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Diameters of disk microelectrodes evaluated from steady-state diffusion-controlled currents by use of 

Saito's equation were smaller than geometrical diameters obtained from a scanning electron 

microscope (SEM) when the diameters were less than 4 m. The smallest electrode that could be 

compared had the diameters 0.007 m by the current and 0.11 m by the SEM. With a decrease in the 

electrode, the observed currents were smaller than those predicted from Saito's equation. As a reason 

of the blocking of diffusion, memory diffusion was taken into account. It includes a delay or a 

displacement of the diffusion flux in the Fick's first law. The equation for memory diffusion was 

solved for the hemispherical and the disk electrode to give expressions for the steady-state currents. 

The experimental results allowed us to determine the displacement, 0.9 m, as a blocking parameter.  

 

 

Keywords: diffusion-controlled current at microelectrodes; geometrical diameters; steady-state 

voltammetry; images by SEM; Saito's equation 

 

1. INTRODUCTION 

Geometry and diameter of a disk microelectrode more than 10 m can be measured accurately 

with an optical microscope. When a diameter is less than 2 m, an optical microscope fails to 

distinguish even the location of the electrode [1]. Then the diameter has been evaluated from the 

steady-state diffusion-controlled limiting current, IL, of a redox species [2,10] by use of Saito's 

equation [11], IL = 4Fc*Da, where c* is concentration of the redox species, D is the diffusion 

coefficient, and a is the radius of the electrode. Known values of c*, D and IL allow us to evaluate the 

radius a. Advantages of this technique are not only convenience of the determination of a but also 

provide high accuracy and sensitivity without exploitation of techniques of mounting microelectrodes 
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on an electron microscope. A disadvantage is a loss of information on electrode geometry such as a 

disk, an ellipse or indeterminate form with rough boundaries. However, it has been demonstrated that 

the radius evaluated is close to that of a perfect circle of which area is the same as that of deformed 

electrode [12]. Radii evaluated from voltammetric currents have been reported to be close to the 

geometric radii [3,5,13,18]. 

The theory of the steady-state current at a disk microelectrode mentions that the current density 

is infinite at the edge of the electrode [1,19,20]. Since the current density should be finite in reality, 

Saito's equation is likely to overestimate the total current. In order to respond to this question, we 

compared the diameter of disk electrodes determined by the currents with those by a scanning electron 

microscope (SEM) [1]. The diameters by both methods agreed when they were more than 10 m. 

When diameters ranged from 1 to 4 m, those by the currents from Saito's equation were smaller than 

those by SEM. The underestimation is opposite to effects of surface roughness [21,22]. It can be partly 

explained in terms of partially blocked electrodes [23,25], if electrode surfaces are coated. 

A possible explanation of the underestimation is a limitation of the diffusion law, exemplified 

by memory diffusion in the Fick's first law [1]. The flux in memory diffusion is generated with a delay 

from the formation of concentration gradient. Consequently, currents are observed smaller than the 

conventional values. The parabolic differential equation with the memory effects was first introduced 

to problems of heat conduction [26-30] and then was applied to electrochemical subjects [31]. The 

memory effect is based on the empirical rule that a cause necessarily precedes an effect. The rule has 

been demonstrated to be valid for the precedence of the concentration gradient (a cause) over the 

diffusion flux (an effect) by Monte Carlo simulation [32]. 

We report here the comparison of diameters of disk electrodes by the two methods, focusing 

especially diameters less than 1 m. Microelectrodes exhibiting reproducible voltammograms can be 

fabricated by embedding a thin platinum wire with glass and being polished. SEM images of the 

electrodes less than 1 m exhibit generally vague boundaries between the electrode and glass. Errors 

involved in the SEM images are covered with a number of fabricated electrodes. We derive 

expressions for the diffusion-controlled current at a disk microelectrode with memory effect with the 

use of the model of sluggish charge transfer reaction. 

 

 

 

2. EXPERIMENTAL 

A key of fabricating microelectrodes was to use such a short glass tube that the electrode could 

be mounted in a sample holder of a SEM. Disk electrodes were fabricated through a series of the 

procedures: (i) making an electric contact of 0.03 mm platinum wire to a tungsten wire, (ii) etching 

electrochemically the Pt wire in CaCl2 solution, (iii) shielding the wire with a glass tube by heat, and 

(iv) polishing it under ac-current monitoring [33]. The exposed Pt surface was observed with an optical 

microscope, VH-Z450 (Keyence, Osaka) and a SEM, S-2600H (Hitachi). An electric contact with the 

earth of the SEM instrument was made with carbon tape.  
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The potentiostat, HECS 972 (Huso, Kawasaki), was controlled with a home-made soft-ware. 

The reference electrode was Ag|AgCl (3 M (= mol dm
-3

) NaCl). Voltammetry was carried out in 

deaerated solution in a Faraday cage. 

Ferrocene was purified by sublimation. Solutions used were 0.5 M tetrabutylammonium 

perchlorate in acetonitrile including ca. 1 mM ferrocene. Accurate concentrations of ferrocene were 

determined by the combinational use of voltammetric peak currents at the electrodes 1.6 mm and 0.1 

mm in diameters [34]. This technique was composed of carrying out voltammetry at the two electrodes 

for the potential scan rates, v, in the range from 10 to 100 mM s
-1

, evaluating the proportionality 

constant of the peak current, Ip, vs. v
1/2

 at the 1.6 mm electrode, evaluating the extrapolated limiting 

current, IL, to v
1/2

  0 at the 0.1 mm electrode, and taking the ratio of the (Ipv
-1/2

 )
2
/IL. 

 

 

 

3. THEORY OF STEADY-STATE CURRENT 

3.1 Steady-state currents including delay of diffusion 

Fick's first law mentions that a diffusion flux is caused simultaneously by gradient of 

concentration, c. The flux J in the x-direction is expressed by J(t,x) = -Dc(t,x)/x, where D is the 

diffusion coefficient. Here the occurrence of the gradient is a cause, whereas the flux is an effect. 

According to the empirical rule that a cause necessarily precedes an effect, the flux should be delayed 

from the occurrence of the gradient. Therefore, a reasonable relation includes a delay of the flux by : 

 

              (1) 

 

The expression same as Eq. (1) has already been obtained in the field of heat conduction [28-

30]. Expressing Eq. (1) by the Taylor expansion and taking the first two terms, we have 

 

      (2) 

 

 

When the flux is eliminated from Eq. (2) with the equation of continuum, c/t=-J/x, we 

obtain the Fick's second law with memory effects, c/t + (2
c/t

2
) = D(

2
c/x

2
). Solutions of this 

equation with chronoamperometric conditions have been obtained [35] to exhibit the behavior similar 

to the delay by electrode kinetics. When the initial condition is a delta function for c(x), the Laplace 

transformed solution has been derived in analytical form [1]. The average of the square distance by 

diffusion is expressed by[1] 

 

              (3) 
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Here,  = (2D)1/2
 is a diffusion distance caused by the delay, . The term, J/t, in Eq. (2) is 

rewritten as (J/r)(r/t) for a distance r of the polar coordinate. Since (r/t) at a short time and a 

short distance is close to  /, the second term in Eq. (2) becomes approximately (J/r). Therefore, 

the Fick's first law with memory under the steady state is given by 

 

                 (4) 

 

 

3.2 Hemi-spherical electrodes 

The electrochemical reaction considered here is one-electron oxidation at the hemi-spherical 

electrode a in radius. The current is assumed to be controlled by hemi-spherical diffusion under the 

steady state. By letting r be the axial coordinate from the center of the sphere, the equation of 

continuum under the steady-state is expressed by d(r
2
J)/dr = 0. This yields J = Ar

-2
, where A is an 

integration constant. Inserting this relation into Eq. (4) and integrating dc/dr under the conditions of 

c(a) = 0, c() = c*, we have A = -c*Da
2
/(a+). Then the flux is expressed by 

 

                    (5) 

 

 

Since J(a)/c* stands for the transport velocity of the reduced species through the diffusion 

layer, the inverse, 

 

                 (6) 

 

 

means the time traversing the diffusion layer. The traversing time is a sum of the time (a/D) 

without the memory and the electrode-independent time /D. The simple sum of the times reminds us 

of similarity to a delay by the electrode kinetics, i.e. a sum of the diffusion time and the kinetic time. 

In order to find the similarity to the electrode kinetics, we consider the irreversible oxidation 

with the one-electron oxidation when diffusion includes no memory effect. The flux which is 

controlled by the forward reaction rate constant, kf, is given by 

 

                          (7) 

 

Inserting the solution of the equation of continuum, J = Ar
-2

, into the Fick's first law, J = -

D(dc/dr), and integrating the resulting equation under the condition c() = c*, we obtain c(r) = c* 

+A/Dr. Inserting this equation J = -D(dc/dr) and eliminating A, we obtain c(r) = c* + J(r)r/D. Setting r 

= a and eliminating c(a) by use of Eq.(7) gives 

 

)()( f ackaJ 
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                  (8) 

 

Comparison of Eq. (8) with Eq. (6) yields the equivalence, kf = D/, indicating a similarity of 

the memory-diffusion current to the partially charge transfer controlled current. The memory diffusion 

is discriminated against the electrode kinetics in the point that it has no potential dependence. 

We denote the geometrical radius as asem, and the electrochemically evaluated radius as acv. 

The total current for the former is given by 2asem
2
J(asem) = -c*Dasem

2
/(asem+) through Eq. (5), 

whereas that for the latter is -c*Dacv because of  = 0. Since the both fluxes are equal, we have 

asem
2
/(asem +  ) = acv. The inverse form is given by 

 

                       (9) 

 

This predicts that plot of asem/acv against 1/asem falls a line with an intercept with unity. The 

slope yields a value of . 

 

3.3 Disk microelectrodes 

We apply the replacement kf = D/ to the expression for the kinetic steady-state current at the 

disk microelectrode a in radius. The steady-state current, I, of the Butler-Volmer type at any potential, 

E, is given by 36  

 

                         (10) 

 

Where 

 

 

                          (11) 

     

 

Here, kb is the backward rate constant, and Eo' is the formal potential. The auxiliary variable, f1, 

for , satisfies the following equation at an extremely large integer N and integers k (from 1 to N) 

 

 

 (12) 

 

 

Equation (12) is a simultaneous equation with fk variables. Analytical expressions for f1 at N=1 

and 2are given by respectively 
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The variable f1 in Eq. (10) corresponds to (f1)N. Curves of (f1)N vs.  were obtained for N = 1, 

2,... by solving N-simultaneous equation (12) by use of the Gauss-Jordan method until they were 

convergent. Values of (f1)N were converged for N > 50 within 1 % errors.  
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Figure 1. Variation of the normalized steady-state current complicated with electrode kinetics with the 

logarithm of the kinetic parameter, , obtained from Eq. (10) and (12). The dashed line is its 

logarithmic plot. 

 

Figure 1 shows the variation of I/IL with log . Since log  for kb = 0 corresponds to the 

electrode potential, the curve in Fig.1 is equivalent to the current voltage curve. The plot of log(I/(IL – 

I)) against log  falls on a line , represented empirically by 

 

                    (13) 

 

When the forward and the backward rate constants are replaced by D/ and zero, respectively, 

we obtain the expression for the diffusion-controlled limiting current with memory: 

 

 

                 (14) 

 

 

On the other hand, the current for acv is defined by 

 

I = 4Fc*Dacv                            (15) 

Eliminating I from Eq. (14) and (15) yields  
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or 

 

  (16) 

 

 

Plot of log(asem/acv – 1) against log(asem) should show a line with slope of -1. The intercept 

allows us to evaluate  . 

 

 

 

4. RESULTS AND DISCUSSION 
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Figure 2. Cyclic voltammograms of 1.36 mM ferrocene in 0.5 M tetrabutylammonium perchlorate + 

acetonitrile at the glass-coated platinum electrode with acv = 117 nm for the scan rate, 10 mV s
-

1
. 

 

Cyclic voltammetry of ferrocene in 0.5 M tetrabutylammonium perchlorate of acetonitrile 

solution was made at the fabricated disk microelectrodes, where concentrations of ferrocene were 

determined by the method of two electrodes. The voltammograms had little hysteresis, as is shown in 

Fig. 2. The difference of halfwave potentials of the forward and the backward waves were less than 7 

mV. Voltammograms with halfwave potential differences over 15 mV were not used for the data 

analysis. They did not vary with iterative scans at least 10 times. The limiting currents were invariant 

to scan rates less than 50 mV s
-1

. Currents, I(E), at potentials E  less than the limiting current domain 
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were plotted in the form of log[I(E)/(IL - I(E))] vs. E for 0.05 < I/IL < 0.95. They fell on a line, the 

inverse slope of which was (61  3) mV. This fact suggests one-electron reversible oxidation.  

We evaluated the diffusion coefficient of ferrocene in acetonitrile from the proportional 

constant of the peak current at the electrode 1.6 mm in diameter to v
1/2

 for a known concentration of 

ferrocene. We obtained D = 2.0010
-5

 cm
2
 s

-1
. Values of acv were determined by Eq. (15) (Saito' 

equation) with the help of known values of c* and D.  Figure 3 shows variation of the halfwave 

potentials, E1/2, with logarithm of the radii. The independence of halfwave potentials from the radii 

indicates that the current-potential curves should obey the Nernst equation even at the smallest 

electrode, acv = 3 nm.  
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Figure 3. Variation of the halfwave potentials with logarithms of the radii, determined by the limiting 

currents through Saito's equation. 

 

The electrode was mounted on the optical microscope in order to search a location of Pt on the 

glass surface. The surface of Pt looked a bright dot, depending on directions of incident light. This 

direction-depending reflection light was an identification of the Pt surface against the glass surface. In 

contrast, a SEM image had a black domain surrounded with the glass (white), at the center of which a 

gray spot could be seen, as shown in Fig. 4. Comparing the geometry and the diameter of the gray spot 

with the image by the optical microscope, we identified the gray spot as the exposed platinum. Since 

the polished surface is composed of only two domains of glass and platinum, the appearance of the 

three (white, black and gray) domains seems to be unreasonable. We confirmed from SEM images of a 

boundary between glass and platinum of a large electrode that the black domain always appeared 

around the boundary on the glass side.  
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Figure 4. Photograph of SEM of the glass-coated platinum electrode ca. 0.7 m in diameter, which 

was found at the center of the black domain as a gray spot. 
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Figure 5. Logarithmic plots of the radii evaluated from CV and SEM. The solid line is for acv = asem. 

The dashed curve was obtained from Eq. (16) for  = 0.88 m. 

 

The concept of observing the three domains has been described on the basis of the theory for 

scattering electrons [1]. The black domain was helpful for finding a location of the platinum surface 

against bubbles, flaws or alumina of polish on the glass surface. Coordinate points of the boundary of 
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the gray spot were read on each SEM image. They were analyzed with the least-square method for a 

circle to yield a radius. The radii varied slightly with magnification and accelerating voltage of the 

SEM. We obtained several values of radii for one electrode, and took average.  

Figure 5 shows the logarithmic variation of acv with asem, together with errors (standard 

deviations) of asem. It also shows the line of acv = asem. Values of acv were the same as those of asem for 

diameters more than 10 m. When diameters were smaller than 4 m, we obtained acv < asem. For the 

smallest electrode, 2asem = 0.11 m, we evaluated only the 6 % diameter (2acv = 0.007 m) from the 

current. The variation in Fig. 5 presents a problem of using the method of determining diameters less 

than 4 m by Saito's equation.  

As the electrode becomes small, the geometry of the surface deviated from a circle, as can be 

seen by the error bars ion Fig. 5. The diffusion-controlled current at an elliptic electrode is very close 

to that at a disk electrode of which area is the same as the elliptic electrode [12]. Therefore the errors in 

the radius in Fig. 5 have few effects on the current values or acv.  
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Figure 6. Variation of asem/acv with 1/asem on the assumption of a hemispherical electrode. 

 

In order to analyze the relation between acv and asem in Fig. 5, we first regard the fabricated 

electrodes as hemispheres. By use of Eq. (9) which is valid for hemispherical electrodes, values of 

asem/acv are plotted against 1/asem for asem > 3.3 m in Fig. 6. Plots fell on a line with the intercept of 

unity. The slope gives  = 0.85 m. A reason for selecting the data points to asem > 3.3 m is to 

eliminate scattering of the plot for ambiguity of asem. 
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Figure 7. logarithmic plot of asem/acv - 1 against asem on the assumption of a disk electrode. The slope 

of the line is -0.952. 

 

Another plot is of Eq. (15) for disk microelectrodes. Figure 7 shows plots of log(asem/acv) 

against log(asem). The value of the slope should be -0.952, according to Eq. (15). Although the slope by 

the least-square was -1.0, we drew compulsively a line with slope -0.952 by use of least-square. The 

intercept value gives  = 0.88 m, which is close to the value (0.85) at the hemisphere model. Values 

of acv and asem were calculated from Eq. (16) for  = 0.88 m, and are plotted in Fig. 5. They fell 

among the experimental values.  

A question is why some researchers reported consistent values of the radii evaluated from 

Saito's equation with those by SEM [6-10,14,18]. Since their electrodes have been used for tips of a 

scanning electrochemical microscope, the electrode takes a conical or tapered form, of which side is 

coated with a thin film. Consequently, the steady-state currents ought to be larger than values predicted 

from Saito's equation, yielding values close to asem. Then, the current should be evaluated from the 

equation developed by Ciani and Daniele[4].  

The derivation of Eq. (5) at the hemisphere and Eq. (14) at the disk electrode has been based on 

the delay of the flux by the displacement, . The delay may occur in other processes than memory 

diffusion, exemplified by two-dimensional diffusion on an electrode surface before the redox molecule 

reaches an active site, and blocking effects such as at partially coated electrodes. A key of the 

displacement is the potential-independence of the reaction, which can be discriminated against 

heterogeneous kinetics. Therefore, the deviation is observed at any potential even at the potential 

domain of limiting currents. 
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5. CONCLUSIONS 

Diameters of disk-inlaid microelectrodes over 10 m evaluated from diffusion-controlled 

voltammetric currents with Saito's equation are identical to the geometrical diameters. The relation, acv 

< asem, is recognized when diameters are less than 4 m. The inequality becomes striking with a 

decrease in diameters. This variation is valid for a disk-exposed electrode flush on a large insulator 

wall. It is invalid for microelectrodes with tip type for a scanning electrochemical microscope, because 

the volume of the diffusion layer for the tip type is larger than the hemispherical volume. The variable 

relating acv with asem is the distance  (= 0.9 m), through which Eq. (16) satisfies the experimental 

data. Although Eq. (16) was derived on the basis of memory diffusion, any type of delays is 

conceivable. 
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