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The metro metal materials have serious electrochemical corrosion in the stray current interference, and 

the corrosion status is characterized by the polarization potential offset value of the metal materials to 

the reference electrodes. Due to the limited number of the reference electrodes, it is necessary to 

predict the corrosion status of the metal materials in the area without reference electrodes. Firstly, it is 

concluded that the corrosion is electrochemical by analyzing the corrosion mechanism of the metal 

materials in the stray current interference. Secondly, characterization parameters and influence 

parameters of the corrosion status can be acquired by investigating the corrosion mechanism. Thirdly, 

the nonlinear mapping between characterization parameters and influence parameters is approximated 

using a Radial Basis Function (RBF) neural network. The node number of RBF network hidden layer 

is determined by Rival Penalized Competitive Learning (RPCL) algorithm, to form the complete RBF 

network. The key parameter values of the RBF network are obtained by Quantum Particle Swarm 

Optimization (QPSO) algorithm. Finally, according to the corrosion data from Nanjing metro Line 1 in 

China, the RBF prediction model is established and the prediction performance is illustrated. The 

results show that RBF model can accurately predict the corrosion status of the metro metal materials, 

and the application of RPCL algorithm and QPSO algorithm can improve the predictive ability of RBF 

model. 
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1. INTRODUCTION 

Stray current leakage occurs from the rail, which is an element of the traction current return 

circuit in metro [1-2]. Stray current could bring the electrochemical corrosion for metal materials in 

metro, such as reinforced concrete structure, buried metal pipeline and armored cable. It is not only 

http://www.electrochemsci.org/
mailto:liweicumt@163.com
mailto:xutianyia@126.com


Int. J. Electrochem. Sci., Vol. 8, 2013 

  

5315 

shortening the service life of the buried metal pipeline and armored cable, but also reducing the 

strength and durability of the metro main structure [1, 3-6]. Therefore, it is essential to assess the 

corrosion status of metro metal materials in the stray current interference. 

The metal material corrosion status is usually characterized by polarization potential offset 

value of the metal materials respect to the reference electrodes [3, 7-10]. The reference electrode is 

embedded in the vicinity of the metal materials. However, the metal material corrosion status cannot 

be assessed in the area, which is far away from the electrode embedded point. If a mathematical model 

of the polarization potential offset value and the impact factors can be obtained, the corrosion status of 

metal materials will be predicted, especially in the area without the reference electrodes, according to 

the corrosion data of the metal materials near the electrode embedded point. 

There are few studies on the prediction method of metal material corrosion status in the stray 

current interference. The Back Propagation (BP) neural network is only the mentioned prediction 

method [3], where the soil resistivity, the depth of the metal materials and the polarization potential 

offset values are regarded as the input parameters and the stray current density is regarded as the 

output parameter of BP network. Although the stray current density can directly characterize the metal 

material corrosion status, the real-time measurement of the stray current density is very difficult in 

metro [11-15]. Therefore, the metal material corrosion status is characterized by measuring the 

polarization potential offset value. Some researches show that the polarization potential offset value is 

related to traction substation distance, rail longitudinal resistance, rail voltage and resistance between 

the rails and the metal materials [11-14, 16-21].  

BP network and RBF network have been widely studied as two typical feed forward networks. 

It has been proved that BP network is worse than RBF network in the convergence speed and 

approximation ability, which can approximate arbitrary nonlinear function at arbitrary precision [22-

24]. The RBF network is composed of input layer, hidden layer and output layer, which need to 

determine the number of hidden layer nodes and the key parameters value of the network, including 

RBF center value, width, connection weight between hidden layer and output layer. The RPCL 

algorithm makes the redundant units away from the input sample space using the rejection mechanism 

of suboptimal unit, realizing the automatic selection for the number of cluster and regulating 

effectively the number of the hidden layer nodes [25-26]. The QPSO algorithm can make particles 

explore the global optimization in the feasible solution space, which does not need feature information 

of problem. Therefore, the QPSO algorithm can be used to solve the key parameters of RBF network 

[27-29]. 

This paper focuses on prediction for the corrosion status of the metal materials in the stray 

current interference, including the following aspects: analyzing the corrosion mechanism of the metal 

materials in the stray current interference; determining characterization parameter and influence 

parameters of the corrosion status; establishing prediction model for the corrosion status based on RBF 

neural network; calibrating performance of the prediction model and conducting practical application. 
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2. CORROSION MECHANISM OF METAL MATERIALS IN STRAY  

CURRENT INTERFERENCE 

The common corrosion modes of metal materials mainly include: general corrosion and pitting 

corrosion in metro, while stray current corrosion is a kind of pitting corrosion [15], which is classified 

as electrochemical corrosion. It has the oxidation-reduction reaction of the anodic and cathode process. 

Stray current corrosion mechanism of the metal materials is that Fe at lower potential loses 

electrons and is oxidized to Fe
2+

, while H
+
 or O2 at higher potential captures an electron and is 

reduced. In stray current interference, the metal material corrosion has a remarkable characteristic that 

the negative potential region on metal materials is called the cathode, where stray current flows into 

the metal materials, and the positive potential region is regarded as the anode, where stray current 

flowing out. Moreover, the anode and cathode regions are separated from each other [1, 15]. Stray 

current and its corrosion position in metro are shown in Figure 1, where I is the traction current, Ix and 

Iy is the negative current and stray current, respectively. 

 

 
 

Figure 1. Schematic diagram of stray current corrosion in metro 

 

According to the figure 1, the stray current path in metro can be summarized as two corrosion 

cell in series: 

The First Cell: A Rail in the vehicle position (anode) → B Ballast bed or soil → C Buried 

conductor (cathode) 

The Second Cell: D Buried conductor (anode) → E Ballast bed or soil → F Rail in the traction 

substation (cathode region) 

Fe and the surrounding electrolyte generate anodic process electrolysis when stray current 

flowing out from the anode regions (A and D in Figure 1). The oxidation-reduction reaction can be 

summarized as follows:  

(1) The reaction is hydrogen evolution corrosion taking H
+
 as the depolarizing agent when the 

surrounding electrolyte is acidic (PH < 7). The corrosion reaction equations are as follows: 

Anode: 2Fe → 2Fe
2+

 + 4e
-
 

Cathode: 4H
+
 + 4e

-
 → 2H2↑（Anaerobic acidic environment）; 

4H2O + 4e
-
 → 4OH

-
 + 2H2↑ (Anaerobic environment) 
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(2) The reaction is oxygen-absorbed corrosion taking O2 as the depolarizing agent when the 

surrounding electrolyte is alkaline (PH ≥ 7). The corrosion reaction equations are as follows: 

Anode: 2Fe → 2Fe
2+

 + 4e
-
 

Cathode: O2 + 2H2O + 4e
-
 → 4OH

-
 (Aerobic alkaline environment)

 

The hydrogen evolution and oxygen-absorbed corrosion typically generate Fe(OH)2. Some of 

Fe(OH)2 are further oxidized to form Fe(OH)3 or brown Fe(OH)3•2xH2O on the metal materials 

surface, while Fe (OH)3 can further produce Fe3O4. 

 

 

 

3. CHARACTERIZATION PARAMETER AND INFLUENCE PARAMETERS OF  

THE CORROSION STATUS 

In the stray current interference, the corrosion amount of metal materials obeys Faraday's law 

in terms of the stray current corrosion mechanism: 

W Kit  (1) 

where W is the corrosion amount of metal materials, kg; K is the metal electrochemical 

equivalent , kg / (A · s); i is stray current flowing out of the anode, A. 
M

K
nF

  (2) 

where M is molar weight, kg / mol, and the molar weight of Fe is 5.5847×10
-4

 kg / mol; n is the 

number of the lost valence electrons in the oxidation process; F is the Faraday constant, and 1 F = 

96485 C. 

According to Eq. (1) and (2), the metal electrochemical equivalent k is constant in a specific 

corrosive environment. The stray current i directly characterize the corrosion status of metal materials, 

but the stray current is difficult to measure directly in metro. The metal material corrosion status is 

only characterized by the indirect indicator, which is the polarization potential offset value caused by 

the stray current. 

 

 

 
 

Figure 2. Polarization potential curve between the metal materials and the reference electrode 
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The long-acting reference electrode Cu/CuSO4 has been used to measure the polarization 

potential. Polarization potential distribution between the metal materials and the reference electrodes 

exhibits a stable value without the stray current interference, and we call the stable potential is the 

natural ontology potential V0. If the metal materials are interfered with the stray current, the measured 

potential V1 deviates from the natural ontology potential V0 in the positive or negative direction. We 

define the polarization potential offset value as V2, where V2 = V1 - V0. Polarization potential curve of 

the metal materials to the reference electrodes is illustrated in Figure 2. 

The stray current is proportional to the distance of traction substations and the longitudinal 

resistance of rails, while it is inversely proportional to the substations output voltage and the resistance 

between the rails and metal materials. Therefore, the traction substation distance l, rail longitudinal 

resistance Rt, rail voltage U and the resistance Rg between the rail and metal materials are regarded as 

the influence parameters of the metal material corrosion status. 

 

 

 

4. CORROSION STATUS PREDICTION MODEL 

The influence parameters l, Rt, U and Rg are used as the input vectors of RBF neural network, 

while the characterization parameter V2 is used as the output vector. The nonlinear mapping 

relationship between the input vectors and output vector is approximated by RBF neural network. The 

metal material corrosion status is predicted based on the mapping relationship. The RBF network is 

composed of input layer, hidden layer and output layer, which need to determine the number of hidden 

layer nodes M and the key parameters value of the network, including RBF center value C, width  , 

connection weight W between hidden layer and output layer. Therefore, the number M can be obtained 

by RPCL algorithm and the network parameters C,  , W can be trained based on QPSO algorithm. 

 

4.1 RBF Network 

The input vector number of RBF neural network N is equal to 4, and the output vector number 

Z is equal to 1. The input vector is mapped directly to the hidden layer space, that is, the connection 

weight between input layer and hidden layer is 1. There are i groups of the corrosion samples Si = (Xi, 

Vi), where i=1, 2, …, P, Xi and Vi are N dimensional and Z dimensional column vector respectively. 

The activation function of the hidden layer nodes adopts M dimensional radial basis function, which is 

given as [22-23, 30]: 

    1,2, ,j i i jC j M    LX X  (3) 

where Cj is the center value of the radial basis function, and   is distance measure, which is 

generally selected as Euclidean distance. The output of RBF network can be expressed as 

1

ˆ , 1,2, ,
M

d j jd d

j

V w d Z


     L  (4) 
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where wjd is the connection weight between the hidden layer node and the output layer node, 

and d  is the threshold value of the output layer node. The radial basis function usually selects Gauss 

distribution function [24], which is described as 

 

2

2
exp

2

i j

j i

j

C 
   
 
 

X
X  (5) 

where 
j  is width of the radial basis function, determining the general shape of the radial basis 

function. 

 

4.2 RPCL Algorithm 

The hidden layer node number M is confirmed by RPCL algorithm. Corrosion samples are 

 
1

P

i i
S S . The initial clustering center is Wj = (Wj1, …, Wj(N+Z))

T
, with j = 1, 2, …, k, k is the preset 

number of the clustering centers. The learning rates of winning unit c and suboptimal unit r are c  and 

r  respectively. Based on RPCL algorithm, solving the number M has the following steps [25-26]: 

Step 1: Initializing the learning rates  0c  and (0)r ,    0 0 0 1r c     ; 

Step 2: Randomly selecting sample Si from S, with j = 1, 2, …, k. 
22

1

22

1 ,

1, if such that min

1, if such that min

0, otherwise

c i c p i p
p k

j
r i r p i p

p k p c

j c

u j r

 

 

 

  

    



      




S W S W

S W S W  (6) 

where    
1

G

j j j
t

n t n t


  ,  jn t  is accumulated times of 1ju   and G is the largest clustering 

time. 

Step 3: Modifying the clustering center value as 

 

 

,

,

0, otherwise

c i c

j r i r

j c

W j r





 


    



S W

S W  (7) 

Step 4: Setting t = t + 1, if t < G, Step (2) and (3) will be executed. 

Step 5: Comparing the length jW  of the clustering center vector Wj with the threshold value, 

which is 
min  and 

max . The hidden layer node number M is equal to the number of the center vectors 

during the range of min maxj   W . 

 

 

4.3 Parameters Adjustment Using QPSO Algorithm 

The hidden layer node number M is calculated by RPCL algorithm, and the key parameters of 

RBF network are solved based on QPSO algorithm, including RBF center value C, width  , 

connection weight W between the hidden layer and output layer. The process is as follows: 
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Step 1: 

The feasible solution of the problem is characterized by the particle, which is constituted by the 

RBF network parameters C,   and W in the search space of QPSO algorithm. The network topology is 

N × M × Z. Assuming that the population of QPSO algorithm is X(t), namely X(t) = (X1, …, XM, X(M+1), 

…, XM×(N+1), X M×(N+1)+1, …, XM×(N+Z+1)), where (X1, …, XM), (X(M+1), …, XM×(N+1)) and (X M×(N+1)+1, …, 

XM×(N+Z+1)) are C,   and W, respectively, and t is iterations. 

Assuming that the number of particles in X(t) is R and Xi(t) = (xi1(t), …, xiD(t)), where 1 ≤ i ≤ 

R, D = M × (N + Z + 1). The optimal position of the particle is expressed as Pi(t) = (pi1(t), …, piD(t)). 

The optimal position of the population is expressed as Pg(t) = (pg1(t), …, pgD(t)). 

Randomly generating the initial population, and then each particle converges to the local 

attraction point Li = (l i1, …, l iD) to ensure the convergence of QPSO algorithm. Li is as follow: 

       1ij j ij j gjL t p t p t       (8) 

where  1 1 1 1 2 2j j j jc r c r c r   , 1 jr  and 2jr  are two random sequences in the range of 0 to 1, 1c  and 

2c  are the acceleration factors, which usually taken 1 2=c c . 

The particle behavior of QPSO algorithm conforms to quantum dynamics, depicting the 

particle position by the wave function and determining the status changes of particles from the 

Schrodinger equation [27-28]. Assuming that each particle moves in a δ potential well which regards 

the local attraction point Li as centers, the specific location of particle in δ potential well depends on a 

probability density function F(x). Moreover, the QPSO algorithm has the best performance when F(x) 

is a quadratic function. Hence, F(x) is gained by solving the Schrodinger equation. 

  -2 /ij ijL x d

ijF x e


  (9) 

where d is the length of δ potential well, which determines the particle search range. The 

iteration equation of particle position depicted in Eq. (10) is acquired using the Monte Carlo stochastic 

simulation method. 

   In 1 , 0,1
2

ij ij

d
x L u u U  :   (10) 

The mean optimal position mbest is introduced to preferably regulate the length d, which is 

defined as the mean value of all particles optimal position. 

       1 2

1 1 1

1 1 1
, , ,

R R R

best i i iD

i i i

m t p t p t p t
R R R  

 
  
 
  L   (11) 

The length d is calculated as 

   2
jbest ijd m t x t     (12) 

The iteration equation of the QPSO algorithm is rewritten as [29] 

           1 1 , 0,1ij ij j ijx t L t m t x t In u u U     :  (13) 

Where α is the contraction - expansion coefficient. Controlling algorithm convergence speed by 

adjusting α, the algorithm can guarantee particle convergence when α < 1.782. 

Step 2: 

The quality of the feasible solution depends on the fitness function, and the fitness value of 

particles is evaluated using least-squared fitting error (LSFE) function. 
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 
2

1

1 ˆLSFE
Z

i i

i

V V
Z 

   (14) 

Where ˆ
iV  is the predictive value of the RBF model, and 

iV  is the actual value. 

Step 3: 

The fitness value of each particle Xi(t) is computed according to Eq. (14). The minimum fitness 

value of the particle is compared with that of previous iteration, which the smaller value is the optimal 

location of the particles. In addition, the particle with the smallest fitness value is the optimal particle 

in the population. In the first iteration, Pg(1) = {Pi(1) = Xi(1)}min. 

Step 4: 

Lij(t), mbest and d is obtained according to the Eq. (8), (11) and (12). The position of each 

particle is modified using the Eq. (13). 

Step 5: 

Repeat step (2) to step (4) until the maximum evolution generation tmax or the accuracy eps are 

reached. Pg(tmax) is the optimal solution of the parameters C,   and W. 

 

 

5. EXAMPLE 

Nanjing Metro Line 1 employs the long-acting reference electrodes to measure the polarization 

potential of the metal materials in the stray current interference. Line 1 includes 16 stations, whose 

traffic interval is formed by two adjacent stations. The length between the Nanjing station and the 

Xinmofan road station is 1.685 km, which configures 24 polarization potential monitoring points; The 

length between the Xinmofan road station and the Xuanwumen station is 1.060 km, which configures 

17 polarization potential monitoring points; The length between the Xuanwumen station and the Gulou 

station is 1.255 km, which configures 20 polarization potential monitoring points; The length between 

the Gulou station and the Zhujiang road station is 0.863 km, which configures 16 polarization potential 

monitoring points. 

The natural ontology potential V0 between the metal materials and the reference electrodes is 

illustrated in Figure 3, it shows that V0 is relatively constant. So the polarization potential offset value 

V2 is obtained by measuring the polarization potential V1. 

 

 
Figure 3. Test curve of the natural ontology potential V0 
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The characterization parameter V and influence parameters X for the metal material corrosion 

status are obtained from Metro Line 1 control center in the four traffic intervals, including the 

polarization potential V1, the rail longitudinal resistance Rt, the rail transition resistance Rg, the railway 

voltage U, as shown in Table 1. 

 

Table 1. The data of metal materials corrosion 

 

Traffic Interval X V 

l (km) Rt (m ) Rg ( ) U (V) V1 (V) 

Nanjing → Xinmofan Road 1.685 50.55~64.03 5.93~8.91 -

24.9~31.2 

-0.993~-0.502 

Xinmofan Road → 

Xuanwumen 

1.060 31.80~40.28 9.43~14.15 -

14.7~36.8 

-1.691~-0.505 

Xuanwumen → Gulou 1.255 37.64~47.67 7.97~11.95 -

27.3~35.1 

-1.353~-0.501 

Gulou → Zhujiang Road 0.863 25.88~32.78 11.59~17.38 -

40.4~34.6 

-1.265~-0.501 

 

Each traffic interval chose 851 groups of the corrosion samples S, 700 groups for RBF network 

training, and the remaining 151 groups for the RBF network performance test. 

Normalizing S, including X and V 

 
 

   
'

min

max min

i i

i

i i

s s
s

s s





 （15） 

Anti-normalizing predictive value ˆ
dV  

    ' ˆ= max min +min( )i d i i iV V V V V    （16） 

 

5.1 RBF neural network based on RPCL and QPSO algorithm 

 

 
(a)     (b) 
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(c)    (d) 

 

Figure 4. Prediction performance test for Net 1: (a) Nanjing → Xinmofan Road; (b) Xinmofan Road 

→ Xuanwumen; (c) Xuanwumen → Gulou; (d) Gulou → Zhujiang Road 

 

RBF neural network based on RPCL and QPSO algorithm is abbreviated as Net 1, and the 

hidden layer node number M in Net 1 is obtained using RPCL algorithm. The number k of the initial 

clustering center {Wj} is 500, the learning rate c  and r  is 0.03 and 0.01, respectively. The largest 

clustering times G is 1200, the threshold min and max  is 1.490 and 1.993, respectively. Therefore, the 

number M is 73 and the topology of Net 1 is 4×73×1. The particle dimension D is 438, the number of 

particles R is 50, the maximum generation tmax is 200, and the accuracy eps is 0.0001 in the QPSO 

algorithm. Each traffic interval there is 700 groups of corrosion data for Net 1 training, while the 

remaining 151 groups of corrosion data for Net 1 performance test. The test results are shown in 

Figure 4. 

 

5.2 RBF neural network based on RPCL algorithm 

RBF neural network based on RPCL algorithm is abbreviated as Net 2, and the number M for 

Net 2 is obtained by RPCL algorithm, while the initial value of the three key parameters are randomly 

set, namely C,   and W. The prediction performance of Net 2 was compared with that of Net 1, which 

is used to research the effect of QPSO algorithm on the prediction performance.  

 

 
(a)    (b) 
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(c)    (d) 

 

Figure 5. Prediction performance verification for Net 2: (a) Nanjing→Xinmofan Road; (b) Xinmofan 

Road→Xuanwumen; (c) Xuanwumen→Gulou; (d) Gulou→Zhujiang Road 

 

The parameters k, c , r , G, min  and max  is 500, 0.03, 0.01, 1200, 1.490 and 1.993, 

respectively. Similarly, the topology of Net 2 can be identified as 4×73×1. Test the prediction 

performance of the trained Net 2. The test results are depicted in Figure 5. 

 

5.3 Conventional RBF neural network 

 
(a)    (b) 

 
(c)    (d) 

Figure 6. Prediction performance test for Net 3: (a) Nanjing → Xinmofan Road; (b) Xinmofan Road 

→ Xuanwumen; (c) Xuanwumen → Gulou; (d) Gulou → Zhujiang Road 
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The conventional RBF neural network is abbreviated as Net 3, which was compared with Net 2 

to study the effect of RPCL algorithm on the prediction performance. The hidden layer node number M 

for Net 2 are randomly set based on experience. Therefore, the topology of Net 3 was set as 4×169×1. 

The performance test results are shown in Figure 6. 

 

5.4 BP neural network 

 
(a)    (b) 

 
(c)    (d) 

Figure 7. Prediction performance test for BP neural network: (a) Nanjing → Xinmofan Road; (b) 

Xinmofan Road → Xuanwumen; (c) Xuanwumen → Gulou; (d) Gulou → Zhujiang Road 

 

The feasibility of applying the BP network model in the corrosion status prediction is examined 

by comparing it with the RBF network model. The number of parameters in the hidden layer of the BP 

network model is determined by the empirical formula and is 179 [3]. The transfer functions for the 

hidden and the output layers are the Tansig function and the Pureline function respectively. The 

learning rate and the momentum coefficient are 0.6 and 0.9. The training goal is that the MSE on the 

training set should equal 0.0001 and the maximum value of training epochs is 40000. The BPNN 

structure is 4×179×1. The performance test results are shown in Figure 7. 
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5.5 Prediction performance comparison of the four networks 

The mean relative error (MRE) and the mean squared error (MSE), as given by Eq. (17) and 

Eq. (18), respectively, were both used as the measurement of predictive accuracy. Additionally, the 

accurate efficiency was measured by the Correlation Coefficient (r
2
), given by Eq. (19). Note that the 

values of MSE indicate the deviations between the actual value and predictive value. The larger r
2
 

means the predictive model is more efficient and the maximum value of r
2
 is one. 

1

ˆ1
MRE

m
i i

i i

V V

m V


   (17) 

 
2

1

1 ˆMSE
m

i i

i

V V
m 

   (18) 

2

1 1 12

2 2

2 2

1 1 1 1

ˆ ˆ

ˆ ˆ

m m m

i i i i

i i i

m m m m

i i i i

i i i i

m VV V V

r

m V V m V V

  

   

 
 

 

     

             

  

   

(19) 

where m is the total number of predictive periods. ˆ
iV  and Vi is the predictive and actual value, 

respectively. 

 

Table 2. Comparison of prediction performance for the four networks 

 

 Nanjing 

→ Xinmofan Road 

Xinmofan Road 

→ Xuanwumen 

Xuanwumen 

→ Gulou 

Gulou 

→ Zhujiang 

Road 

Net 1 MRE 0.035 0.041 0.043 0.055 

MSE 0.026 0.034 0.039 0.028 

r
2
 0.969 0.991 0.979 0.953 

Net 2 MRE 0.079 0.068 0.071 0.084 

MSE 0.055 0.051 0.053 0.042 

r
2
 0.889 0.956 0.948 0.902 

Net 3 MRE 0.102 0.091 0.095 0.118 

MSE 0.072 0.077 0.063 0.082 

r
2
 0.831 0.912 0.891 0.856 

BP 

Network 

MRE 0.118 0.115 0.117 0.126 

MSE 0.085 0.092 0.088 0.090 

r
2
 0.782 0.903 0.843 0.801 

 

 

Comparison of different prediction performance for the four networks is shown in Table 2. In 

the traffic interval between Nanjing station and Xinmofan Road station, compared with the prediction 

performance of Net 3, the MRE and MSE of Net 2 decreased by 29.1% and 23.6 % respectively, and 

the r
2 

increased by 6.9%. So, this implies that the RPCL algorithm can obtain the complete RBF 

network, improving the prediction performance of the RBF network. Compared with the prediction 

performance of Net 2, the MRE and MSE of Net 1 decreased by 55.7% and 52.3 % respectively, while 
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the r
2 

increased by 9.0%. Similarly, it is concluded that the QPSO algorithm can determine the optimal 

network key parameters, including C,   and W, improving further the prediction performance of the 

RBF network. Compared with the prediction performance of BP network, the MRE and MSE of RBF 

network (Net 3) decreased by 15.7% and 18.1 % respectively, while the r
2 

increased by 5.9%. 

Therefore, the RBF network is better than the BP network on the corrosion status prediction. 

 

5.6 The practical application of Net 1 

During the four traffic interval of Line 1, the metal material corrosion status was predicted 

using Net 1 in the area without reference electrodes, as shown in Table 3. Referring to Fig. 4, the 

natural ontology potential is relatively constant, V0 ∈  [-5.760, -0.524]. The natural ontology potential 

is taken as -0.524 V to facilitate analysis. Therefore, the polarization potential offset values in turn are 

-0.179 V, -0.534 V, -0.430 V and -0.437 V in the traffic intervals in Table 3. According to the notes on 

China Standard (CJJ 49 – 1992), the polarization potential offset value has to be limited to a maximum 

of 0.5 V in metro. Therefore, the metal materials may have been interfered by the stray current, which 

should be protected in the traffic intervals of 2, 3 and 4. 

 

Table 3. Practical application of Net 1 

 

Traffic Interval X V 

l (km) Rt (m ) Rg ( ) U (V) V1 (V) 

1 Nanjing → Xinmofan Road 1.685 57.82 6.93 -27.3 -0.703 

2 Xinmofan Road → 

Xuanwumen 

1.060 38.21 10.15 30.8 -1.058 

3 Xuanwumen → Gulou 1.255 43.59 8.75 19.2 -0.954 

4 Gulou → Zhujiang Road 0.863 26.78 12.34 -15.6 -0.961 

 

 

 

6. CONCLUSIONS 

The corrosion status prediction method for the metal materials in the stray current interference 

was studied in this paper and main results are as follows. 

(1) The metro metal material corrosion is classified as the electrochemical corrosion and the 

corrosion amount of metal materials obeys Faraday's law in the stray current interference. The 

polarization potential offset values of metal materials characterize the corrosion status, and the 

polarization potential is directly measured when the natural ontology potential is constant. The traction 

substation distance l, the rail longitudinal resistance Rt, the rail voltage U and the resistance Rg between 

the rails and the metal materials are the key influence parameters of the corrosion status. 

(2) The nonlinear mapping between the characterization parameter and influence parameters 

was approximated by using RBF neural network, and was used to accurately predict the corrosion 

status of metal materials. The number of the hidden layer nodes is determined by the RPCL algorithm, 
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which gets the complete RBF network topology. The optimal key parameters are obtained using the 

QPSO algorithm. Both of these two algorithms can improve the prediction performance of RBF neural 

network. 
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