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A rapid and simple method was developed for sildenafil citrate (SILC) drug (the active component of 

Viagra) determination by electrochemical analysis using a screen-printed glassy carbon electrode 

(SPGCE). Initial investigations were undertaken using cyclic voltammetry (CV) to characterize the 

redox behavior at the SPCE. The respective current response has been evaluated with respect to the 

drug composition, pH of the supporting electrolyte, potential and scan rate. In addition, square wave 

voltammetry (SWV) was carried out to ascertain whether trace amount of samples could be detected. 

From these studies it was shown that the electrode exhibited linear response in the concentration range 

from 1.0×10
-6

 to 1.4×10
-5

 molL
-1

 with good reproducibility. The limit of detection was found to be 

5.5×10
-8

 molL
-1

. An interference study was also carried in presence of high concentration of ascorbic 

acid (AA) and uric acid (UA) to estimate the high selectivity of the electrode. The method was 

successfully applied for the determination of SILC in spiked human urine and pharmaceutical samples 

with good agreement between the added and recovery values. 

 

 

Keywords: sildenafil citrate (Viagra), screen printed glassy carbon electrode (SPGCE), cyclic 

voltammetry, biological samples. 

 

1. INTRODUCTION 

A reliable and specific assay is of great importance for characterization of a drug’s disposition, 

tolerance and safety. Viagra (SILC), widely used in oral therapy for erectile dysfunction, is the citrate 

salt of sildenafil, a selective inhibitor of cyclic guanosine monophosphate (cGMP) specific 

phosphodiesterase type 5 (PDE5) [1–4]. This drug can also be efficient as therapy for a range of 

cardiovascular diseases, such as pulmonary arterial hypertension (PAH) [5–10]. Sildenafil citrate is a 
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compound of the pyrazolo-pyrimidinylmethylpiperazine Class which is designated chemically as 1-[[3-

(6,7 – dihydro – 1 – methyl – 7 – oxo – 3 – propyl – 1 – H – pyrazolo [4,3-d] pyrimidin -5-yl)-4-

ethoxyphenyl]sulfonyl]-4-methyl-piperazine citrate (Fig. 1). The mode of action of sildenafil in the 

erection of the penis involves the release of nitric oxide (NO) in the corpus cavernosum during sexual 

stimulation. The produced NO activates the enzyme guanylate cyclase, which results in increased 

levels of cGMP, producing smooth muscle relaxation of the penile in the corpus cavernosum and 

therefore having the potential to improve penile erectile function by allowing inflow of blood [11, 12]. 

NO may also participate in disease processes such as hypertension, diabetes, impotence and 

stroke. Thus, NO can be toxic or beneficial depending on the amount and where in the body it is 

released [13]. SILC has a spillover effect and blocks PDE-6 enzyme, which cause an increase the 

concentration of cGMP and result in a ‘blue vision’. Also, oral administration of SILC with other 

drugs like nitrates or nitroglycerine or isosorbide can induce headaches and low blood pressure [14]. 

Thus, the residual presence of SILC even in trace (nanomolar) concentration levels could result in 

adverse side effects. Therefore, a sensitive method for the selective determination of SILC in 

nanomolar level is required. 

 

 
 

Figure 1. Structure of sildenafil citrate 

 

Some methods have been reported for determination of sildenafil citrate including 

spectrophotometry based on formation of ion-associate complexes with dyes [15-17], flow injection 

analysis with UV detection [18], extractive spectroscopy [19], HPLC [20], and resonance Rayleigh-

scattering [21]. Most of these methods are expensive, suffer from lack of selectivity and require careful 

control of conditions and considerable time for routine control analysis [22, 23]. Other methods have 

been reported for electrochemical determination of SILC, which can generally be based on either 

reduction [24, 25], or oxidation [26, 27]. Most of the electrochemical determination has been reported 

for SILC at a hanging mercury drop electrode (HMDE) [28]. However, the use of HMDE is 

undesirable because of the high toxicity of mercury and the inherent problems associated with HMDE, 

such as oxygen removal, cleaning the surface of mercury drop. A new methodology based on “mercury 

free” electrode is desirable. 

Moreover, new electrochemical instrumentation is compact and portable, allowing on-site 

analysis and obtaining results in only minutes without preliminary sample treatment. In the 

development of electrochemical devices, screen printed electrodes which can be ideally used for 

voltammetric measurements using portable electrochemical instrumentation [29–34]. The main 

advantages of this kind of electrode system are associated with their modest cost, potential portability, 
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simplicity of operation, reliability, and the compact detector arrangement containing the working 

electrode, auxiliary and reference electrodes. Importantly, the low cost of the electrodes means that it 

is possible to use a new electrode for each measurement thereby avoiding possible poisoning of the 

electrode surface by the product of the electrochemical measurement. The effective performance of 

screen-printed electrodes has led to their widespread acceptance in environmental, biomedical, 

occupational hygiene monitoring and all major fields of analytical chemistry [35–38]. 

The aim of this study was to optimize and develop a sensitive, fast and accurate adsorptive 

voltammetric method for the determination of SILC in biological and pharmaceutical formulations.  

 

 

2. EXPERIMENTAL 

2.1. Materials and reagents 

All chemicals were used as received without further purification. Sildenafil citrate was supplied 

from Pfizer, uric acid and ascorbic acid were supplied by sigma Aldrich Company. Britton–Robinson 

(B-R) buffer (pH 1.6–9.3) was prepared from 0.12 M CH3COOH, 0.12 M H3BO3 and 0.12 M H3PO4, 

and adjusted with 0.5 M NaOH. Aqueous solutions were prepared using double distilled water. 

 

2.2. Apparatus and measurements 

Voltammetric measurements were carried out with a mini Autolab PGSTAT 910 potentiostat 

connected to a personal computer. The measurements were performed in a specially fabricated wall-jet 

cell containing the electrode strip. Screen-printed glassy carbon electrode (SPGCE) strips were 

purchased from Metrohm. The design of the SPGCE used in all these electrochemical experiments is 

shown in Fig. 2. 

The electrode is based on an alumina ceramic base(s) 35 mm long, 10 mm wide and 0.45 mm 

thick. On to this surface the working (W), reference (R) and the auxiliary (A) electrode were applied.  

SWV and CV were used for the determination of SILC using SPGCE electrode. Where the 

potential was scanned from potential −1.6 to 1.0 V, with scan rate of 100 mV s
−1

. 

 

 
Figure 2. Image of the screen-printed glassy carbon strip (SPGCS) consisting of a Glassy carbon 

working electrode (W), a platinum counter electrode (A), and Ag/AgCl reference electrode (R).  
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2.2. Analysis of urine and SILC tablets 

The utilization of the proposed method in real sample analysis was also investigated by direct 

analysis of SILC in human urine samples as well as in its pharmaceutical formulation. For this 

purpose, the urine samples were diluted 10 times in B-R buffer (pH 4.5) to minimize any matrix effect. 

In 10 mL measuring flasks, three different amounts of 0.5 mmolL
-1

 SILC solution were added to 2.0 

mL of urine sample, diluted with B-R buffer, poured into the electrolytic cell, and the corresponding 

SWVs were recorded. Regarding the pharmaceutical formulation of SILC, 5 x 100 mg tablets of 

Viagra were weighed and then the average mass per tablet was determined. The tablets were carefully 

grounded to a fine powder, and then a quantity of homogeneous powder equivalent to 50 mg of SILC 

was dissolved in 100 mL of water by sonication for 10 min, followed by mechanical shaking for about 

10 min. The desired concentration of SILC was obtained by accurate dilution with B-R buffer. The 

sample solution so prepared was added to the supporting electrolyte in the voltammetric cell and SWV 

of the solution was recorded and the anodic peak current was evaluated. Furthermore, the electrode was 

applied for the recovery assessment of SILC in the tablets by the standard addition method. In this 

respect, different standard concentrations of SILC were added to the tablets solution. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Electrochemical behavior of SILC at SPGCE 
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Figure 3. CVs of SPGCE in B-R (pH 4.5) (a) in absence, (b) in presence of 0.5 mmolL
-1

 of SILC. 

 

Fig. 3 (curve a) shows cyclic voltammogram of 0.5 mmolL
-1

 SILC in 0.12 M B-R buffer pH 

4.5 obtained using SPGCE in the potential range of 1.0 to 1.6 V. The base voltammogram is also 

depicted for comparison Fig. 3 (curve b). A high response of current is obtained at 0.43 V, indicated 
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that SILC undergoes an oxidation on SPGCE and the redox reaction is totally irreversible. Sildenafil 

containing basic functional groups with a pKa2 value of 8.7 has a weak acidic moiety. In the substituted 

and fused rings of pyrimidine and pyrazol, protonation is highly difficult due to resonance and steric 

effects. Therefore, the only site in sildenafil vulnerable for protonation is the nitrogen bonded to 

electron-donating methyl group in the piperazine ring [39-41] giving formyl piperazine which is 

responsible for the appearance of this oxidation peak. 

 

3.2. Effect of potential on the oxidation peak 

Fig. 4 shows cyclic voltammograms of 5 mmolL
-1

 SILC in 0.12 M B-R buffer pH 4.5 obtained 

using SPGCE at different potential ranges from 0.0 to 1.6V. No oxidation peak is observed by 

scanning from 0.0 V to 1.5 V, at lower potential than that the oxidation peak began to be noticed with 

higher current intensity, indicating the oxidation of SILC by going more negative potential.  
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Figure 4. CVs of SPGCE in B-R (pH 4.5) at different potential values in the presence of 5 mmolL

-1
 of 

SILC. 

 

3.3. Effect of pH 

The influence of pH on the voltammetric response of SILC was studied. In order to establish a 

suitable pH, a range of values was examined between pH 1.6 and 9.3. The voltammograms obtained 

for the different pH values are presented in Fig. 5A. 

 

There are three main groupings present in the structure of SILC which might be considered as 

under-going electro-oxidation: the citrate anion, the p-alkoxybenzene-sulfonamide grouping and the 

piperazine ring. It was shown that SILC has two ionization constants. The first constant (pKa1) is a 

characteristic of an acidic group and the second constant (pKa2) was attributed to the basic group. The 

two pKa values for SILC are 5.5 and 8.7 for the ionization sites, respectively. Dependence of the 
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oxidation peak currents on pH tested in 0.5 mmolL
-1

 solutions of SILC is shown Fig.5B. In the 

measurement of solutions adjusted at pH < 5.5, oxidation current signals for SILC were observed in 

which the peak potentials remain almost fixed. Thus, the oxidation potential remains pH-independent 

at pH < pKa1. A very good current response with a sharp peak was obtained at pH 4.5 Fig. 5B. This 

implies on the involvement of protonation/deprotonation in the redox process of SILC. The 

monoprotonated form of the piperazine ring, rapidly generated from the dication, is oxidized at pH < 

pKa1. For this reason a value of pH 4.5 allowed the most favorable condition to carry out the study and 

thus the methods were developed at this pH value.  

The sharp form of this peak already indicates that adsorption is involved. This has been 

confirmed by repeated cycles in SILC (Fig. 6). The anodic current peak increases as the number of 

repeated cycles increases. 
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Figure 5. CVs of SPGCE at different pH values (a) pH 1.6, (b) pH 2.3, (c) pH 4.5, (d) pH 5.3, (e) pH 

7.5, (f) pH 9.6. (A). Dependence of the peak current on pH in 0.5 mmolL
-1

 solutions of 

sildenafil (B). Scan rate: 100 mVs
-1

. 
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Figure 6. CVs for repeated cycles of SPGCE in the presence of 0.5 mmolL

-1
 of SILC 

 

Around pH 7, a broad anodic peak was observed with a small shoulder, and a rising of two 

small reduction peaks, which can be regarded to the adsorption of both the protonated form of the 

oxidation product of SILC and its conjugate base. The conjugate base of the oxidation product is more 

strongly adsorbed [40]. 

 

3.4 Effect of scan rate 

The oxidation peak currents (Ip) of SILC at SPGCE in presence of 0.5 mmol L
-1

 SILC solutions 

(pH 4.5) varied with change of square root of scan rate (v) in the range of 20–120 mVs
-1 

as shown by 

the cyclic voltammograms in Fig.7A. The higher the scan rate, the greater is the peak current. 

The anodic peaks current and peak potential were proportional to the square root of scan rate in 

the range of 20–120 mVs
-1 

(Figure 7B and C).  
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Figure 7. Cyclic voltammograms of 0.5 mmolL

-1
 SILC in 0.1M B–R buffer solution pH 4.5 at 

different scan rates (20, 40, 60, 80, 100 and 120 mVs
−1

), inset in absence of SILC (A), 

Dependence of the oxidation peak Current (B), potential (C) on square root of scan rate of 0.5 

mmolL
-1

 SILC solution. 

 

A linear relationship was observed between the peak intensity I (in µA corresponding to the 

oxidation process) and the square root of the scan rate, V, demonstrating that the phenomenon is 

adsorption-controlled with the regression equation: 

 

Ip (A) = 3.2 + 0.22 ‏ v
1/2 

(mV s
-1

)    (r = 0.998) 

 

At relatively slow voltage scans, the adsorbed layer grows much further towards the solution 

side and further from the electrode surface. Therefore, as the scan rate increases the flux to the 
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electrode surface increases considerably. At relatively higher scan rates the adsorbed layer grows less 

further from the vicinity of the electrode. 

 

3.5. Calibration graph and limit of detection 

Considering the larger response obtained for SILC by SWV (Fig.8). It was expected that this 

technique to be successfully applied for the determination of Viagra. The corresponding calibration 

graph for oxidation peak was linear from 1.0×10
−6

 to 1.4×10
−5

 molL
-1

 and obeyed the equation I = 

0.15c + 0.035, where I and c are the peak current (µA) and SILC concentration (µmolL
-1

), 

respectively. The correlation coefficient (r) was 0.998. The reproducibility of the square -wave signal 

expressed in terms of the relative standard deviation, at a concentration level of 5×10
−6

 molL
-1

 was 

4.8% (n=3). The detection limit for oxidation peak based on the 3σ criterion was estimated as 5.5×10
−8

 

molL
-1

.  
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Figure 8. SWVs for successive additions of SILC in the concentration range from 1×10
−6

 to 1.4×10
−5

 

molL
-1

. The inset shows the corresponding calibration plot.  

 

3.6. Electrochemical interference studies for SILC at SPGCE 

The selectivity of the electrode towards SILC was evaluated by the successive addition of SILC 

from 0.5 mmolL
-1

 stock solution to possible interferents (uric acid and ascorbic acid). SWV 

voltammograms were recorded at SPGCE for a mixture of 50 mmolL
-1

 ascorbic acid, 5 mmolL
-1

 uric 

acid. It has been noticed that at B-R solution of pH 4.5, ascorbic acid has no oxidation reduction peak 

at SPGCE, while uric acid has an oxidation peak at 0.19 V. By successive addition of SILC solution an 

oxidation peak was noticed at 0.47 V, which increases by increasing the concentration of SILC.  

Altough, the concentration of ascorbic acid and uric acid are much higher than that of SILC by 1000 

and 100 times, respectively, the SPGCE still can sense the lower concentrations of SILC.  
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Figure 9. SWVs for SPGCE in B-R (a), SPGCE in a mixture of 50 mmolL
-1

 ascorbic acid, 5 mmolL
-1

 

uric acid (b) and  in successive addition of 0.5 mmolL
-1

SILC in the same mixture (c) with scan 

rate 100 mVs
-1

, pH 4.5. 

 

3.7. Analytical Applications 

3.7.1. Determination of SILC in human urine  

The proposed method was used to detect SILC in urine samples, which obtained from healthy 

volunteer. No signal was observed for SILC in urine samples; therefore, the urine samples were spiked 

by different concentrations of SILC standard solution, and then used for further determination. The 

voltammograms were recorded using the SWVs, and the corresponding values were recorded. The 

results obtained are given in Table 1. As can be seen for the determination of SILC, good recoveries 

were obtained ranging from 98.5-101.4%. 

 

Table 1. Recoveries in spiked human urine samples 

 

Urine sample Spike 

(μmol L
−1

) 

Found 

(μmol L
−1

) 

Recovery 

(%) 

R.S.D. 

(%)
a
 

1   4.00   3.94   98.5 2.4 

2   8.00   8.11 101.4 2.3 

3 12.00 12.02 100.2 2.9 
a 
average of 3 times repetition 

 

3.7.2. Determination of SILC in pharmaceutical tablets 

SPGCE are successfully applied for the determination of SILC in pharmaceutical preparations 

by standard addition method. These results indicated that there is no interference from the tablet 
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coating materials, or fillers. The results depicted in Table 2 are in good agreement with the claimed 

values with average recovery of 99.5%. 

 

Table 2. Tablet results and recoveries obtained for four determinations of SILC in spiked Viagra 

tablets 

 

sample content 

(μmol L
−1

) 

SILC added 

(μmol L
−1

) 

SILC found 

(μmol L
−1

) 

Recovery 

(%) 

    1 5.00 2.00   7.15 102.14 

    2 5.00 4.00   8.94   99.33 

    3 5.00 6.00 10.97   99.73 

    4 5.00 8.00 12.56   96.62 

 

 

 

4. CONCLUSION 

This work shows that the SILC can be determined using voltammetric techniques on the basis 

of piperazine ring oxidation process over SPGCE. This behavior provides a useful tool for its detection 

and quantification at low levels of concentration. A faster analysis can be performed by direct 

measurement from the calibration graph established for SWV. This method is sensitive enough, and 

there is no interference in the analysis from the other components (excipients) also present in the pills.  

The proposed methods are simple, fast and low cost suitable for SILC analysis in human urine 

and pharmaceutical formulations. The recovery results prove that the proposed procedures are 

sufficiently accurate and precise and can be applied to pharmaceuticals. 
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