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The dynamic behavior and control of a tubular solid oxide fuel cell will be studied in this paper. The 

effect of fuel/air temperature and pressure will be investigated. Controlling the average stack 

temperature is the final objective of this study due to a high operating temperature of the system. In 

this case, temperature fluctuation induces thermal stress in the electrodes and electrolyte ceramics; 

therefore, the cell temperature distribution should be kept as constant as possible. A mathematical 

modeling based on first principles is developed. The fuel cell is divided into five subsystems and the 

factors such as mass/energy/momentum transfer, diffusion through porous media, electrochemical 

reactions, and polarization losses inside the subsystems are presented. Dynamic fuel-cell-tube 

temperature responses of the cell to step changes in conditions of the feed streams will be presented. A 

neural network predictive controller (NNPC) is then implemented to control the cell-tube temperature 

through manipulation of the temperature of the inlet air stream. The results show that the control 

system can successfully reject unmeasured step changes (disturbances) in the load resistance. 

 

 

Keywords: ammonia fuel, neural network predictive control, SOFC, cell-tube temperature. 

 

 

 

1. INTRODUCTION 

Solid oxide fuel cells (SOFCs) have shown promise in the electricity generating sector for 

stationary applications in the mid-term future. This is due to the fact that the energy efficiency usually 

achieved in a SOFC is much greater than that obtained from conventional heat engines or any other 

types of fuel cells. SOFCs offer high power density, low cost, scalability, fuel flexibility, and superior 

durability. Although much experimental work has been done on ammonia-fuelled solid oxide fuel cells 

(NH3-SOFCs) [2; 9-11; 17; 24], only few research studies are available on mathematical modeling of 

the NH3-SOFC [12-15].  Also the experimental data reported in the literature doesn’t give full details 
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of the design parameters such as fuel cell lengths, diameters, etc. As a result, it is not easy to validate 

experimental results by means of mathematical modeling.  Thus model validation is first performed 

using H2-SOFCs before performing a full simulation on NH3-SOFCs [15]. 

Besides working on fuel cell modeling, several well established Model Predictive Control 

(MPC) methods are available in the literature [5-7; 23; 26-28; 32]. MPC is a powerful modern process 

control methodology. Wu et al. [25] used a predictive controller based on a T–S fuzzy model to 

maintain the stack temperature. Vijay et al. [22] proposed a predictive controller based on a bond 

graph SOFC model. The control objective was achieved by adjusting four air and fuel inlet and outlet 

valves. It was observed that the control objectives involving the constrains on the fuel utilization, air 

utilization, the cell operating temperature and the anode and cathode pressure could control by the 

proposed control system. Li et al. [8] proposed a nonlinear MPC methodology based on genetic 

optimization to keep the fuel cell voltage and fuel utilization at desired values. Their model was a 

simple nonlinear model mainly representing the electrochemical process. They showed that in the 

presence of a +13% load change, the closed-loop performance was satisfactory. 

In this work, the objective is to control the fuel cell temperature using a neural network 

predictive control (NNPC) that manipulates the inlet air flow temperature. Such a control study for 

SOFCs has not been reported in the literature. Our previous model [4] is used for the controller design. 

 

 

 

2. MODEL DESCRIPTION  

The mathematical model used in this study was adapted from a model reported earlier [4].  The 

SOFC system under study here is a bank of single tubular SOFCs. Each cell has two tubes, an outer 

and an inner tube, as shown in Fig. 1. The outer one is a cell tube. The outer surface of the outer tube is 

the anodic side of the cell and its inner surface is the cathodic side. Between the anodic and cathodic 

sides (surfaces) lies the solid oxide electrolyte. The inner tube is an air injection tube and composed of 

alumina, from which preheated air is injected into the bottom of the cell tube and flows over the 

cathode surface through the gap between the injection tube and the cell tube. Fuel gas flows over the 

anode surface through the gap among the cell tubes.  

 

 

Figure 1.  Division of the single tubular SOFC into five subsystems. 

 

To develop a first-principles model of the SOFC system, a single tubular fuel cell is considered 

and divided into five subsystems (see Fig. 1): 
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• Subsystem 1 (SS1): air inside the injection tube; 

• Subsystem 2 (SS2): solid injection tube; 

• Subsystem 3 (SS3): air inside the space between the cell and injection tubes; 

• Subsystem 4 (SS4): cell tube; and 

• Subsystem 5 (SS5): fuel flow channel. 

The fuel cell model is derived by writing mass, energy and/or momentum conservation 

equations for each of the five subsystems. Tables 1 and 2 present the parameters used in the simulation 

and operating conditions, respectively. The assumption considered in the mathematical formulation is 

that the gas boundary layers are very small relative to the corresponding radius; therefore, the 

equations governing the diffusion processes are written in Cartesian coordinates. Fluid velocities, 

temperatures and pressures are averaged along the radial direction. Specific properties such as 

conductivities, heat capacities, viscosities and densities in each subsystem are also uniform. 

Furthermore, output partial pressures, temperatures and velocities are equal to the pressures, 

temperatures and velocities inside the subsystem. The external load (load impedance) of the cell is a 

pure resistance.  

 

Table 1. Parameters used in simulation. 

 

Parameter Value Reference 

Aano 1.5×10
-4

 m
2
  

rcto 1.2×10
-3

 m [20] 

rcti 1.1×10
-3

 m [20] 

rito 7.5×10
-4

 m [20] 

riti 7×10
-4 

m [20] 

L 2.5×10
-1

 m [20] 

mct 4.317×10
-2

 kg  

mit 8.735×10
-3

 kg  

Cct 3×10
-1

 [29] 

Rtct 9×10
-1

 [29] 

Rto 1×10
-1

 [29] 

zr 3.325×10
12

 [29] 

Er 1.962×10
5
 [29] 

ctpC  7.4×10
-1

 [29] 

itpC  0.9768 + 0.000241×Tit  kJ/(kg K) [29] 

εcat 4×10
-1

 [20] 

τcat 5 [20] 

εano 4×10
-1

 [20] 

τano 5 [20] 

∆ano 5×10
-5

 [20] 

∆cat 1.3×10
-4

 [20] 

anoactE  
1.1×10

5
 [29] 

catactE  
1.2×10

5
 [29] 
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Table 2. Operating Conditions of the NH3-SOFC model 

 

Parameter Value Reference 

   

Rload 4 Ω [4] 

in

ano

fuelP  
1 atm [20] 

in

ano

fuelT
 

1023 [20] 

in

ano

fuelu
 

6.42 m/s  

3in

ano

NH
 

0.939 [13] 

2in

ano

H  
0.03 [13] 

2in

ano

N  
0.001 [13] 

2 in

ano

H O
 

0.03 [13] 

2in

ano

O  

0.2333 [13] 

in

inj

airP
 

1 atm [20] 

in

inj

airT
 

1173 K [20] 

in

inj

airu
 

450 m/s  

 

The mass/momentum and energy balance inside SS1, SS3 and SS5 are given as follows, 

respectively: 

 

2

2 2

0

i id r Lj j i i i i i i iL u u N M nr
j j j j j j j j jdt r rin in

i

 
   

 
 
    
 
 
         (1) 

 
* *( ) 2 2( ) ( )

R Td u i i R T
i i in in i iL u u

i i i idt M Min in i i

 
    

      (2) 

 

 
( ) 2

i id H Lhj j i i i i i i iwL u H u H T Tw jj j j jt rj in in jin


    


      (3) 

 

where i is air flow injection tube, air flow inside cathode side, fuel flow inside anode side, j is 

air, oxygen, nitrogen, ammonia, hydrogen, w is the wall,  Nj is mass transfer by means of diffusion, n 

is the molar number and rj is producing or consuming of the components.  

This model assumes that the pressure drop caused by the pipe resistance over the distance L is 

negligible. It is also assumed that energy is transferred to the flow streams by convection only. 
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Enthalpy of formation, heat capacities, viscosities, and conductivities of the components of air and the 

fuel are given in a previous work [4]. 

Energy balance for the solid parts (SS2 and SS4) leads to: 

 

3 3

2
2 4 4 2 ( ) 2

2 2

0

2 0.001
NH

r L
dT rL i is im C T T rLh T T rLh T T H N

s p w j w j w w j w j jdt R r rs rad
i

r LR H V I
ct NH R out

o

 
 

 
 

               
     

 
 

 

   (4) 

 

The last three parts are heating transfer by means of diffusion, heating consuming by ammonia 

decomposition and heating supply by electrochemical reaction, respectively only in SS4.  

Electrochemical reaction occurs inside the fuel cell at the triple phase boundary (TPB), which 

as a result produces voltage and current. At the cathodic side oxygen ions (with a negative charge) 

migrate through the crystal lattice. H2 in the fuel stream diffuses into the anodic side and reacts at the 

TPB with oxide ions (O
2-

) from the electrolyte to produce water. The electrons pass outside the fuel 

cell, through the load, and back to the cathode, where oxygen from the air receives the electrons and is 

converted to oxide ions, which are then injected into the electrolyte. The SOFC electrochemical 

reactions that occur inside the TPB are [33]: 

 

 

 

 

 2-

2  Re ( ) 4 2Cathodic Side action O g e O   

 

The Nernst potential for these reactions is given by: 

 

2 2

2 2

2

1/2

0
( )

ln
2

TPB TPB

H OJ ct
H H TPB

H O

P PR T
E E

F P

 
   

           

(5) 

 

However, the actual cell voltage (E) is less than its theoretical open circuit voltage because it is 

strongly affected by several irreversible losses including activation losses due to irreversibility of 

electrochemical reactions at the three-phase boundary (TPB), concentration losses due to mass 

transport resistance in the electrodes (especially for thick anodes as in an anodic-supported SOFC) and 

ohmic losses due to ionic and electronic charge transfer resistances. Actual voltage is thus given by: 

 

2 2 2 2 2H H O OH act conc act conc ohmE E                  (6) 

 

The activation polarizations are the result of the kinetics involved with the electrochemical 

reactions. It becomes an important loss when the current is low, because at low currents the reactants 

 2-

2 2  Re 2Anodic Side action H O H O e  



Int. J. Electrochem. Sci., Vol. 7, 2012 

  

3742 

must overcome an energy barrier named activation energy (Eact) to drive the electrochemical reactions 

at the electrode-electrolyte interface and this barrier leads to the polarization. The activation barrier is 

the result of many complex electrochemical reaction steps where, typically, the rate-limiting step is 

responsible for the polarization. One can account for the anodic and cathodic activation polarizations 

using the Butler-Volmer correlation [30]: 

 

1

0

sinh
2ano

ano

J ct
act

R T I

F I
 

 
  

 
           

(7)

 

 

1

0

sinh
2cat

cat

J ct
act

R T I

F I
 

 
  

 
 

         (8) 

 

where I0ano and I0cat are the anodic and cathodic exchange currents, respectively, which are 

given by (Campanari and Iora, 2004): 

 

 
2

9

0 14 10 exp ano

ano o

actTPB

ct H

kJ ct

E
I r L P

R T


 
   

          

(9) 

 

 
2

1/4
9

0 14 10 exp cat

cat i

actTPB

ct O

kJ ct

E
I r L P

R T


 
   

          

(10)

 

 

Concentration losses are those associated with concentration variation of the critical species 

due to mass transport processes. There are usually two sources of losses that are due to mass transport: 

(i) diffusion between the bulk phase and cell surfaces, and (ii) transport of reactants and products 

through electrodes. Therefore, the concentration polarization is highly dependent on the gases used, as 

well as the distance through which the gases must diffuse. Pore volume percentage, as well as 

diffusion length, can be varied to optimize these properties. For similar geometries, cathodic 

concentrations are much larger than anodic concentrations, because of the lower diffusivities of O2/N2 

in the cathode than H2/H2O in the anode. The anodic and cathodic concentration losses can be 

calculated respectively as follows [3]:

  

2 2

2

2 2

ln
2H

TPB

H H OJ ct
conc TPB

H H O

P PR T

F P P


 
  

 
 

         (11) 

 

2

2

2

ln
4O

OJ ct
conc TPB

O

PR T

F P


 
  

 
           

(12) 
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An approximate equivalent circuit of an SOFC that consists of two internal resistances and one 

internal capacitance can be found in another work [18]. According to the equivalent circuit 

approximation, the cell output voltage is governed by 

 

1 1 1 1tl
tl

tct ct ct tct to load

dV
E V

dt R C C R R R

   
     

           (13) 

 

load
out tl

to load

R
V V

R R

 
  

 
 

 

1
tl

to load

I V
R R

 
  

 
 

 

where Rto is the total ohmic resistance in the inherent impedance of the cell, Rtct is the total 

charge transfer resistance of the cell, Cct is the charge transfer capacitance of the cell, I is the current 

through the external resistive load, Vout is the fuel cell output voltage (voltage across the external load) 

and Vtl is the voltage across the total ohmic resistance and the load resistance in series. 

 The thermal decomposition of ammonia for hydrogen production in the porous anode is 

solved using the chemical model described as follows. NH3 thermal decomposition takes place on the 

anode surface (fuel) channel (SS4) as this process is favored at high temperatures. In the present study, 

it is considered that thermal decomposition can take place in the composite anode of the SOFC with 

typical catalyst (Ni) loading [14]: 

 

3 3
exp r

NH r NH

kj ct

E
r z P

R T

 
  

 
            (14) 

 

where PNH3 is the partial pressure of NH3. It is considered that the reaction rate is mainly 

dependent on the partial pressure of NH3 and the operating temperature. It is assumed here that NH3, 

H2O and N2 diffuse into the anode at a negligible rate; only H2 gas diffuses into the anode (subsystem 

4) 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Model validation 

Simulation was done to compare the results with the experimental data of Singhal [20]. In this 

simulation, the values of fuel and airflow rates were adjusted to match the values of factors given by 

Singhal [20]. The current–potential plot obtained from this simulation was compared with the 

experimental data and the predictions from the model developed by Ota and co-workers [16], as shown 
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in Fig. 2. Excellent agreement was obtained in the low current density region in comparison to the 

model developed by Ota et al.[16], which actually showed some deviation from experimental results. 

After validating the mathematical model developed in this work with experimental results of Singhal 

[20] for H2-SOFC, the model was improved to account for NH3-SOFC.   

 

 

Figure 2. Comparison of current–potential plots from the present model, model from Ota et al. (2003) 

and the experimental data available in the literature (Singhal, 2000). 

 

3.2. Open-loop Dynamic Cell Responses 

The dynamic model of the SOFC system derived in the previous section has 20 first order 

ordinary differential equations, which are integrated numerically using MATLAB. Figure 3 and 4 

depict the dynamic responses of the fuel cell to step changes of +5% in the temperature, pressure, and 

velocity of the inlet fuel and air stream respectively at time t= 100 s.  The results of simulation indicate 

that the transient response of the SOFC is mainly controlled by the temperature dynamics. Simulation 

results also show that the temperature and pressure of the inlet air stream and the temperature of the 

inlet fuel stream strongly affect the fuel cell system. They also indicate that temperature of the inlet air 

stream has the strongest effect on the cell performance, and effects of the inlet air and fuel velocities 

on the cell response are weaker than those of inlet feed pressures and temperatures. 
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Figure 3. Open-loop responses of the SOFC to step changes of +5% in the inlet fuel stream 

 

Time (S)

0 200 400 600

T
c

t 
(K

)

1050

1060

1070

1080

1090

1100

Pair steps from 1 to 1.05 atm

uair steps from 450 to 472 m/s

Tair steps from 1173 to 1231 K

 
 

Figure 4. Open-loop responses of the SOFC to step changes of +5% in the inlet air stream 

 

 

 

4. NEURAL NETWORK PREDICTIVE CONROL OF THE SOFC SYSTEM 

A SOFC has a problem with regard to the durability of the ceramics used as its cell materials, 

because its operating temperature is very high, and its cell temperature fluctuation induces thermal 
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stress in the ceramics. Therefore, the cell temperature distribution should be kept as constant as 

possible. In this case, NNPC is used to predict future plant responses to control signals.  

The first step in model predictive control is to establish the neural network plant model and 

prepare a neural network to characterize the forward dynamics of the plant. The estimated error 

between the plant output and the neural network output is employed as the neural network training 

signal. The neural network plant model uses earlier inputs and preceding plant outputs to estimate 

future values of the plant output. 

The controller then estimates the input parameter that will optimize plant performance over a 

precise imminent time horizon [21].  

 

      
2

1

2 2

1

, ( ) ( ) ( 1)
uMM

r m

L M L

J k u k k L k L u k L  
 

           (7) 

 

where signals ∝r(k+L), ∝m(k+L),u(k+j)are the j-step predictions of the process output, the 

reference course and the control input, respectively.  M1 is the minimum costing scope, M2 is the 

prediction scope (maximum costing scope), and Mu is the control scope and defines the horizons over 

which the tracking error and the control increments are determined. The u variable is the provisional 

control signal, ∝r is the desired reaction, and ∝m is the network model reaction. The parameter γ 

represents the weight of the control signal. 

At each sampling stage, only the first control signal of the estimated sequence is applied to the 

controlled process. At the next sampling time the method is repeated. This is known as the receding 

horizon concept. 

The controller consists of the plant model and the optimization block. Eq. (7) is used in a 

particular sequence with the input and output constraints [22]: 

 

umin≤ u ≤ umax 

 

∆umin≤ ∆u ≤∆ umax 

 
∝min ≤ y ≤ ymax 

 

∆∝min ≤ ∆y ≤∆ ymax 

 

The ability to deal with constraints is one of the key properties of MBPC and also results in its 

spread, use, and popularity in industry. MBPC algorithms are known to be very versatile and robust in 

process control applications. This neural network model has three layers, input, hidden and output. In 

off-line training of the neural network, 10,000 input and output vector sets are generated, using the 

neural network predictive control Matlab toolbax. A total of 8000 of these are used as a learning set, 

while others are used as a testing set. The training process is completed in approximately1,100,000 

iterations. The error at the end of the learning is 0.0072135 for the training set. After finishing the 

training the next process is implementing these data in the  neural network predictive control.  
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For ensuring good performance of the NNPC, the tuning parameters must be at an appropriate 

level. Although the parameters are tuned as per the recommendation of Shridhar and Cooper [19] 

initially the exact values are fine tuned based on actual control performance. In addition to the 

selection of controller tuning parameters, appropriate values are chosen for input/output variable 

constraints and these are imposed on loops based on practical experience. The tuned variables for 

NNPC are listed in Table 3.  The values of the upper and lower limits of the constraints for  1110 K ≤ 

Tair ≤ 1250 K and for the cell tube-temperature can be specified as 1000 K (minimum) and 1100 

(maximum), respectively, while an output variables weight of 1 is used along with the manipulated 

variables weight of 0.1. The control system has a sampling time of 15 sec. 

 

Table 3. Tuning parameters of NNPC 

 

 

Tuning parameters 

 

NNPC 

Control interval (time units) 2 

Prediction horizon (intervals) 5 

Control horizon (intervals) 1 

 

4.1. Closed-loop simulation result 

Time (S)

500 1000 1500 2000 2500 3000 3500

T
c

t 
(K

)

1040

1045

1050

1055

1060

1065

Tct 

Setpoint

 
 

Figure 5. The performance of the NNPC in tracking series of set-point change in Tct. 

 

MPC refers to a class of control algorithms in which a dynamic model of the plant is used to 

predict and optimize the future behavior of the process. The basic control strategy of the MPC is to 

select a set of future control horizons and minimize a cost function based on the desired output 
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trajectory over a prediction horizon with a chosen length. To select the manipulated input that has the 

strongest effects (in terms of dimensionless steady-state gain) on the controlled output, the open-loop 

analysis suggests that the cell tube temperature can be paired with the air inlet temperature.  Figure 5 

shows the performance of the NNPC in tracking the series of setpoint changes for Tct. The efficiency 

of the NNPC technique is demonstrated by the fact that the cell tube-temperature is driven to the 

trajectory rapidly and evenly. The controller responses show that the cell tube-temperature attains the 

required temperature set-points without fluctuation and seldom overshoots. Therefore, the NNPC is 

competent in controlling the SOFC cell tube-temperature. Furthermore, Fig. 6 demonstrates that the 

inlet air flow temperature control sequence for the aforementioned dynamic responses varies evenly. 

For example, the maximum value of inlet air flow temperature increase is lower than 1250 K. 
 

Time (sec)

0 1000 2000 3000

T
a

ir

1080

1100

1120

1140

1160

1180

1200

1220

1240

1260

 
 

Figure 6. Manipulated variable profile corresponding to Figure 5. 

 

 

 

4. CONCLUSION 

A dynamic model of a tubular solid oxide fuel cell (SOFC) was presented. Simulation results 

indicate that temperature of the inlet air stream has the strongest effect on the cell performance. The 

cell-tube temperature was regulated effectively using a NNPC that manipulates the temperature of the 

inlet air stream. The performance of the control system was determined to be satisfactory to reject the 

unmeasured disturbances. 
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