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Ni-Cd batteries are nonlinear electrochemical devices with different characteristics at different charge 

currents.  This paper proposes a wavelet network based method for simulation and modeling of Ni-Cd 

batteries that considers the impact of charge current. It does not have the limitations associated with 

traditional neural networks or neuro-fuzzy-based algorithms such as convergence to local optimum 

points, over-fit and/or under-fit problems. Simulations and measurements are performed for the 

wavelet network and advantages of the model are presented. Inputs of the wavelet network are battery 

current ( batI ), no load voltage and time (t) while battery voltage ( batV ) is selected as the output. An 

experimental setup is used to validate the accuracy of the model at different charge rates. Computed 

and measured results show good agreements for a 7AH, size F, Ni-Cd battery, manufactured by 

SANYO. Theoretical and experimental results are compared and analyzed. 
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1. INTRODUCTION 

Rechargeable batteries are widely used in many electrical systems to store and deliver energy. 

The most familiar applications are staring, lighting and ignition (SLI) automotive, industrial truck 

materials-handling equipment, as well as emergency and standby power [1].  

The ultra-fast charging capability, fine performance and high capacity of Nickel Cadmium 

batteries along with their limited weight and size are attractive and distinct properties for light and 

compact equipment. Ni-Cd batteries have found many applications including cordless and portable 

equipment, photovoltaic systems, electric vehicle [2] satellites [3-4], and power plant supporting 

equipment [5-7].  

In order to use Ni-Cd batteries more efficiently, their response to various operating conditions 

must be understood. In the literature, there are various linear models for Nickel-Cadmium [3-8], 

Nickel-Hydrogen [9-10], Lithium-Ion [11] and Lead-Acid [2, 12-15] batteries. The model parameters 
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of [2] are assumed to be independent of charging current. Therefore, this model is not accurate under 

varying battery current condition. The model parameters presented for Nickel-Hydrogen [9-10], 

Lithium-Ion [11] and Lead-Acid [2, 12-15] batteries depend on chemical reactions, which makes the 

simulation procedure very complicated. Most of these models ignore the nonlinear electrochemical 

characteristics of the battery and the variation of battery voltage during charge and discharge states. In 

addition, most of proposed models ignore the change of battery impedance with respect to charge 

current and assume constant model parameters at different charge and discharge states. 

Neural networks have been used for power system applications [16-17]. They have the 

limitations and problems such as convergence to local optimum points, over-fit and/or under-fit 

problems which make them somewhat unreliable. Wavelet Networks (WNs) have better performances 

as compared with the traditional neural networks [18-20] and are implemented in this paper. 

The subject of this paper is to introduce a WN model for Ni-Cd batteries and to investigate its 

accuracy through different measurements. The main contribution is nonlinear nature of model 

parameter and their dependency on battery charging current. 

 

 

2. ELECTRICAL MODELS of Ni-Cd BATTERIES 

Battery characteristics play a dominant role in the electrical power system (EPS) performance. 

Accurate battery models are essential for the simulation of EPS. 

 

2.1. Ideal Model       

The ideal equivalent model of the Ni-Cd battery consists of a simple voltage source [2], as 

shown in Fig. 1(a): 

 

obat VtV )(                        (1) 

 

This model does not reflect the physical characteristics of the battery since it’s nonlinear 

behavior and internal parameters are ignored. 

 

2.2. Linear Model 

The linear model of the Ni-Cd battery (Fig. 1 (b)) includes its internal resistance [2, 14-15]. 

Furthermore, voltage source V  and internal resistance R are fixed and don't change with 

charge/discharge rates: 

 

obatbat VIRtV )(                                             (2) 
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2.3. Thevenin Model 

The Thevenin model of Ni-Cd battery contains the electrical values of no-load voltage ( V ), 

internal resistance ( 2R ) and a parallel CR1 circuit that incorporates the impact of over voltage 

conditions [2-4], as shown in Fig. 1(c). The battery voltage can be computed as: 

o

CR

t

batbatbat VeIRIRtV 



)1()( 1

12                     (3) 

 

Parameters of C,R,R 21  and oV  are computed for a given charge current using measurements. 

These parameters are fixed and don't change with charge current. Therefore, this model is not accurate 

for other charge currents.  

 

2.4. The Proposed Wavelet Network Model for Ni-Cd Batteries 

The main limitation of previous models is the ignorance of nonlinear electrochemical behavior 

of battery. This causes nonlinear variation of parameters with respect to charging rates. The proposed 

model has the benefits and advantages of WNs such as high reliability and robustness against system 

failure. Furthermore, the nonlinear electro-chemical behaviors of batteries and their dependency on 

charging current has taken into consideration which makes the simulation results more accurate.  
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Figure 1. Electrical models of Ni-Cd baterries; (a) ideal model, (b) linear model, (c) Thevenin model. 
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3. WAVELET NETWORKS  

Wavelet networks (WNs) belong to the class of feed forward neural networks, with wavelets as 

the activation functions [19]. Unlike the feed forward neural networks, the structure of WNs can be 

obtained based on wavelet theory. WNs are based on the wavelet transform, orthonormal wavelet and 

wavelet frames [20]. 

 

3.1. Discrete Wavelet Transform 

The discrete wavelet transform (DWT) is the basic tool for the feature extraction. DWT is the 

discrete counterpart of the continuous wavelet transform (CWT). The CWT of a continuous time signal 

is defined as 

 

      0a,Rb,adtttfb,aCWT *
b,a  





                                                             (4) 

 

with  

 

  






 


a

bt

a

1
t **

b,a                                                                                                       (5) 

 

where  t  is the mother wavelet, the asterisks denote complex conjugates, a and b are the 

scaling (dilation) and translating parameters, respectively. The scale parameter a sets the oscillatory 

frequency and the length of the wavelet, while the translation parameter b deposits its shifting position. 

In a practical application, the DWT is used instead of the CWT. This is implemented by using 

discrete values maa 0  and manbb 00  for the scaling parameter and translation parameter, 

respectively. Then  

 

    Zn,mnbtaat 0
m

0
2

m

0n,m  


                                                                            (6) 

 

where m and n indicate frequency localization and time localization, respectively. Generally, 

we can choose a0=2 and b0=1 to provide a dyadic-orthonormal wavelet transform and the basis for 

multi-resolution analysis (MRA). 

In MRA, signal f(t) is decomposed in terms of the approximations and details which are 

presented by scaling functions  tnm,  and  wavelets  tnm, , respectively: 

 

   nt22t m2

m

n,m  


                                                                                                  (7) 
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   nt22t m2

m

n,m  


                                                                                                (8) 

 

The scaling function is associated with the low-pass filters (with filter coefficients {g0(n)}) and 

the wavelet function is associated with the high-pass filters (with filter coefficients {g1(n)}). The so-

called two scale equations give rise to these filters [21]. 

     nt22ngt
n

0                                                                                                   (9) 

 

     nt22ngt
n

1                                                                                                 (10) 

 

Filter g1(n) is an alternating flip of filter g0(n) and there exists an odd integer N such that [22] 

 

     n1Ng1ng 0
n

1                                                                                                (11) 

The decomposition procedure starts with passing a signal through these filters. The 

approximation is the output of low-pass filter while the detail is the output of the high-pass filter. 

 

3.2. Wavelet Frames and Orthonormal Wavelet  

There are two classifications of wavelet functions [23]; orthonormal wavelet and wavelet 

frames. Construction of orthonormal WNs is complicated and they don’t benefit from the full 

advantages of orthonormal basis due to the sparseness of the training data. On the other hand, wavelet 

frames offer more freedom on the choice of the wavelet function. It is possible to generate a single-

scaling frame of L2(R
d
) with a single mother wavelet function. In contrast, in order to construct a 

single-scaling orthonormal wavelet basis of L2(R
d
), 2

d
-1 mother wavelet functions and one scaling 

function are required. This complicates the analysis and augments the required computing times. 

 

3.3. Wavelet Network Structure  

To approximate an arbitrarily nonlinear function, there are two processes in the WN algorithm: 

network construction (e.g., using network structure to analyse the wavelet and updating its parameter 

to retain the network topology for further processing) and error minimisation (e.g., minimisation based 

on an adaptive Least Mean Square (LMS) algorithm and updating parameter of the network 

initialisation using the steepest-descent gradient method). 

The WN architecture approximates a signal )(ˆ ty with linear combination of a set of daughter 

wavelet (Eq. 5) which is formed with dilation a and translation b of the mother wavelet [20]. The 

approximate signal of the network )(ˆ ty can be written as 

 

)(.).()(ˆ
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                                                                                               (12) 
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where N is the number of wavelet and wi is the weight coefficient.  

Fig. 2 depicts the structure of a WN. 
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Figure 2. Structure of a wavelet network. 

 

Determination of the number of wavelet (N) is an important task to reduce the model order 

problem. To solve this problem, a part of the model data is used to approximate the model order. For 

this purpose, several approaches exist, such as cross-validation, generalised cross-validation, model 

complexity penalty, statistical hypothesis test, minimum description length criterion, Mallows criterion 

and Akaike Final Prediction Error (AFPE) [23]. In this paper, the AFPE approach is adopted and used 

to minimise the Equation: 

 

  



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

n

1j

2
jjs

I

I
sAFPE )y)I(f̂(

n2

1
.

N.2d.Nn

N.2d.Nn
f̂J                                                      (13) 

 

where sf̂ is the wavelet network, N is the number of wavelets in the network, Id  is the input 

dimension and n is the sample length of the training data.  

The wavelet network parameters wi , bi and ai  are optimised by using LMS to minimize the 

cost as a function of energy at time t, with 

 

)t(ŷ)t(y)t(e                                                                               (14) 

 

where y(t) is the expected output. The objective function is defined as: 

 





T

1t

2 )t(e
2

1
E                                                                                                                 (15)   

 

To minimise E, several methods such as conjugate gradients, Broyden-Fletcher-Goldfarb-

Shanno (BFGS) and steepest descent exist. In this paper, the steepest descent method is applied, which 

requires the gradients 
ii a

E

w

E








,  and 
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E



  to update the parameters wi, bi and ai for each wavelet.  
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4. SIMULATION of Ni-Cd BATTERY 

The ideal, linear, and Thevenin models of the Ni-Cd battery (Fig. 1) are simulated using 

SIMULINK facility of MATLAB. Also the wavelet network is trained using measurement data and a 

MATLAB subroutine is used for battery simulation. In order to simulate battery characteristics at 

different charge currents, the value of cI  is changed. It should be noted that the wavelet function   has 

been chosen as: 

 

xxxexdx T

x


 2

2
2

,)()(

2

                                                                        (16) 

 

where  is so-called "Mexican hat" and xxx T
2

 

 

 

5. MEASURING ELECTRICAL CHARACTERISTICS of Ni-Cd BATTERY 

In order to train and validate the proposed wavelet network model and to investigate its 

accuracy, an experimental setup consisting of an adjustable current source, a personal computer, an 

interface board and a 7AH Ni-Cd battery is used as shown in Fig. 3. 

The adjustable current source generates the desired current level for battery charging. The 

interface board samples battery voltage during charging time (about one hour) and stores data in the 

personal computer. 

 

 

Battery 

Current Ni-Cd Interface 

Adjustable 

Circuit 
Source 

Computer 

 
 

Figure 3. The experimental setup used to measure battery characteristics. 

 

 

6. COMPARISON of SIMULATED and MEASURED RESULTS 

The ideal, linear and Thevenin models of the Ni-Cd battery are also simulated and compared 

with the proposed wavelet network model as well as measurement. 
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Simulated and measured results are compared for different battery current levels. Comparisons 

of computed and measured results are presented for two reasons: 
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Figure  4. Comparison of simulated and measured battery voltages at charge current cI =3.5 A; (1: 

ideal model, 2: linear model, 3: Thevenin model, 4: proposed model, 5: measured 

characteristics). 
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Figure  5. Comparison of simulated and measured battery voltages at charge current cI =4 A; (1: ideal 

model, 2: linear model, 3: Thevenin model, 4: proposed model, 5: measured characteristics). 
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Figure  6. Comparison of simulated and measured battery voltages at charge current cI =5.25 A; (1: 

ideal model, 2: linear model, 3: Thevenin model, 4: proposed model, 5: measured 

characteristics). 
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Figure  7. Comparison of simulated and measured battery voltages at charge current cI =7 A; (1: ideal 

model, 2: linear model, 3: Thevenin model, 4: proposed model, 5: measured characteristics). 
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Figure  8. Comparison of simulated and measured battery voltages at charge current cI =5 A; (1: ideal 

model, 2: linear model, 3: Thevenin model, 4: proposed model, 5: measured characteristics). 
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Figure  9. Comparison of simulated and measured battery voltages at charge current cI =6 A; (1: ideal 

model, 2: linear model, 3: Thevenin model, 4: proposed model, 5: measured characteristics). 

 

 

1 

2 

3 

5 4 

1 

2 

4 5 

3 



Int. J. Electrochem. Sci., Vol. 7, 2012 

  

10301 

A. To train the proposed wavelet network model at charge currents used for computing battery 

parameters (e.g., 3.5A, 4A, 5.25A and 7A) as shown in Figs. 4 to 7. 

B. To investigate the accuracy of the model at other charge currents (e.g., 5A and 6A) as shown 

in Figs. 8 and 9. 

 

Results show that the conventional models (e.g., ideal, linear, Thevenin) can not accurately 

predict battery characteristics (Figs. 4-9). On the other hand if the proposed wavelet network model is 

used, the computed and measured battery voltages show very good agreements for different levels of 

charge/discharge currents. Similar results were noticed at other charge currents. 

 

 

7. CONCLUSION 

A wavelet network model to simulate the behavior of Ni-Cd batteries is presented. Based on 

the computed and measured results, the following conclusions are made: 

 WN is capable of modeling the nonlinear characteristics of Ni-Cd batteries. It has the 

benefits and advantages of WNs such as high reliability and robustness against system failure. 

 The proposed model not only does not have the restriction of conventional models, but 

also it does not have the limitations associated with traditional ANN or ANFIS based algorithms such 

as convergence to local optimum points, over-fit and/or under-fit problems. 

 Wavelet network battery model is trained using measured characteristics at different 

charge rates. 

 Comparisons of computed and measured results show good agreements and 

demonstrate the high accuracy of the proposed model for a 7AH Ni-Cd battery. 

 The contribution of the proposed model as compared with other battery models for 

Nickel-Cadmium [3-8], Nickel-Hydrogen [9-10], Lithium-Ion [11] and Lead-Acid [2,12-15] batteries 

is the inclusion of the nonlinear electro-chemical characteristics and their dependency on charging 

current which makes the simulation results more accurate. The proposed model can also be used for all 

of battery types. 
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