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There is relatively little research about the simultaneous electropolymerization of porphyrins and 

aniline derivatives in aqueous media. Normally, the copolymerization studies are focused in the 

polymerization of two conducting monomers without a redox metal center.  It is interesting to study a 

probable synergic effect among very different species as metalled porphyrins and aniline derivatives. 

The synergic effect of a real co-polymerization would affect the electrochemical and mechanical 

properties. Electropolymerization of p-tetra-aminophenyl porphyrin of cobalt (II), polyCoTAPP, 

generates thin and fragile films that “crystallize” on some electrode surfaces in aqueous media. They 

are very electroactive but unstable in aqueous media. On the other hand, the electropolymerization of 

o-phenylenediamine, PoPD, generates stable and thick films with electroactivity to some reduction 

reactions and without redox response in the positive range between ca. 0.0 and 0.8V vs Ag/AgCl. In 

this research we electropolymerize both species dissolved in acid aqueous media obtaining a new film 

that has different properties compared to the homopolymers. Raman and XPS studies demonstrate the 

copolymerization and the synergic effect on the growing of the film.  

 

 

Keywords: conducting polymer; poly(o-phenylenediamine); poly(p-tetra-aminophenyl) porphyrin of 

cobalt (II); copolymer 

 

 

1. INTRODUCTION 

Conducting polymers have become very popular in the field of materials science due to their 

promising and novel electrical properties such as energy storage devices [1,2], gas sensors [3,4], EMI 
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shielding [5,6], electrostatic charge dissipation [7,8], OLED and flexible display devices [9,10], 

anticorrosive metals [11,12], and electrochromic materials [13,14]. Among all conducting polymers, 

PoPD [15]
 
has a special representation due to easy synthesis being obtained as a layer of self-limiting 

thickness on different conducting substrates via anodic electropolymerization. PoPD layers have been 

well characterized by electrochemical, quarz crystal microbalance, radiotracer, STM and different 

spectroscopic techniques. These layers are permselectivite and stable [15]. 

Synthesis of PoPD is usually carried out electrochemically in acid, neutral and alkaline 

solutions and is very stable in both aqueous solutions and air
 
[16]. The ease of dissolution of PoPD in 

organic solvents such as dimethyl sulfoxide makes it one of the so-called soluble electroactive 

polymers [17-18]. During the electropolymerization process, polymer film is deposited on the 

electrode surface and the formation of soluble oligomers might occur. The local concentration of the 

oligomers near the electrode surface might be very high, depending on the solubility and the diffusivity 

of the oligomers. The polymer films formed might be very porous [16]. 

Another type of conducting polymer is a redox polymer. Polymerized porphyrins and 

metalloporphyrins can be used to coat electrodes showing interesting features as analytical sensors 

because they can electrocatalyze many charge transfer processes increasing the sensitivity and 

selectivity of the electrode
 

[19-25]. In particular, amino-substituted porphyrins can be 

electropolymerized to afford surface-modified electrodes aimed at preparing sensors [26-28]
 
such as 

polyCoTAPP.  Synthesis of polyCoTAPP is usually carried out electrochemically in organic solvents 

where the deposit is stable and reproducible [29].
 
Rarely is carried out in aqueous solution but in our 

group we have experience in polymerization and copolymerization of metaloporphyrins in aqueous 

media [30].  In all cases, electropolymerization occurs by the oxidation of the amino groups and the 

subsequent para coupling, forming films on a conductive substrate [31-32]. Characteristics of 

electrochemical copolymerization are highly dependent on the synthesis conditions of the 

electropolymerization of monomers [33-37]. 

The formation of poly(CoTAPP-co-oPD) copolymer in acid solution is due to the insolubility 

of oPD in organic solvents. Taking into account that polyCoTAPP forms unstable and fragile films in 

aqueous media [38], copolymerization between CoTAPP and oPD molecules could improve the 

electrical properties and the stability of this new material because oPD forms conductive coatings, 

thick and stable [16]. 

This research is focused in obtaining evidence of the formation of a real copolymer and not a 

mixture or composite of oligomers formed by only a molecule (homo-oligomers).  On the other hand, 

our aim is to observe synergic effects on the polymerization or in the electrocatalytic behavior. We 

report here the results obtained in the synthesis and characterization of homopolymers and copolymers 

of CoTAPP y oPD. Electrochemical and spectroscopical techniques were used to study the 

electropolymerization processes of this copolymer in sulfuric acid solution as supporting electrolyte. 

The reduction of dioxygen was used as a test reaction to measure electroactivity. In literature, there is a 

report where it is shown a major electrocatalytic activity when it is used a copolymer of an iron 

porphyrin and aniline [30]. We tried to obtain quantitative and qualitative data for obtaining a better 

understanding of the copolymerization processes involved.  
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2. EXPERIMENTAL PART 

o-phenylenediamine (Merck) and 5,10,15,20-tetraaminophenyl-porphyrin cobalt (II) (Organix) 

were used as received. All solutions used contained 0.1 mol·L
-1

 sulfuric acid. 

All the experiments reported were carried out in a conventional three-compartment cell. A 

glassy carbon disc (GC) (geometrical area 0.07 cm
2
) and Ag/AgCl were used as working and reference 

electrodes, respectively. The reference electrode was placed in a compartment separated from the 

working electrode by a Luggin capillary. The counter electrode was a Pt wire of large area, separated 

from the working electrode by a fine glass frit.  Before each experiment the working electrode was 

polished with alumina slurry (particle size 0.3 µm) on soft leather and afterward washed with 

deionized water. Before all the experiments, solutions were purged with high-purity nitrogen 

atmosphere.  This atmosphere was maintained over the solution during measurements, except when O2 

is bubbled (99.995 % AGA).  

Electrochemical polymerization was carried out from solutions containing 0.1 mol·L
-1

 

monomer of oPD; 0.1 mmol·L
-1

 monomer of CoTAPP and 0.1 mol·L
-1

 background electrolyte. PoPD 

was obtained by applying a potential between 0.0 and 0.8 V versus Ag/AgCl electrode at 0.05 V·s
-1

 

and poly(CoTAPP) was prepared by applying a potential between -0.6 and 1.0 V versus Ag/AgCl 

electrode at 0.05 V·s
-1

. 

Electrochemical copolymerization was carried out from solutions containing 0.1 mol·L
-1

 of 

oPD and 0.1 mmol·L
-1

 of CoTAPP by feeding 1:1 v/v of each solution. The resultant solution was used 

to cycle the electrode between -0.6 and 1.0 V versus Ag/AgCl at 0.05 V·s
-1

. 

For impedance experiments, the frequency response analysis of the polymers was measured 

using a CHI potentiostat (model 604C) over a frequency range from 0.1 mHz to 10 kHz. The 

impedance was measured at 10 discrete frequencies per decade in each scan with amplitude of 5 mV. 

This electrochemical technique was used to determine qualitatively electrical properties of the 

materials obtained. Impedance curves were obtained for the potentials: 0.0; 0.2; 0.4; 06 and 0.8 V. As 

pre-treatment, before each measurement, the electrode was polarized at a given potential for 1600 s. 

The current vs time tests when applying the potential showed that 1600 s were enough to reach cero 

current, that is to say, an equilibrium state. The potentials that were applied were not arbitrary. They 

were selected according the redox processes involved for each of the polymers. The adjustment was 

performed by using a very simple equivalent circuit and using the electrochemical impedance 

computer program ZWiew, in which the data were simulated and interpreted according to this circuit. 

A detail physical interpretation of this circuit was not made because of the enormous complexity of the 

real circuit. The equivalent circuit which was used was Rs-Rpol/CPE (C), where Rs corresponds to the 

serial resistances, R to the parallel resistances and CPE is an element of constant phase. This circuit, as 

said before, must contain at least one capacitor that represents the electrical double layer, a resistance 

which corresponds to the ohmic solution resistance and impedance which represents a faradaic 

process. The equivalent circuit consists of a resistance (ohmic, solution) in series with an element of 

constant phase (solution electrode interphase) which is in parallel with a resistance (resistance to the 

polymer charge transference) in parallel with other constant phase element (solution polymer 

interphase). 
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SEM measurements were made with a scanning electron microscope JEOL (model 6400) 

equipped with an energy dispersive detector OXFORD LINK ISIS. These experiments were used to 

determine the composition of the films and for the observation of their surface and morphology. 

Micro-Raman spectroscopy studies were performed using a spectrometer Raman LabRam 

(model 010). This spectroscopy study was made possible to verify the formation of a copolymer 

between oPD and CoTAPP. 

 

 

3. RESULTS AND DISCUSSIONS 

3.1. Electropolymerization of homo and copolymers 

Figure 1 shows the structure of the two monomers used in this study. Figure 2 shows the 

profiles of the voltammetric response of the electropolymerization of the homo and the copolymer on a 

glassy carbon. Results showed here correspond to the best results when varying relative concentrations 

of each monomer in the solution and optimizing the limits of potential and the number of 

potentiodynamic cycles. Figure 2A shows the electropolymerization of PoPD where an irreversible 

oxidation wave corresponding to the oxidation of amino groups appears (peak II). It has been reported 

that oPD oxidation produces the phenazine, which as shown in Diagram 1 gives rise to the ladder 

polymer [39-42]. Figure 2B corresponds to the electropolymerization of polyCoTAPP where a redox 

reversible couple attributed to CoIII/II is observed at ca. 0.5 V. Figure 2C corresponds to the 

copolymerization of poly(CoTAPP-co-oPD). In each Figure the irreversible oxidation wave 

corresponding to the oxidation of the amino groups (II) appears at positive limits. It is interesting to 

observe the difference in the intensity of the current that is directly proportional to the amount of active 

polymer deposited on the surface of the electrode. It is clear that the polyCoTAPP is very thin 

compared to the others. In C, peak I corresponds to the phenacine/phenacile redox couple P
●+

/P [43] 

(see Diagram 1) of the oPD. 

 

 
 

Figure 1. Structural formula of p-tetra-aminofenilporphyrin of cobalt (II) CoTAPP (right). Structure of 

o-phenylenediamine oPD (left). 
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Figure 2. Voltammetric profiles obtained during the electropolymerization of poly (oPD) (A), poly 

(CoTAPP) (B), and poly (oPD-co-CoTAPP) (C) on glassy carbon in 0.1mol·L
-1

 H2SO4.  v = 50 

mV·s
-1

. Cycles 1 to 15. 

 

 
 

Diagram 1. (Top) Chemical structure of the redox couple of PoPD. (Bottom) The structure of the 

polymer formed by oPD. 

 



Int. J. Electrochem. Sci., Vol. 7, 2012 

  

11601 

Figure 3 shows the superposition of the response of the ultimate redox cycle (cycle 15) of both 

homopolymers and the copolymer. It is interesting that the charge of the copolymer is larger than the 

sum of the charge of each polymer. Deconvolution of the anodic peaks corresponding to the P
●+

/P 

couple and CoII/I couple indicates a charge relation of 4:1 between those peaks indicating that the 

copolymer contains 4 oPD for each CoTAPP. 

 

 
 

Figure 3. Comparative voltammetric profiles obtained during the electropolymerization of 

polyCoTAPP, PoPD and the copolymer on glassy carbon electrode in 0.1mol·L
-1

 H2SO4. v = 50 

mV·s
-1

. Cycle 15. 

 

On the other hand, the electrocatalytic activity toward the reduction of oxygen (Fig. 4) shows 

that poly(CoTAPP-co-oPD) presents better results compared to the other homopolymers. There is a 

shift in the foot of the current wave to more positive potentials (ca. 40mV) for the copolymer 

compared to the PoPD. For the PoPD, the reduction wave appears at potentials slightly shifted to 

negative potentials compared to the Ep of the cathodic peak P
•+

/P (not shown). This peak that occurs at 

more positive potentials than the redox couple CoII/I shows that modified electrode is a better redox 

mediator for this reaction due  to the fact of the potential required to transfer an electron. PoPD, shows 

a displacement of the foot of wave of approximately 560 mV in comparison with GC in presence of 

molecular oxygen and the reduction wave practically coincides with the redox couple P/P
●+

 in the 

absence of O2. GC/polyCoTAPP shows good electrocalatylic activity, observing a displacement of the 

foot of the wave of approximately 200 mV toward less negative potentials in comparison to GC. 

Finally the copolymer shifts the potential 600mV more positive than glassy carbon.  

Besides, the three systems of modified electrodes turned out to be stables after 10 successive 

potential cycles. 
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This first result shows a small synergic effect in the electrocatalytic activity of the copolymer 

compared to both homopolymers. 

 

 
 

Figure 4. Profiles of comparative voltammetry of glassy carbon electrode modified with polyCoTAPP, 

PoPD and copolymer for the RRO v: 100 mV·s
-1

. Cycle 1. 

 

The impedance studies using the simple electric circuit model (see Fig. 5) shows how the 

copolymer has better electric response that both homopolymers. (see Tables 1).  

 

 

 
 

Figure 5. Equivalent circuit used in the analysis of electrochemical impedance data. Rs (strength 

solution) and Cpol, Cpol (n) (polymer solution interface and electrode solution interface, 

respectively) and Rct, Rpol (resistance of the charge transfer of the polymer and of the double 

layer, respectively). 

 

Table 1 shows the results for Rs, Rp y CPE, for the GC/PoPD, GC/polyCoTAPP and 

GC/poly(CoTAPP_co_oPD) electrodes at different potentials. 
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In Table 1 the results for the GC/PoPD electrode are shown, which presents “in serie” 

resistance ranging between 50 and 46 Ω, mainly attributed to the electrolyte resistance. The resistance 

of the Rpol polymer is around 20 kΩ, what means that this polymer is conductive for all the potential 

range and the capacity of the Cpol polymer (µF) is close to 1·10
-6

 µF.  The exponent of the frequency in 

the constant phase element, Cpol (n), of the order of 0.8. A 0.2 and 0.4 V, the values of Rct are too high 

(of the order of 1·10
17

 Ω) due to the fact that at those potentials there are no charge transference 

processes for this polymer. At 0.0 V a little lower charge transference resistance values are obtained, 

due to the fact that the potential is close to where the polymer redox process occurs. That is to say, the 

oPD polymer shows a Rct of of 3.35·10
14

 Ω to 0.0 V, which drastically changes with the increase in the 

potential by the presence of the faradaic reaction P/P
•+

 [44]. 

 

Table 1. Impedance parameters for the GC/PoPD, GC/polyCoTAPP and GC/poly(CoTAPP-co-oPD) 

electrodes. 

 

PoPD      

Potential /V  Rs / Ω Cpol / μF Cpol / n Rpol / kΩ Rct / Ω 

0,0 50 0.7 0.8 17
 

3.35·10
14

 

0,2 50 0.1 0.8 18
 

∞ 

0,4 50 1.7 0.8 18
 

∞ 

0,6 46 87 0.8 18 ∞ 

0,8 46 67 0.9 18 ∞ 

PolyCoTAPP      

Potencial /V  Rs / Ω Cpol / μF Cpol / n Rpol / kΩ Rct / Ω 

0,0 37 1.2 0.9 26 ∞ 

0,2 38 1.4 0.9 24 ∞ 

0,4 40 1.6 0.9 31 ∞ 

0,6 33 1.2 0.9 23 ∞ 

0,8 34 1.2 0.9 21 ∞ 

Poly(CoTAPP-

co-oPD) 

     

Potencial /V  Rs / Ω Cpol  / μF Cpol / n Rpol / kΩ Rct / Ω 

0,0 45 155 0.8 0 3.48·10
5 

0,2 46 0.4 0.7 3 ∞ 

0,4 30 0.1 0.7 8 ∞ 

0,6 26 0.1 0.7 10 ∞ 

0,8 25 0.1 0.7 9 ∞
 

 

For the GC/polyCoTAPP electrode there are observed almost constant values for Rs, Rp and 

Cpol, which is consistent with a voltammetric response that does not show redox processes. It acts as a 

porous polymer that only participates as coating. 

The GC/poly(CoTAPP-co-oPD) electrode represents a Rpol at 0.0 V of 0 kΩ, a very small value 

if compared to the value of Rpol at 0.0 V ( 17 kΩ) for PoPD and at 26 kΩ for polyCoTAPP, showing a 

copolymer which is more conductive than its homopolymers. Besides, the value of the frequency 
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exponent in its constant phase is of the order of 0.8 and diminishes down to 0.7 with the potential 

increase, indicating possible polymer degradation or dehydration, making the polymer more compact 

at high potentials. 

On the other hand, Rct values that are relatively lower at 0.0 V are obtained, because at 0.0 V 

the faradaic process that corresponds to the reported redox couple can be found. 

If the three polymers at a given potential, at 0.2 V for example, are compared, it is obtained that 

the  Rs are the same, thus indicating that there are no ohmic impediments. The capacity of the polymers 

(Cpol) is higher for the copolymer because it increases the amount of polymer deposited and therefore 

the number of active sites. The exponent of the frequency in the constant phase element (n) is lower for 

the copolymer that shows increase of defects or rugosity. The resistance is very high for the Co 

porphyrin film in respect with the polymer, because of its small growing and its is little conductivity, it 

is higher for the oPD polymer in respect to the copolymer since its more conductive than polyCoTAPP 

and its too small for the copolymer for a synergic effect. In this ways, it is obtained a more conductive 

and rugose polymer than its homopolymers according to impedance measures. This result shows also 

synergic effect in the copolymer conductivity if compared with both homopolymers. 

 

3.2. Scanning Electronic Microscopy (SEM) 

3.2.1. Au/polyCoTAPP, Au/PoPD and Au/poly(CoTAPP-co-oPD) electrodes SEM 

SEM images show the CoTAPP and oPD polymers microstructure in Figure 6. Cobalt 

porphyrin polymer, polyCoTAPP, shows that this polymeric film (light gray dots on the Au electrode) 

appears on irregular shape covering very small areas. Practically, it is obtained a “clean” gold surface 

(see Fig.6A). On the other hand, the SEM images for the oPD polymer that is shown in Figure 6B 

show that the surface of the gold electrode (Au) is covered with a very regular rugous polymer, 

forming defined cracked tissue on the electrode. 

 

 
Figure 6. SEM images of Au electrode / polyCoTAPP (A), PoPD (B) and copolymer (C), 

magnification 500X. 
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When it is studied the Au electrode surface with the copolymer deposited in its surface (see 

Fig. 6C), different images  compared  to that presented before are obtained. In this electrode, it can be 

seen a rugous surface composed by the two monomers, where the cobalt porphyrin is presented in the 

lighter colors and the oPD appears like cracked tissue. It must be pointed out that in the copolymer it is 

observed the presence of the cobalt porphyrin in high amounts, spreading all over the mapping area, 

which is different to the very low amount that is observed when the cobalt porphyrin is grown without 

oPD. 

It is interesting to notice that in this study also a synergic effect is obtained on the copolymer 

formation. When CoTAPP is electropolymerazed on the Au surface, there is practically no deposit. 

However, when the electropolymerization takes place simultaneously with thje polymerization oPD, 

this monomer “helps” the porphyrin to be  incorporated on  the surface. 

 

3.3. Raman micro- spectroscopy 

3.3.1. Au/polyCoTAPP, Au/PoPD and Au/poly(CoTAPP-co-oPD) electrodes 

Figure 7 shows  the Raman spectra for homo and co-polymers, and it can be observed that they 

are different. In the first place, it is observed a change in the  intensity of the peaks ranging between 

1367-1578 cm
-1

, corresponding to the Raman region that is attributed to C=C p-disustituted bencene 

stretches, CH2 (or NH2) deformations at different torsion angles (1219-1458 cm
-1

), and aromatic Schiff 

(C6H5-CH=N-R) stretches (1509-1703 cm
-1

) [41]. Also, the spectra show displacement of 4, 5 y 9 cm
-1

 

for the signals appearing at 1367, 1516 y 1578 cm
-1

 for PoPD compared  to polyCoTAPP. These 

displacements are big enough to become new evidence supporting that the phenomenon of 

copolymerization between CoTAPP molecules and oPD molecules is truly occurring and different 

bonds are formed. However, the most direct evidence is obtained from the frequency change in the C-

N vibration.  

 

 

Figure 7. Raman spectra of polyCoTAPP, PoPD and copolymer electropolymerized on gold. 
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The 1516 cm
-1

 frequency  in PoPD and 1537 cm
-1

 in polyCoTAPP which corresponds to the C-

N vibration, appears for the copolymer at 1520 cm
-1

 showing that there is a C-N bound with different 

energy in the compolymer compared  to the C-N bound of its homopolymers. Besides, there is no sight 

of Raman peaks for the cobalt porphyrin (416, 701, 820, 1007, 1177, 1537 and 1595 cm
-1

, which is 

very crystalline in the copolymer. 

It is interesting to note that the Raman spectra of the copolymer are similar to the spectrum of 

the PoPD homopolymer, although most of the signals are shifted. Practically, in the copolymer the 

presence of CoTAPP is not observed, but the effect of this complex on the PoPD is observed.  

 

3.3.2 polyCoTAPP and PoPD composite electrodes 

Figure 8 shows the Raman spectra obtained for the A and B composites. The A composite is 

formed by Au/polyCoTAPP/PoPD and the B composite is formed by Au/PoPD/polyCoTAPP. The 

copolymer peaks at 1164, 1238, 1474, 1520 and 1569 cm
-1

 do not appear in the A or B composite 

spectra. It can be observed that for the A composite  the signal at 1362 cm
-1

 and for the composite B 

the signal at 601 cm
-1

 are the only ones that have correspondence with copolymer signals taking into 

consideration that the determination of a Raman signal has an error of +/- 2 cm
-1

. Besides, the Raman 

signal at 1520 cm
-1

 corresponding to the C-N vibration does not appear in any of the two composites 

formed. Therefore, the measured copolymer spectrum showed above does not correspond to a 

composite, discarding this type of growing for the studied copolymer. 

 

 
 

Figure 8. Comparison of Raman spectra of electropolymerized composites and copolymer on gold. 
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4. CONCLUSIONS 

It was found a new and simple material for electrodes or poly(CoTAPP-co-oPD) glassy carbon 

modified electrodes coating. Voltammetric measurements, impedance measurements, SEM, and 

Raman microspectroscopy corroborate that the copolymer is electrochemically formed and it is stable 

and reproducible.  

Besides, the poly(CoTAPP-co-oPD) modified electrode shows the synergy expected for the 

reduction of  molecular oxygen in acid medium because this new material  that is more conductive and 

rugous compared to the  respective homopolymers. 
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