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In spite of the huge success that has been attributed to the use of computational chemistry in corrosion 

studies, most of the ongoing research on the inhibition potential of organic inhibitors is restricted to 

laboratory work. The quantitative structure inhibition (activity) relationship (QSAR) approach is an 

effective method that can be used together with experimental techniques to predict inhibitor candidates 

for corrosion processes. The study has demonstrated that the neural network can effectively generalize 

correct responses that only broadly resemble the data in the training set. The neural network can now 

be put to use with the actual data, this involves feeding the neural network with several quantum 

chemical descriptors as dipole moment, highest occupied (HOMO) and lowest unoccupied (LUMO) 

molecular orbital energy, energy gap, molecular area and volume. The neural network will produce 

almost instantaneous results of corrosion inhibition efficiency. 
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1. INTRODUCTION 

Corrosion is one of the main problems in the oil and gas production and transportation 

industries. Oil field corrosion manifests itself in several forms, which include the “sweet corrosion” 

caused by carbon dioxide (CO2) gas and/or the “sour corrosion” caused by hydrogen sulfide (H2S), in 

various oil and gas operations [1]. 

Many experimental and theoretical investigations have been undertaken with the common goal 

of revealing inhibitive action of different series of chemical compounds [2-6]. Although experimental 
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studies are straightforward, they are often expensive and time-consuming. Alternatively, theoretical 

and computational chemistry are useful and a powerful means in choosing the appropriate and 

effective inhibitors by understanding the inhibition mechanism prior to experimentation. 

It is a fundamental principle of chemistry that the structural formula of any compound contains 

coded within it all that compound's chemical, physical, and biological properties. Physical organic 

chemistry in the 21
st
 century is believed to become increasingly oriented towards elucidating in detail 

how these properties are determined by the structure.  This knowledge will help in developing the most 

appropriate experimental design. [7]. 

It is obvious that for many reasons, including the limitations of computer technology and the 

absence of a proper theoretical basis, that quantitative calculation of chemical and physical properties 

of chemical compounds from first principles will not be achievable in the near future. Therefore, the 

development of alternative approaches to find quantitative mathematical relationships between the 

intrinsic molecular structure and observable properties of chemical compounds will be of increasing 

importance in the chemistry of the 21
st
 century [7]. 

Quantum chemical calculations have long been concerned with the correlation of chemical 

properties in terms of structure and the inhibition efficiency of corrosion inhibitors. Subsequently, 

most such work in the 20th century has been carried out with co-generic sets of compounds in which 

just one structural feature is changing at any one time [8-12]. Numerous linear free energy 

relationships starting from those of Hammett [13] thereby resulted and have given considerable 

insights into organic chemical mechanisms. It is believed that the quantitative structure-property 

relationship (QSPR) approach will become the tool of choice for many academic and industrial 

chemists [7]. 

Quantitative structure inhibition (activity) relationship (QSIR or QSAR) is a theoretical 

method, which is useful in relating structural based parameters to corrosion inhibition efficiencies [14-

20]. In the development of QSAR models for corrosion inhibitors, attempts have been made to predict 

corrosion inhibition efficiency with a number of individual structural parameters (descriptors) obtained 

via various quantum chemical calculation methods as a tool for studying corrosion inhibition. The goal 

of these trials were to find possible correlations between corrosion inhibition efficiency and a number 

of quantum molecular properties such as dipole moment (μ), highest occupied (HOMO) and lowest 

unoccupied (LUMO) molecular orbitals, the gap between HOMO and LUMO, charge density, 

polarizability and molecular volume, as well as some structural parameters [12, 21-42]. 

The purpose of a QSIR is to highlight the relationship between inhibition efficiency (or any 

activity) and structural features (descriptors). In this method, it is to find one or more structural 

parameters, which relate these descriptors to their inhibition efficiencies through a mathematical 

equation. 

The goal of this study is to present a predictive model for corrosion inhibition of steel by 28 

amino acids’ molecules and their related compounds using an artificial neural network. This work 

extends the study presented in a previous work [22] with applications of neural networks to 

electrochemical techniques. The proposed model obtains predictions of inhibition efficiencies based on 

several quantum chemical variables and comparing these predicted values with the experimental 

inhibition efficiencies reported for the amino acids in the literature.  
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2. COMPUTATIONAL METHOD 

Geometrical parameters of all stationary points for the investigated amino acids and their 

derivatives are optimized by employing analytical energy gradients. The generalized gradient 

approximation (GGA) within the density functional theory was conducted with the software package 

DMol
3
 in Materials Studio of Accelrys Inc. [43]. All calculations were performed using the Becke-

Lee-Yang-Parr (BLYP) exchange correlation functional and the double numerical with polarization 

(DNP) basis set [44-46], since this was the best set available in DMol
3
. A Fermi smearing of 0.005 

hartree and a real space cutoff of 3.7 Å was chosen to improve the computational performance. All 

computations were performed with spin polarization. 

The phenomenon of electrochemical corrosion takes place in the liquid phase, so it is relevant 

to include the effect of solvent in the computations. The Self-Consistent Reaction Field (SCRF) theory 

[47], with Tomasi’s polarized continuum model (PCM) was used to perform the calculations in 

solution. These methods model the solvent as a continuum of uniform dielectric constant ( =78.5) and 

define the cavity where the solute is placed as a uniform series of interlocking atomic spheres. Frontier 

orbital distribution was obtained, at the same basis set level, to analyze the reactivity of inhibitor 

molecules. 

The molecular dynamics (MD) simulation of the interaction between the 28 compounds and Fe 

(1 1 1) plane surface was carried out in a simulation box (17.38 Å × 17.38 Å × 44.57 Å) with periodic 

boundary conditions to model a representative part of the interface devoid of any arbitrary boundary 

effects. The Fe (1 1 1) plane surface was first built and relaxed by minimizing its energy using 

molecular mechanics, then the surface area of Fe (1 1 1) was increased and its periodicity is changed 

by constructing a super cell, and then a vacuum slab with 15 Å thicknesses was built on the Fe (1 1 1) 

surface. The number of layers in the structure was chosen so that the depth of the surface is greater 

than the non-bond cutoff used in the calculation. Using four layers of iron atoms gives a sufficient 

depth that the amino acids and their derivatives will only be involved in non-bond interactions with 

iron atoms in the layers of the surface, without unreasonably increasing the calculation time. This 

structure then converted to have 3D periodicity [48, 49]. As 3D periodic boundary conditions are used, 

it is important that the size of the vacuum slab is great enough (15 Å) that the non-bond calculations 

for the adsorbate (amino acids and their related compounds) do not interact with the periodic image of 

the bottom layer of atoms in the surface. After minimizing the Fe (1 1 1) surface and the 28 inhibitor 

molecules, the corrosion system will be built by layer builder to place the amino acids and their related 

compounds on the Fe (1 1 1) surface. The  adsorption of these molecules on the Fe (1 1 1) surface was 

simulated using the condensed phase optimized molecular potentials for atomistic simulation studies 

(COMPASS) force field. The adsorption of amino acids and their related compounds onto the Fe 

(1 1 1) surface provides access to the energy of the adsorption and its effects on the inhibition 

efficiencies of amino acid molecules [48, 49]. The binding energy between the studied molecules and 

Fe (111) surface were calculated using the following equation [50, 51]: 

binding total surface inhibitorE =E -(E +E )
    (1) 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TFN-4XK45FW-3&_mathId=mml50&_user=5413195&_cdi=5231&_pii=S0009261409013773&_rdoc=1&_ArticleListID=1187069760&_issn=00092614&_acct=C000052544&_version=1&_userid=5413195&md5=b711b3646c87d1feb18219be6a1c66fc
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TFN-4XK45FW-3&_mathId=mml50&_user=5413195&_cdi=5231&_pii=S0009261409013773&_rdoc=1&_ArticleListID=1187069760&_issn=00092614&_acct=C000052544&_version=1&_userid=5413195&md5=b711b3646c87d1feb18219be6a1c66fc
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Where totalE
 is the total energy of the surface and inhibitor, surfaceE

 is the energy of the surface 

without the inhibitor, and inhibitorE
 is the energy of the inhibitor without the surface. 

 

2.1 Artificial Neural Networks 

Neural network analysis is an artificial intelligence (AI) approach to mathematical modeling. It 

is a sophisticated model building technique capable of modeling data such that it may be better 

represented by nonlinear functions. Corrosion is a complex and  nonlinear phenomenon that is too 

complex to be described by analytical methods or empirical rules, which make it an ideal pheromone 

to be studied using artificial neural networks [22]. 

The neurons are grouped into discrete layers and interconnected according to a given design. 

As in nature, the network’s function is determined largely by the connections between elements 

(neurons). Each connection between two neurons has a weight coefficient connected to it. The standard 

network structure for an approximation function is the multiple layer perception (or feed forward 

network). The feed forward network often has one or more hidden layers of sigmoid neurons followed 

by an output layer of linear neurons [52-55]. Multiple layers of neurons with nonlinear transfer 

functions allow the network to learn nonlinear and linear relationships between input and output 

vectors. The linear output layer lets the network produce values outside the −1 to +1 range [54, 56]. 

For the network, the appropriate notation is used in two-layer networks [52-55] . 

 

2.2 The structure of a neural network 

 
Figure 1. Structure of artificial neural network. 
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Figure 1 shows the structure of the artificial neural network. It consists of two main layers the 

input layer (predictor layer) and the output layer. The input layer is used to introduce the input 

(predictor) variables to the network. The output of the nodes in this layer represents the predictions 

made by the network for the response variables. This network also contains hidden layers. The optimal 

number of neurons in the hidden layer(s), ns, is difficult to specify and depends on the type and 

complexity of the process or experimentation [1]. This number is usually iteratively determined. In our 

study we have only a single hidden layer with four nodes. Each node (other than those in the input 

layer) takes as its input a transformed linear combination of the outputs from the nodes in the layer 

below it. This input is then passed through a transfer function to calculate the output of the node. The 

transfer function used by QSAR is an s-shaped sigmoid function. This function is chosen because it is 

smooth and has easily differentiable features that help the algorithm that is used to train the network 

[46]. 

 

2.3 Training process and topology of the neural network 

The neural network is built to train multilayer perceptrons in the context of regression analyses, 

i.e., to approximate functional relationships between covariates and response variables. Therefore, 

neural networks are used as extensions of generalized linear models [57]. 

Training is the process whereby the connection weights and biases are set so as to minimize the 

prediction error for the network. For a particular set of weights and biases, each of the training cases 

are introduced to the network and an error function is used to determine how well the calculated 

outputs match the expected output values [22, 58, 59]. A training algorithm is defined as a procedure 

that consists of adjusting the coefficients (weights and biases) of a network to minimize an error 

function (usually a quadratic one) between the network outputs for a given set of inputs and the correct 

(already known) outputs. If smooth, nonlinearities are used, the gradient of the error function can be 

computed by the classical back propagation procedure [1]. 

It was found empirically that a single hidden layer is sufficient for modeling most data sets and 

it is recommended that we first try to model our data with a single hidden layer. Additional hidden 

layers allow the neural network to model more complex functions [58]. There is a formal proof, the 

Kolmogorov theorem, which states that two hidden layers are theoretically sufficient to model any 

problem, though it is possible that, for some data sets, a network with more hidden layers might be 

able to find a good model more easily [46]. 

Each connection weight and node bias is a parameter that can be adjusted during network 

training. Therefore, each connection and node corresponds to one degree of freedom of the model 

represented by the neural network. As a general rule, we should strive to have at least twice as many 

observations as there are degrees of freedom. If we have too many nodes in the hidden layer(s), then 

the model will tend to over fit our data. If we have too few, then the model may not have sufficient 

power to fit our data [58]. 

 

 

 



Int. J. Electrochem. Sci., Vol. 8, 2013 

  

9923 

3. INHIBITORS 

Table 1. Inhibition efficiencies and molecular structures of the studied inhibitor series 

 

 Inhibitor Name Structure Inhibition 

Efficiency 

[27, 58] 

1 Glycine 

 

50 

2 Alanine 

 

51 

3 Valine 

 

47 

4 Leucine 

 

63 

5 Isoleucine 

 

59 

6 Threonine 

 

59 

7 Serine 

 

63 
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 Inhibitor Name Structure Inhibition 

Efficiency 

[27, 58] 

8 Phenylalanine 

 

0 

9 Tyrosine 

 

39 

10 5,3-

Diiodotyrosine 

 

87 

11 Tryptophane 

 

80 

12 Aspartic acid 

 

52 
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 Inhibitor Name Structure Inhibition 

Efficiency 

[27, 58] 

13 Asparagine 

 

73 

14 Glutamic acid 

 

53 

15 Glutamine 

 

75 

16 Proline 

 

34 

17 Hydroxyproline 

 

-140 

18 Histamine 

 

67 

19 Creatinine 

 

43 
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 Inhibitor Name Structure Inhibition 

Efficiency 

[27, 58] 

20 4-nitropyrazole 

 

77.4 

21 4-

Sulfopyrazole 

 

75.1 

22 Cystine 

 

-55 

23 Cysteine 

 

-179 

24 Methionine 

 

59 

25 Lysine 

 

71 

26 Creatine 

 

-10 



Int. J. Electrochem. Sci., Vol. 8, 2013 

  

9927 

 Inhibitor Name Structure Inhibition 

Efficiency 

[27, 58] 

27 Histidine 

 

41 

28 Arginine 

 

16 

 

Corrosion inhibition experimental studies for the 28 amino acids and their related compounds 

presented in Table 1 were conducted in our laboratory at Rice University, Houston, Texas [60, 61]. 

The experimental data was collected from Professor Hackerman’s literature [60, 61], but the 

experimental details are outlined briefly here as indicated in the literature [60, 61]. Measurements were 

performed with a Gamry Instrument Potentiostat/Galvanostat/ZRA. This includes a Gamry Framework 

system based on the ESA400 and the VFP600 and Gamry applications that include DC105 corrosion 

and EIS300 electrochemical impedance spectroscopy measurements. A computer collected the data, 

and Echem Analyst 4.0 software was used for plotting, graphing, and fitting data. Tafel curves were 

obtained by changing the electrode potential automatically from -250 to +250 mV vs. open circuit 

potential (Eoc) at a scan rate of 1 mV/s. The inhibitor concentration was 10
-2

 M. Corrosion inhibition 

efficiency of the studied amino acids was measured in hydrochloric acid (1 M) solutions in the 

presence of the 28 amino acids and related compounds  at 10
-2

 M concentration. The temperature of 

the solutions was maintained at 25 °C. The corrosion rate was determined by using the Tafel 

polarization method [60, 61].  

 

 

 

4. RESULTS AND DISCUSSION 

4.1 QSAR study using the artificial neural network 

In this work, a neural network training set was used to predict the corrosion inhibition 

efficiencies for 28 amino acids and their related compounds used to inhibit the corrosion of steel in 

chloride solutions. 

Before searching for potential QSAR, it is worth assessing the quality and distribution of data 

presented in the study table (Table 2). Most forms of multivariate analysis assume that the input 

variables have a normal distribution, and are a representative sample. To examine data in Table 2 a 

univariate analysis, which is a technique used for generating statistics independently for the 
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experimental inhibition efficiencies. Table 3 shows accepted normal distribution, which enables us to 

start building a correlation matrix. The normal distribution behavior of the studied data was confirmed 

by the values of standard deviation, mean absolute deviation, variance, skewness and kurtosis. 

Table 3 shows a univariate analysis for the inhibition data presented in Table 2. Table 3 

contains several statistical measures that describe the corrosion inhibition data. The most important 

parameters in Table 3 are the skewness and kurtosis. Skewness is the third moment of the distribution, 

which indicates the symmetry of the distribution. As the skewness is negative, the distribution of data 

values within the column is skewed toward negative values. For a symmetrical distribution, the 

skewness is zero. Kurtosis is the fourth moment of the distribution, which indicates the profile of the 

column of data relative to a normal distribution. Univariate analysis calculates Fisher kurtosis, which 

subtracts 3.0 from the definition above. For a normally distributed data set, it gives a value of 0.0. If 

the kurtosis is positive, the distribution of data in the column is more sharply peaked than a normal 

distribution. If the kurtosis is negative, the distribution is flatter than a normal distribution [27, 58].  

A study table presented in Table 2 contains the calculated descriptors and properties for the 

studied 28 amino acids and their related compounds used to inhibit the corrosion of steel in chloride 

solutions. These compound’s descriptors and properties are used for developing quantitative structure 

activity relationships and property prediction.  

Table 2. Descriptors for the studied 28 inhibitor molecules calculated using quantum chemical and 

molecular dynamics, MDs simulation methods 
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glycine 50 -0.2211 -0.0655 0.1556 144.1 -43.85 27.16403 7.99 0.319 -2.017 1.161 107.4517 73.08615 49.95857 

4-nitropyrazole 77.48 -0.1954 -0.0563 0.1391 254.2 -47.82 34.90011 3.12 6.93 -1.345 -0.006 132.2922 96.31805 76.82211 

alanine 51 -0.2202 -0.0618 0.1584 148.67 -51.311 20.30506 7.91 0.214 -1.837 0.498 128.4906 89.83167 50.66061 

serine 63 -0.2086 -0.0547 0.1539 193.2 -59.028 35.88107 6.43 -0.562 -1.283 2.187 138.6798 99.62781 62.37816 

threonine 59 -0.212 -0.0528 0.1591 186.3 -62.847 22.80966 7.3 -1.586 -3.518 4.065 157.0477 115.7812 59.52329 

proline 34 -0.2158 -0.054 0.1618 117.2 -63.87 10.4539 8.2 -1.006 -2.792 2.249 153.3667 114.0387 35.04029 

valine 47 -0.2174 -0.0582 0.1591 141.12 -64.239 26.4814 6.99 -1.313 -2.341 3.074 161.9411 122.4088 45.34483 

cysteine -179 -0.2052 -0.5656 -0.3604 9.87 -64.89 30.29514 9.4 -0.408 -1.058 1.882 147.0621 108.3996 -178.84 

creatinine 43 -0.2179 -0.0547 0.1632 137.67 -65.49 -68.3172 7.97 1.659 -1.444 0.388 148.3478 109.073 44.99693 

histamine 67 -0.215 -0.0602 0.1548 203.12 -66.62 -10.7584 6.01 -3.433 -0.335 -1.444 157.6746 116.8251 65.3589 

leucine 63 -0.2086 -0.0542 0.1545 194.56 -67.46 11.47275 6.32 -1.314 -3.273 0.487 185.1023 139.8994 64.09232 

creatine -10 -0.2134 -0.029 0.1844 29.6 -69.25 -23.7776 8.41 -0.084 0.729 1.092 171.6891 126.3599 -9.89665 

isoleucine 59 -0.2088 -0.0526 0.1562 188.76 -71.47 25.71603 6.51 -1.174 -2.39 3.256 180.5596 138.8267 61.36808 

hydroxyproline -140 -0.2677 -0.0654 0.2023 15.8 -71.73 12.79202 9 -0.948 -1.224 -3.271 159.7079 122.4847 -140.043 

asparagine 73 -0.2082 -0.0589 0.1493 241.23 -75.06 -46.3684 5.98 -1.389 2.138 2.141 165.4502 123.3463 72.93619 

aspartic acid 52 -0.2063 -0.0516 0.1547 158.68 -75.149 -23.7776 7.84 1.739 0.304 0.809 165.3701 120.8097 51.30428 
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histidine 41 -0.22 -0.0532 0.1668 128.98 -75.33 21.99655 7.98 -2.211 -5.769 3.547 187.1373 146.3167 30.64679 

phenylalanine 0 -0.2215 -0.0486 0.1729 50.3 -75.41 25.26654 8.32 0.785 -1.999 0.027 213.33 167.868 -24.7506 

lysine 71 -0.2015 -0.0567 0.1447 221.56 -76.17 9.344533 5.99 -0.893 -0.892 1.053 207.6746 153.7672 71.00215 

glutamic acid 53 -0.2124 -0.0545 0.1579 161.21 -77.05 -7.44533 7.863 0.044 -5.325 5.785 185.522 137.8673 51.45931 

4-sulfopyrazole 75.14 -0.1943 -0.0572 0.1371 250.1 -77.78 -9.91027 4.34 -2.347 -0.504 -4.926 159.8533 116.9821 75.517 

3,5-diiodotyrosine 87 -0.2639 -0.1377 0.1262 287.45 -77.86 27.23897 2.12 3.424 -0.528 1.419 280.1272 226.3173 87.24676 

methionine 59 -0.216 -0.0602 0.1558 187.17 -77.968 14.87045 7.12 -1.013 -4.581 2.911 191.3474 142.7116 59.4929 

glutamine 75 -0.2038 -0.0609 0.1428 249.7 -78.91 -27.3518 5.43 -1.093 -7.204 3.419 189.6844 140.8272 73.47794 

tyrosine 39 -0.2151 -0.0527 0.1623 125.31 -82.29 9.303199 8.01 1.476 -0.579 0.075 225.5877 177.6149 38.37076 

tryptophane 80 -0.2205 -0.0955 0.125 261.98 -82.33 169.8545 2.43 1.331 3.922 -0.975 245.2549 199.7368 80.50289 

Arginine 16 -0.2147 -0.052 0.1627 88.9 -85.64 -111.101 8.3 0.568 -6.462 2.554 235.28 174.4835 15.61438 

cystine -55 -0.2065 -0.0174 0.1891 29.11 -92.84 32.15046 8.65 -1.57 -0.603 2.696 271.1958 205.521 -54.9151 

 

Table 2 presents the quantum chemical descriptors as well as the molecular dynamics , MD’s 

calculations that will be used to build a correlation matrix. These descriptors include the HOMOs, 

LUMOs, total dipole moment, binding energy and adsorption energy. 

 

Table 3. Univariate analysis of the experimental inhibition efficiencies data 

 

 B: Inhibition Efficiency 

Number of Sample Points 28 

Range 266 

Maximum 87 

Minimum -179 

Mean 33.95071 

Median 52.5 

Variance 3.80E+03 

Standard Deviation 62.7343 

Mean Absolute Deviation 40.836 

Skewness -2.17234 

Kurtosis 4.07874 
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Table 4. Correlation matrix of the studied variables 

 
 B: 

Inhibition 

Efficiency 

[20, 21] 

C: 

E(HOMO

) (Ha) 

D: E 

(LUMO)(

Ha) 

E: 

[E(LUMO

)-

E(LUMO)

](Ha) 

F: Binding 

Energy 

(Kcal/mol) 

G: Adsorption 

Energy 

(Kcal/mol) 

H: [Total 

Energy](Kca

l/mol) 

I: Total dipole 

(VAMP 

Electrostatics) 

M: Molecular 

area (vdW 

area) (Spatial 

Descriptors) 

N: Molecular 

volume (vdW 

volume) 

(Spatial 

Descriptors) 

B: Inhibition 

Efficiency 

1 0.260799 0.594229 0.544128 0.837994 0.080437 0.015057 -0.62235 0.034239 0.037099 

C: E(HOMO) (Ha) 0.260799 1 -0.00351 -0.16446 0.173008 0.054463 -0.12415 -0.00149 -0.24957 -0.29717 

D: E (LUMO)(Ha) 0.594229 -0.00351 1 0.986954 0.245998 -0.1067 -0.15711 -0.12138 0.101447 0.084384 

E: [E(LUMO)-

E(LUMO)](Ha) 

0.544128 -0.16446 0.986954 1 0.214764 -0.11397 -0.13499 -0.11949 0.140207 0.13104 

F: Binding Energy 

(Kcal/mol) 

0.837994 0.173008 0.245998 0.214764 1 0.066709 0.177904 -0.86751 0.041178 0.058703 

G: Adsorption 

Energy (Kcal/mol) 

0.080437 0.054463 -0.1067 -0.11397 0.066709 1 0.103563 0.023798 -0.83649 -0.81538 

H: [Total 

Energy](Kcal/mol) 

1.51E-02 -0.12415 -0.15711 -0.13499 0.177904 0.103563 1 -0.38487 0.137823 0.198367 

I: Total dipole 

(VAMP 

Electrostatics) 

-0.62235 -0.00149 -0.12138 -0.11949 -0.86751 0.023798 -0.38487 1 -0.24984 -0.28421 

M: Molecular area 

(vdW area) (Spatial 

Descriptors) 

0.034239 -0.24957 0.101447 0.140207 0.041178 -0.83649 0.137823 -0.24984 1 0.994539 

N: Molecular volume 

(vdW volume) 

(Spatial Descriptors) 

0.037099 -0.29717 0.084384 0.13104 0.058703 -0.81538 0.198367 -0.28421 0.994539 1 

 

Table 4 shows a correlation matrix that illustrates all possible pairwise correlation coefficients 

for a set of variables. It can be helpful to identify highly correlated pairs of variables, and therefore 

identify redundancy in the data set [22]. Each cell of the matrix corresponds to the correlation between 

two columns of study table data (Table 2). The correlation coefficients lie between -1.0 and +1.0. A 

value approaching +1.0 indicates that the two columns are highly correlated and a value approaching -

1.0 also indicates a high degree of correlation, except that the data changes values in opposite 

directions. A correlation coefficient close to 0.0 indicates very little correlation between the two 

columns. The diagonal of the matrix always has the value of 1.0. To aid in visualizing the results, the 

cells in the correlation matrix grid are colored according to the correlation value in each cell. A 

standard color scheme is used when the correlation matrix is generated: +0.9 ≤X≤+1.0 (orange), +0.7≤ 

X<+0.9 (yellow), -0.7<x>+0.7 (white), -0.9 <x>-0.7 (yellow) and -1.0 ≤x≤-0.9 (orange) [22, 58]. 

Now it is ready to perform a regression analysis of the descriptor variables presented in Table 4 

compared against the measured corrosion inhibition values [60, 61]. There are many more descriptor 

variables than measured inhibition values, so we should reduce the number of descriptors. Typically, a 

ratio between two and five measured values for every descriptor should be sought to prevent over 

fitting. Tables 5 and 6 show a summary of the input data for the neural network training set and the 

cross validation of the descriptor values used in the neural network analysis. Table 5 shows that all the 

28 corrosion inhibitor’s data was used in building the QSAR model and these data are validated 

against the descriptor values calculated from quantum chemical and the MDs calculations [22, 58]. 

The cross validation data for the neural network model (Table 6) operates by repeating the 

calculation several times using subset of the original data to obtain a prediction model and then 

comparing the predicted values with the actual values for the omitted data. 
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Table 5. Summary of input data for neural network training 

 

Summary of input data for Neural Network Training   

Number of rows requested 28 

Number of rows used 28 

Number of rows omitted due to invalid row description 0 

Number of rows omitted due to invalid data 0 

    

Number of columns requested 13 

Number of columns used 13 

Number of columns omitted due to invalid column 

description 

0 

Number of columns omitted due to invalid data 0 

    

Number of cells omitted due to invalid data 0 

Number of cells with missing data 0 

 

Table 6. Cross validation of the input data for neural network training 

 

r^2 0.999761 

r^2(CV) 0.289594 

Residual Sum of Squares 0.00645 

Predictive Sum of Squares 19.181 

 

The key measure of the predictive power of the model is the correlation coefficient r
2
. The 

closer the value is to 1.0 the better the predictive power. For a good model, the r
2
 value should be fairly 

close to 1.0. The correlation coefficient r
2
 for this study is equal to 0.9997, which is reasonably high 

and indicates the predictive power of the model [22, 58]. A closer look at the last column in Table 2 

and comparing the predicted values with the experimental values proves the efficiency of the 

suggested model.  

Investigation of the neural network analysis in the QSAR study shows that the network has too 

many degrees of freedom (usually the number of network connections between nodes) for the number 

of observations (rows of data) for which the network is being trained. In this study there is one hidden 

layer with three nodes [22, 58]. 

Applying the neural network prediction model generates a model containing predictions 

corresponding to each output of the neural network. The neural network model adds a new column 

containing a calculation of the model to the study table (Table 2). Also, residual values of the 

predictions correspond to each output of the neural network. 
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Figure 2. Plot of predicted inhibition and residuals vs. measured corrosion inhibition [20, 21] using 

NNA. 
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Figure 3. Outlier analysis for inhibition efficiency. 
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Figure 2 shows a relation between the predicted values, residual values and the experimental 

data in Table 2. A residual can be defined as the difference between the predicted value in the 

generated model and the measured value for corrosion inhibition. To test the constructed QSAR 

model, potential outliers have been identified in Figure 3. An outlier can be defined as a data point 

whose residual value is not within cross validated r
2
 values, is also high, even though the regression is 

significant according to the F-test.  

Figure 3 contains two charts. One contains the residual values plotted against the corrosion 

inhibition measurements and the other displays the residual values plotted against Table 3 row number. 

Each chart contains a dotted line that indicates the critical threshold of two standard deviations beyond 

which a value may be considered to an outlier. Inspection of Figure 4 shows that there are no points 

outside the dotted lines, which make the QSAR model acceptable. 

 

 

5. CONCLUSIONS 

In spite of the huge success that has been attributed to the use of computational chemistry in 

corrosion studies, most of the ongoing research on the inhibition potentials of organic inhibitors is 

restricted to laboratory work. The QSAR approach is still an effective method that can be used together 

with the experimental techniques to predict inhibitor candidates for inhibiting corrosions. The study 

has demonstrated that the neural network can effectively generalize correct responses that only broadly 

resemble the data in the training set. The neural network can now be put to use with the actual data. 

This involves feeding the neural network the values for the Hammett constants, dipole moment, 

HOMO energy, LUMO energy, energy gap, molecular area and volume. The neural network will 

produce almost instantaneous results of corrosion inhibitor efficiency. The predictions should be 

reliable, provided the input values are within the range used in the training set. 
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