extracted from literature [15, 16]. 

Table 1 shows the molecular structures for the studied inhibitors with their inhibition 

efficiencies as presented in the literature [15, 16]. 

A univariate analysis is performed on the inhibition efficiency data in Table 3 as a tool to 

assess the quality of the data available and its suitability for next statistical analysis. The data in Table 

3 shows acceptable normal distribution. The normal distribution behavior of the studied data was 

confirmed by the values of standard deviation, mean absolute deviation, variance, skewness and 

Kurtosis presented in Table 3. A description of these parameters have been reported elsewhere [44]. 

 

Table 3. Univariate analysis of the inhibition data 

 

Statistical Parameters 

Number of sample points 28 

Range 266 

Maximum 87 

Minimum -179 

Mean 33.95071 

Median 52.5 

Variance 3.80E+03 

Standard deviation 62.7343 

Mean absolute deviation 40.836 

Skewness -2.17234 

Kurtosis 4.07874 

 

Table 4 shows the structural descriptors for the 28 amino acids and its related compounds. It 

also records their inhibition efficiencies. Unless otherwise specified, the following unites are used for 

quantities calculated by QSAR descriptors and properties; area (Å
2
), volume (Å

3
), dipole moment (e 



Int. J. Electrochem. Sci., Vol. 8, 2013 

  

10037 

Å), HOMO and LUMO (Hartree). The atom volumes and surfaces model calculates surface areas and 

volumes of surfaces around atomistic structures using the atom volumes and surfaces functionality of 

the Materials Studio software [45, 46]. 

 

The molecular area (vdW area) in Table 4 describes the volume inside the van der waals area of 

the molecular surface area and determines the extent to which a molecule is exposed to the external 

environment [22].  

 

Table 4. Descriptors for the studied 28 inhibitor molecules calculated using quantum chemical and 

molecular dynamics simulation methods 
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glycine 50 -0.2211 -0.0655 0.1556 144.1 -43.85 27.16403 7.99 0.319 -2.017 1.161 107.4517 73.08615 46.65726 

4-nitropyrazole 77.48 -0.1954 -0.0563 0.1391 254.2 -47.82 34.90011 3.12 6.93 -1.345 -0.006 132.2922 96.31805 76.4667 

alanine 51 -0.2202 -0.0618 0.1584 148.67 -51.311 20.30506 7.91 0.214 -1.837 0.498 128.4906 89.83167 47.56522 

serine 63 -0.2086 -0.0547 0.1539 193.2 -59.028 35.88107 6.43 -0.562 -1.283 2.187 138.6798 99.62781 63.43687 

threonine 59 -0.212 -0.0528 0.1591 186.3 -62.847 22.80966 7.3 -1.586 -3.518 4.065 157.0477 115.7812 59.62213 

proline 34 -0.2158 -0.054 0.1618 117.2 -63.87 10.4539 8.2 -1.006 -2.792 2.249 153.3667 114.0387 42.51106 

valine 47 -0.2174 -0.0582 0.1591 141.12 -64.239 26.4814 6.99 -1.313 -2.341 3.074 161.9411 122.4088 51.65046 

cysteine -179 -0.2052 -0.5656 -0.3604 9.87 -64.89 30.29514 9.4 -0.408 -1.058 1.882 147.0621 108.3996 -178.999 

creatinine 43 -0.2179 -0.0547 0.1632 137.67 -65.49 -68.3172 7.97 1.659 -1.444 0.388 148.3478 109.073 43.0377 

histamine 67 -0.215 -0.0602 0.1548 203.12 -66.62 -10.7584 6.01 -3.433 -0.335 -1.444 157.6746 116.8251 65.03308 

leucine 63 -0.2086 -0.0542 0.1545 194.56 -67.46 11.47275 6.32 -1.314 -3.273 0.487 185.1023 139.8994 62.23819 

creatine -10 -0.2134 -0.029 0.1844 29.6 -69.25 -23.7776 8.41 -0.084 0.729 1.092 171.6891 126.3599 -15.8115 

isoleucine 59 -0.2088 -0.0526 0.1562 188.76 -71.47 25.71603 6.51 -1.174 -2.39 3.256 180.5596 138.8267 62.53865 

hydroxyproline -140 -0.2677 -0.0654 0.2023 15.8 -71.73 12.79202 9 -0.948 -1.224 -3.271 159.7079 122.4847 -139.014 

asparagine 73 -0.2082 -0.0589 0.1493 241.23 -75.06 -46.3684 5.98 -1.389 2.138 2.141 165.4502 123.3463 75.90911 

aspartic acid 52 -0.2063 -0.0516 0.1547 158.68 -75.149 -23.7776 7.84 1.739 0.304 0.809 165.3701 120.8097 57.28794 

histidine 41 -0.22 -0.0532 0.1668 128.98 -75.33 21.99655 7.98 -2.211 -5.769 3.547 187.1373 146.3167 34.9999 

phenylalanine 0 -0.2215 -0.0486 0.1729 50.3 -75.41 25.26654 8.32 0.785 -1.999 0.027 213.33 167.868 1.359289 

lysine 71 -0.2015 -0.0567 0.1447 221.56 -76.17 9.344533 5.99 -0.893 -0.892 1.053 207.6746 153.7672 66.95037 

glutamic acid 53 -0.2124 -0.0545 0.1579 161.21 -77.05 -7.44533 7.863 0.044 -5.325 5.785 185.522 137.8673 52.63036 

4-sulfopyrazole 75.14 -0.1943 -0.0572 0.1371 250.1 -77.78 -9.91027 4.34 -2.347 -0.504 -4.926 159.8533 116.9821 75.57902 

3,5-diiodotyrosine 87 -0.2639 -0.1377 0.1262 287.45 -77.86 27.23897 2.12 3.424 -0.528 1.419 280.1272 226.3173 88.17121 

methionine 59 -0.216 -0.0602 0.1558 187.17 -77.968 14.87045 7.12 -1.013 -4.581 2.911 191.3474 142.7116 57.58461 

glutamine 75 -0.2038 -0.0609 0.1428 249.7 -78.91 -27.3518 5.43 -1.093 -7.204 3.419 189.6844 140.8272 76.5997 

 

 

This descriptor is related to binding, transport and solubility. The molecular volume (vdW 

volume) in Table 4, describes the volume inside the van der waals area of a molecule [22]. Total 
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molecular dipole moment, this descriptor calculates the molecule dipole moments from partial charges 

defined on the atoms of the molecule [22]. If no partial charges are defined, the molecular dipole 

moment will be zero. Total energy, HOMO and LUMO energy have been described in our previous 

studies in detail [44]. 

For understanding the quantitative structure and activity relationships, statistical analysis using 

the GFA method, first a study table was belted and presented in Table 4. Second, a correlation matrix 

was derived, and then regression parameters were obtained. Table 4 shows the structural descriptors 

for the 28 amino acids and its related compounds used in this study (as a training set). The structure 

descriptors presented in Table 4 include total energy, HOMO and LUMO energy as well as the area 

and volume of the studied molecules. Also, the adsorption energy and binding energy have been used 

for the first time in QSAR studies. Adsorption energy and binding energy have been calculated using 

adsorption locator and discover modules included in materials studio software, are used in 

understanding the QSAR. 

 

Table 5. Correlation matrix of the studied variables 

 

 

B: 

Inhibition 

Efficiency 

[20, 21] 

C: 

E(HOMO) 

(Ha) 

D: E 

(LUMO) 

(Ha) 

E: 

[E(LUMO)

-

E(LUMO)]

(Ha) 

F: Binding 

Energy 

(Kcal/mol) 

G: Adsorption 

Energy 

(Kcal/mol) 

H: [Total 

Energy] 

(Kcal/mol) 

I: Total dipole 

(VAMP 

Electrostatics) 

M: Molecular 

area (vdW 

area) (Spatial 

Descriptors) 

N: Molecular 

volume (vdW 

volume) 

(Spatial 

Descriptors) 

B: Inhibition Efficiency 1 0.260799 0.594229 0.544128 0.837994 0.080437 0.015057 -0.62235 0.034239 0.037099 

C: E(HOMO) (Ha) 0.260799 1 -0.00351 -0.16446 0.173008 0.054463 -0.12415 -0.00149 -0.24957 -0.29717 

D: E (LUMO)(Ha) 0.594229 -0.00351 1 0.986954 0.245998 -0.1067 -0.15711 -0.12138 0.101447 0.084384 

E: [E(LUMO)-

E(LUMO)](Ha) 0.544128 -0.16446 0.986954 1 0.214764 -0.11397 -0.13499 -0.11949 0.140207 0.13104 

F: Binding Energy 

(Kcal/mol) 0.837994 0.173008 0.245998 0.214764 1 0.066709 0.177904 -0.86751 0.041178 0.058703 

G: Adsorption Energy 

(Kcal/mol) 0.080437 0.054463 -0.1067 -0.11397 0.066709 1 0.103563 0.023798 -0.83649 -0.81538 

H: [Total 

Energy](Kcal/mol) 1.51E-02 -0.12415 -0.15711 -0.13499 0.177904 0.103563 1 -0.38487 0.137823 0.198367 

I: Total dipole (VAMP 

Electrostatics) -0.62235 -0.00149 -0.12138 -0.11949 -0.86751 0.023798 -0.38487 1 -0.24984 -0.28421 

M: Molecular area 

(vdW area) (Spatial 

Descriptors) 0.034239 -0.24957 0.101447 0.140207 0.041178 -0.83649 0.137823 -0.24984 1 0.994539 

N: Molecular volume 

(vdW volume) (Spatial 

Descriptors) 0.037099 -0.29717 0.084384 0.13104 0.058703 -0.81538 0.198367 -0.28421 0.994539 1 

 

Table 5 contains a correlation matrix, which gives the correlation coefficients between each 

pair of columns included in the analysis in Table 4. Correlation coefficients between a pair of columns 

approaching +1.0 or -1.0 suggest that the two columns of data are not independent of each other. 

Correlation matrix can help to identify highly correlated pairs of variables, and thereby identify 

redundancy in the data set. A correlation coefficient close to 0.0 indicates very little correlation 

between the two columns. The diagonal of the matrix always has the value of 1.0. To aid in visualizing 

the results, the cells in the correlation matrix grid are colored according to the correlation value in each 

cell. A standard color scheme is used when the correlation matrix is generated: +0.9 ≤X≤+1.0 (orange), 

+0.7≤ X<+0.9 (yellow), -0.7<x>+0.7 (white), -0.9 <x>-0.7 (yellow) and -1.0 ≤x≤-0.9 (orange) [20]. 

Inspection of Table 5 shows that the descriptors most highly correlated with corrosion inhibition 

efficiency include: ELUMO, EHOMO and energy gap, binding energy and dipole moment. After 
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constructing the correlation matrix both the GFA algorithm and neural network analysis will be used to 

perform a regression analysis. 

After constructing the correlation matrix in Table 5, it is now ready to perform a regression 

analysis of the descriptor variables compared against the measured corrosion inhibition values. There 

are two separate issues to consider. First, there are many more descriptor variables than measured 

inhibition values, so we should reduce the number of descriptors. Typically, a ratio between two and 

five measured values for every descriptor should be sought to prevent over fitting. Second, we are 

planning on obtaining a parametric representation of the regression, producing a simple equation, 

which can be validated against our scientific knowledge [32]. 

The GFA algorithm works with a set of strings, called a population [32]. This population is 

evolved in a manner that leads it toward the objective of the search [32]. Following this, three 

operations are performed iteratively in succession: selection, crossover, and mutation. Newly added 

members are scored according to a fitness criterion. In the GFA, the scoring criteria for models are all 

related to the quality of the regression fit to the data. The selection probabilities must be re-evaluated 

each time a new member is added to the population [32]. The procedure continues for a user-specified 

number of generations, unless convergence occurs in the interim. Convergence is triggered by lack of 

progress in the highest and average scores of the population [32]. 

Various statistical measures can be adapted to measure the fitness of a GFA model during the 

evolution process. Use of the Friedman LOF measure has several advantages over the regular least 

square error measure. In Materials Studio [45, 46], LOF is measured using a slight variation of the 

original Friedman formula [47]. The revised formula is: 

2(1 )

SSE
LOF

c dp

M






      (9) 

Where SSE is the sum of squares of errors, c is the number of terms in the model, other than 

the constant term, d is a user-defined smoothing parameter, p is the total number of descriptors 

contained in all model terms (again ignoring the constant term) and M is the number of samples in the 

training set [47]. 

 

Table 6. Validation table of the GFA 

 
  Equation 1 

Friedman LOF 103.2001 

R-squared 0.996943 

Adjusted R-squared 0.995656 

Cross validated R-squared -20.8175 

Significant Regression Yes 

Significance-of-regression F-value 774.532 

Critical SOR F-value (95%) 2.48E+00 

Replicate points 0 

Computed experimental error 0 

LOF points 19 

Min expt. error for non-significant LOF (95%) 3.279389 
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Unlike the commonly used least squares measure, the LOF measure cannot always be reduced 

by adding more terms to the regression model. While the new term may reduce the SSE, it also 

increases the values of c and p, which tends to increase the LOF score. Therefore, adding a new term 

may reduce the SSE, but it actually increases the LOF score. By limiting the tendency to simply add 

more terms, the LOF measure resists over fitting better than the SSE measure [32, 48]. 

Table 6 shows the GFA analysis, which gives summary of the input parameters used for the 

calculation. Also, it reports whether the GFA algorithm converged in a specified number of 

generations. The GFA algorithm is assumed to have converged when no improvement is seen in the 

score of the population over a significant length of time, either that of the best model in each 

population or the average of all the models in each population. When this criterion has been satisfied, 

no further generations are calculated [44]. 

 

Table 7. Equation used to calculate the predicted inhibition efficiency 

 
Equation Definitions 

Y =  - 17067.664384301 * X1 X1: C : E(HOMO) (Ha) 

+ 9194.528783443 * X2 X2: D : E (LUMO)(Ha) 

+ 0.416465461 * X4 X4: F : Binding Energy (Kcal/mol) 

+ 0.997912242 * X12 X12: N : Molecular volume (vdW volume) (Spatial Descriptors) 

+ 49922.123879648 * X14 X14: (C : E(HOMO) (Ha)) * (E : [E(LUMO)-E(LUMO)](Ha)) 

- 3433.185745850 * X24 X24: (D : E (LUMO)(Ha)) * (E : [E(LUMO)-E(LUMO)](Ha)) 

+ 4.385840138 * X25 X25: (D : E (LUMO)(Ha)) * (F : Binding Energy (Kcal/mol)) 

- 0.003332091 * X78 X78: (M : Molecular area (vdW area) (Spatial Descriptors)) * (N : Molecular volume (vdW volume) (Spatial Descriptors)) 

-1507.66  

 

The Friedman’s LOF score in Table 6 evaluates the QSAR model [44]. The lower the LOF, the 

less likely it is that the GFA model will fit the data. The significant regression is given by F-test, and 

the higher the value, the better the model. 

Actual values of corrosion inhibition, [20,21]
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Figure 6. Plot of predicted inhibition and residuals vs. measured corrosion inhibition [20, 21] using 

GFA.  
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Figure 6 shows the relationship between the measured corrosion inhibition efficiencies of the 

studied inhibitors presented in Table 4 and the predicted efficiencies calculated by the equation model 

presented in Table 7. 

The distribution of the residual values against the measured corrosion inhibition efficiencies 

values are presented in Fig. 6. The residual values can be defined as the difference between the 

predicted value generated by the model and the measured values of corrosion inhibition efficiencies. 

An analysis of Fig. 6 shows excellent correlation behavior, with most of the molecular system and 

showing acceptable deviations. The key feature of Fig. 6 is the distribution of the residual values 

against the measured corrosion inhibition values. An acceptable variation is observed, which should be 

present in a valid model. Inspection of Table 6 and Fig. 6 shows that the suggested model gives 

excellent correlation between the measured and predicted corrosion inhibition values. It is important to 

point out that the identification of related inhibitors showing very good behavior and this behavior has 

not been reported previously although the relatively big number of molecules employed in this study. 

 

 
 

Figure 7. Outlier analysis for inhibition efficiency. 

 

When a prediction model is generated to predict response data from predictor data, the 

prediction model will not normally give an exact fit to the response data. Unless the response data is 

genuinely an exact linear function of the predictor data, this should not be the case and an exact fit is 

indicative of over fitting (where there are as many independent observations as there are degrees of 

freedom in the algorithm from which the model is generated) [48]. With data that are randomly 

distributed within normal distribution, when a linear prediction model is generated using a least 

squares analysis technique, the residual values should also have a normal distribution with a mean 

value of zero. It is then expected that 95% of the values should lie within two standard deviations of 

the mean value [48]. Figure 7a and 7b represents the potential outlier that was used to test the 
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constructed QSAR model. An outlier can be defined as a data point whose residual value is not within 

two standard deviations of the mean of the residual values. Figure 7a represents the residual values 

plotted against the measured corrosion inhibition efficiencies. Figure 7b shows the residual values 

plotted against Table 4 row number. Figures 7a and 7b contains a dotted line that indicates the critical 

threshold of two standard deviations beyond which a value may be considered to an outlier. Inspection 

of Figs. 7a and 7b shows that there is only one point that appeared outside the dotted lines, which make 

the QSAR model acceptable. 

 

 

 

5. CONCLUSIONS 

Computational studies help to find the most stable inhibitor conformation and adsorption sites 

for a broad range of materials. This information can help to gain further insight into the corrosion  

system, such as the most likely point of attack for corrosion on a surface, the most stable site for  

inhibitor adsorption, adsorption density of the inhibitor and the binding energy of the adsorbed layer. 

A GFA method was used to run the regression analysis and establish correlations between 

different types of descriptors and measured corrosion inhibition efficiency of 28 amino acids and their 

related compounds. A QSAR equation was developed and used to predict the corrosion inhibition 

efficiency of 28 amino acids and their related compounds. The prediction of corrosion efficiencies of 

these compounds nicely matched the experimental measurements. The studied amino acids inhibit iron 

corrosion by forming a molecular layer and decreased the iron dissolution. It is clear from these 

complex processes that occur on the metal surface that the inhibition process cannot fully be explained 

by using the QSAR approach. Despite these limitations, the QSAR approach is still an effective 

method that can be coupled with experimental measurements to predict inhibitor candidates for 

corrosion process. 
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