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QSAR studies on the inhibition corrosion efficiencies of twenty three organic compounds on steel 

surface in hydrochloric acid solutions using several physicochemical descriptors and investigation of 

the adsorption of these compounds on the steel surface by Monte Carlo simulation method were 

studied. Topological indices as well as several structural descriptors are used in the development of 

quantitative structure-activity relationships (QSARs) using genetic function approximation statistical 

analysis method. From our studies it is clear that quantum descriptors are a better choice when 

predictivity is the main issue. Among the descriptors with major contribution we should point out that 

lowest unoccupied molecular orbital energy (ELUMO) and molecular volume are important predictive 

descriptors. Computational studies have been used to find the most stable adsorption sites for 

tributlyamine inhibitor on steel surface. 
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1. INTRODUCTION 

Despite the intense empirical searches for new commercial inhibitors, few articles address 

chemometric analysis of the inhibition corrosion efficiencies. Such a procedure represents a challenge 

to the application of regular structure-activity chemometric thinking applied in biological fields, since 

the physical adsorption is nonspecific, in opposition to the key-lock mechanism found in molecular 

biology [1]. Although under such circumstance we should expect lower statistical correlations than 

those found on biological studies, early corrosion studies, on the contrary, showed several successful 

results [2-6] correlating small number of inhibitors and quantum descriptors. 

http://www.electrochemsci.org/
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Early attempts were made in the mid-fifties employing Huckel calculations. For a large number 

of molecules, Bergman [7] obtained excellent correlations between standard reduction potentials with 

the LUMO and HOMO energies. During the 1960s, Donahue and Vosta [8,9] employed an ab initio 

calculations to establish certain correlations. Vosta [9] and collaborators considered the correlation of 

eight gamma-substituted pyridine N-oxides with several ab initio quantum descriptors. Growcock et al 

[10], studied a general multivariate analysis for chemisorption and corrosion inhibition. They used 

such physicochemical descriptors as HOMO and LUMO energies, logP , Hammett and Tafel 

constants, in an investigation of the inhibition of corrosion of mild steel by derivatives of 

cinnamaldehyde. This was the first work to recognize the importance of the Langmuir constant for 

obtaining the best linear relationships. Using the CNDO/2 methodology, Abdul-Ahad [11] extended 

this work to aniline derivatives. Dupin et al [12], carried out an important study with a large set of 

corrosion inhibitors. The corrosion inhibition by forty-two compounds, including aliphatic amines, 

imidazolines and related compounds was correlated with some Hansch and Free-Willson parameters. 

In this study, many non-linear descriptors were tested. Sastri et al [13], in a set of univariate 

experiments, correlated the inhibition efficiencies of several methyl substituted pyridines and 

substituted ethane derivatives with MNDO descriptors. In the mid- 1990s, Kutej et al [14], studied 

dibenzyl sulfoxide adsorption on iron using ab initio calculations to identify the attachment points of 

the corrosion inhibitors on the iron surface. Öğretir et al [15] employed several semi-emprical 

descriptors in attempts to correlate the efficiency of pyridine-based inhibitors for mild steel. Several 

descriptors showed excellent univariate correlations. However, Sastri et al [13], did not use 

multivariate methods. A related article [16], was concerned with the corrosion inhibition of imidazole 

derivatives for iron exposed to acidic media. 

Lukovits et al [2], used a polynomial regression analysis for the Langmuir adsorption constant 

for seven thiourea derivatives and obtained acceptable correlation values. Bentiss et al [6], correlated 

inhibition corrosion efficiencies, determined through charge transfer resistance, of triazole and 

oxadiazole derivatives, with AM1 quantum descriptors: correlation coefficient values of 0.91-0.96 

were obtained. Khalil [17] extended this study and correlated the inhibition by several 

thiosemicarbazone and thiosemicarbazide derivatives with five quantum MNDO/PM3 descriptors. All 

these previous studies were conducted on carbon steel.  

This work is part of our continuous effort [18-22] aiming the efficient prediction of corrosion 

inhibition efficiencies from the molecular properties based on the QSAR (Quantitative Structure and 

Activity Relationship) methodology. Although it is possible to recognize, in the literature, many 

articles and authors employing common-sense descriptors (HOMO/LUMO energies, the energy gap, 

the dipole moment, polarizability and others), it is clear that remains a lack of studies searching for 

efficient quantum and group contribution molecular descriptors for general use in inhibition corrosion 

prediction. Once defined, these variables could be used to calculate corrosion efficiencies as well as 

being useful in a general methodology to generate molecular random structures searching for new 

molecular structures with an optimum inhibition efficiency values. This particular condition requires 

an intense effort towards finding molecular descriptors useful for predicting correct inhibition 

efficiencies in cross-validation calculations. These “universal” variables should be very important in 
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the search for new structures as it is now for the recognition of physical processes occurring at the 

corrosion metal/solution interface [1]. 

In the present work we carried out detailed theoretical investigations of 23 different corrosion 

inhibitors including amines, thiourea derivatives, and acetylenic alcohols to estimate its corrosion 

inhibition efficiencies on 22% Cr stainless steel in hydrochloric acid (15% w/v) solutions at 60 C [1] 

using genetic function approximation (GFA) method. The systematic obtaining of these data, for such 

a large set of molecules, offered the unique opportunity for searching possible correlations between the 

inhibitors efficiency and molecular properties. It is also the aim of this study to theoretically 

investigate the adsorption density of one of the studied inhibitors on steel surface at 60C in the 

presence of aqueous solution. 

 

 

 

2. EXPERIMENTAL 

All corrosion inhibition data were obtained from the literature [1]. The experimental details are 

outlined briefly here as indicated in reference [1]. Weight loss experiments based on rectangular steel 

specimens with 2 × 0.5 × 0.5 cm dimensions and a central hole. The experiments were carried out in 

cylindrical autoclaves internally coated with teflon. The autoclaves were placed in a rolling oven at 60
 

C for 3 h. All solutions employed 300 ml of HCl (15% w/v), 2% w/v of the chemical inhibitor and 

0.6% w/v of formaldehyde. The experimental conditions were designed to avoid complete dissolution 

of the metal plates and to strictly adhere to industrial recommendations, by which no more than 2% 

w/v of active components are allowed for matrix acidification operations [1]. Formaldehyde was 

employed to minimize hydrogen penetration. These conditions strictly followed those previously 

reported. The steel specimens were cleaned with acetone, washed with water, dried and weighed with a 

0.0001 g precision. Two results were averaged for each inhibitor and presented in Table 1[1].  

 

Table 1 [1]. Inhibition efficiencies and molecular structures of the studied inhibitor series. 

 

 Inhibitor name Structure 
Inhibition 

Efficiency[1] 

1 Tributylamine 

 

97.76 

2 Aniline 

 

97.76 
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 Inhibitor name Structure 
Inhibition 

Efficiency[1] 

3 n-Octylamine 

 

88.62 

4 Diphenylamine 

 

92.08 

5 Dodecylamine 

 

88.41 

6 di-n-Butylamine 

 

86.41 

7 Cyclohexylamine 

 

86.79 

8 n-butylamine 

 

78.19 

9 Triethylamine 

 

69.12 

10 Hexylamine 

 

74.67 

11 sec-Butylamine 

 

83.14 

12 Diethylamine 

 

67.54 

13 Propylamine 
 

68.18 

14 Isopropylamine 

 

63.61 

15 1,3-Dibutyl-2-

thiourea 

 

97.30 

16 1,3-Diethyl-2-

thiourea 

 

96.36 
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 Inhibitor name Structure 
Inhibition 

Efficiency[1] 

17 1,3-Dimethyl-2-

thiourea 

 

95.96 

18 Thiourea 

 

90.04 

19 Propagyl alc. 

 

95.80 

20 2-Pentyn-1-ol 

 

87.67 

21 3-Butyn-1-ol 

 

89.63 

22 2-Butyn-1-ol 

 

74.07 

23 2-Butyn-1,4-diol 

 

68.59 

 

Table 1 lists the twenty three inhibitors employed in the study and their experimental inhibition 

efficiencies for stainless steel [1]. Tributylamine, aniline and thiourea derivatives as 3-dibutylthiourea, 

1,3 diethylthiourea and 1,3-dimethylthiourea are among the most efficient inhibitors are followed by 

propargylic alcohol, diphenylamine, thiourea and some amines. On the other hand, the aliphatic 

amines, isopropylamine, secbutylamine, propylamine, diethylamine and nbutylamine, are among the 

less efficient inhibitors tested for stainless steel [1].  

 

 

 

3. COMPUTATIONAL AND STATISTICAL DETAILS 

Quantum mechanical calculations are conducted using the spin polarized density functional 

theory (DFT) within the generalized gradient approximation (GGA) using the Perdew–Wang 

exchange-correlation functional (PW91) [23] as implemented in the DMOl
3
 package [24]. This method 

can conduct an accurate and efficient self–consistent calculations using a convergent three-dimensional 

numerical integration scheme. DFT methods account for exchange-correlation in many electron 
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systems by the GGA, and they are suitable for studying transition metal clusters [25]. The double 

numerical basis set including d-polarization function (DND)
 
[24]  is chosen in this work. 

DMol
3
 is a density functional theory (DFT) quantum mechanical code that enables users to 

study problems in different environments include,gas phase, solvent, surface, and solid. Owing to its 

unique approach to electrostatics, DMol
3
 has long been one of the fastest methods for molecular DFT 

calculations and can rapidly perform structure optimizations of molecular systems using delocalized 

internal coordinates. DMol
3
 can also be used to search very efficiently for transition states using a 

combination of LST/QST algorithms with conjugate gradient refinement, thereby avoiding the 

computationally expensive calculation of the Hessian matrix [24].  

The genetic function approximation (GFA) algorithm offers a new approach to the problem of 

building quantitative structure-activity relationship (QSAR) and quantitative structure-property 

relationship (QSPR) models. Replacing regression analysis with the GFA algorithm enables the 

construction of models competitive with or superior to those produced by standard techniques and 

makes available additional information not provided by other techniques. Unlike most other analysis 

algorithms, GFA gives multiple models, where the populations of the models are created by evolving 

random initial models using a genetic algorithm. GFA can build models using not only linear 

polynomials but also higher-order polynomials, splines, and other nonlinear functions. 

The genetic function approximation algorithm was initially conceived by taking inspiration 

from two seemingly disparate algorithms: Holland's genetic algorithm (1975) and Friedman's (1990) 

multivariate adaptive regression splines (MARS) algorithm [26].  

Friedman's MARS algorithm is a statistical technique for modeling data. It provides an error 

measure, called the lack-of-fit (LOF) score that automatically penalizes models with too many 

features. It also inspired the use of splines as a powerful tool for nonlinear modeling [26].  

The GFA algorithm uses a genetic algorithm to perform a search over the space of possible 

QSAR/QSPR models using the LOF score to estimate the fitness of each model. Such evolution of a 

population of randomly constructed models leads to the discovery of highly predictive QSARs/QSPRs 

[26].  

The GFA algorithm approach has a number of important advantages over other techniques. It 

builds multiple models rather than a single model. It automatically selects which features are to be 

used in the models. It is better at discovering combinations of features that take advantage of 

correlations between multiple features. GFA incorporates Friedman's LOF error measure, which 

estimates the most appropriate number of features, resists overfitting, and allows control over the 

smoothness of fit. Also, it can use a larger variety of equation term types in construction of its models 

and finally, it provides, through study of the evolving models, additional information not available 

from standard regression analysis [26]. 

In the current study, the studied inhibitors have been simulated as adsorbate on iron surface 

(111) substrate to find the low energy adsorption sites on the iron surface and to investigate the 

preferential adsorption of the studied inhibitors. To calculate the adsorption density as well as the 

binding energy of the studied inhibitors, Monte Carlo method has been used. In this computational 

work, possible adsorption configurations have been identified by carrying out Monte Carlo searches of 

the configurational space of the steel/inhibitor system as the temperature is slowly decreased. The 
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adsorbates were the studied inhibitors constructed and their energy was optimized using Forcite 

classical simulation engine [27]. The geometry optimization process is carried out using an iterative 

process, in which the atomic coordinates are adjusted until the total energy of a structure is minimized, 

i.e., it corresponds to a local minimum in the potential energy surface. Geometry optimization is based 

on reducing the magnitude of calculated forces until they become smaller than defined convergence 

tolerances. The forces on the atoms in the studied inhibitors are calculated from the potential energy 

expression and will, therefore, depend on the force field that is selected. 

The molecular dynamics (MD) simulations were performed using Materials Studio software 

[24]. The MD simulation of the interaction between the studied inhibitor molecule and iron (111) 

surface was carried out in a simulation box (17.38 Å × 17.38 Å × 44.57 Å) with periodic boundary 

conditions to model a representative part of the interface devoid of any arbitrary boundary effects. The 

Fe (111) was first built and relaxed by minimizing its energy using molecular mechanics, then the 

surface area of Fe (111) was increased and its periodicity is changed by constructing a super cell, and 

then a vacuum slab with 15 Å thicknesses was built on the Fe (111) surface. The number of layers in 

the structure was chosen so that the depth of the surface is greater than the non-bond cutoff used in 

calculation. Using 6 layers of iron atoms gives a sufficient depth that the inhibitor molecules will only 

be involved in non-bond interactions with iron atoms in the layers of the surface, without much 

increasing the calculation time. This structure then converted to have three dimension periodicity. As 

the three dimension periodic boundry conditions are used, it is important that the size of the vacuum 

slab is enough (15 Å) that the non-bond calculation for the adsorbate does not interact with the 

periodic image of the bottom layer of atoms in the surface. After minimizing the Fe (111) surface and 

the tributylamine inhibitor molecules, the corrosion system will be built by layer builder to place the 

inhibitor molecules on Fe (111) surface, and the behaviors of these molecules on the Fe (111) surface 

were simulated using the COMPASS (condensed phase optimized molecular potentials for atomistic 

simulation studies) force field. Adsorption locator module in Materials Studio 5.0 [28] have been used 

to model the adsorption of the inhibitor molecules onto Fe (111) surface and thus provide access to the 

energetic of the adsorption and its effects on the inhibition efficiencies of the studied [29]. The binding 

energy between the studied inhibitors and Fe (111) surface were calculated using the following 

equation [30]: 

binding total surface inhibitorE =E -(E +E )     (1) 

Where totalE  is the total energy of the surface and inhibitor, surfaceE  is the energy of the surface 

without the inhibitor, and inhibitorE  is the energy of the inhibitor without the surface. 

 

 

 

4. RESULTS AND DISCUSSION 

The main problem for QSAR resides not in performing the correlation itself but setting the 

variable selection for it [31]; the mathematical counterpart for such problem is known as the “factor 

indeterminacy” [32-36] and affirms that the same degree of correlation may be reached with in 

principle an infinity of latent variable combinations. Fortunately, in chemical-physics there are a 
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limited (although many enough) indicators to be considered with a clear-cut meaning in molecular 

structure that allows for rational of reactivity and bindings [37,38]. However, the main point is that 

given a set of N-molecules, one can choose to correlate their observed activities 
1,i N

A


with M-selected 

structural indicators in as many combinations as [31]:   
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linked by different endpoint paths, as many as [31]: 

 

1

M k

Mk
K C


      (3) 

 

indexing the numbers of paths built from connected distinct models with orders (dimension of 

correlation) from k=1 to k=M [31]. 

 

Table 2. Descriptors for the studied 23 inhibitor molecules calculated using quantum chemical 

methods 

 
Structures Inhibition 

Efficiency 

[1] 

Balaban 

index 

JX 

Balaban 

index 

JY 

Wiener 

index 

Total 

energy 

HOMO 

eigenvalue 

LUMO 

eigenvalue 

Energy 

Gap 

Total 

dipole 

Molecular 

area 

(vdW 

area) 

Molecular 

volume 

(vdW 

GFA  

prediction 

for  

Inhibition 

Efficiency 

Tributylamine 97.76 3.39 3.49 300.00 -2116.93 -9.12 2.83 11.95 0.78 294.53 224.15 91.93 

Aniline 97.76 3.00 3.03 42.00 -1071.22 -8.23 0.79 9.02 1.69 125.31 94.90 88.73 

n-Octylamine 88.62 2.58 2.60 120.00 -1494.87 -10.01 3.35 13.37 1.82 215.72 157.87 82.58 

Diphenylamine 92.08 2.14 2.17 264.00 -1893.45 -8.08 0.19 8.27 0.74 199.19 166.37 98.97 

Dodecylamine 88.41 2.75 2.76 364.00 -2118.05 -9.86 3.29 13.15 1.44 301.45 224.52 89.70 

di-n-Butylamine 86.41 2.54 2.61 120.00 -1494.37 -9.38 3.12 12.50 1.07 215.80 157.47 83.69 

Cyclohexylamine 86.79 2.10 2.13 42.00 -1155.31 -9.91 3.49 13.40 1.63 149.05 112.89 77.34 

n-butylamine 78.19 2.16 2.20 20.00 -871.49 -9.85 3.46 13.31 1.48 129.68 90.62 75.18 

Triethylamine 69.12 2.88 3.03 48.00 -1182.04 -9.17 3.04 12.21 0.75 165.15 123.48 80.62 

Hexylamine 74.67 2.43 2.45 56.00 -1183.13 -9.86 3.38 13.24 1.48 172.61 123.77 78.95 

sec-Butylamine 83.14 2.50 2.55 18.00 -871.31 -9.77 3.54 13.30 1.39 126.25 90.66 74.83 

Diethylamine 67.54 2.11 2.21 20.00 -871.09 -9.38 3.28 12.66 1.09 130.36 90.36 76.06 

Propylamine 68.18 1.93 1.99 10.00 -715.76 -10.00 3.68 13.68 1.74 107.92 73.66 72.37 

Isopropylamine 63.61 2.27 2.34 9.00 -715.61 -9.99 3.59 13.58 1.67 106.74 73.88 72.83 

1,3-Dibutyl-2-

thiourea 

03.79 8.02 7..8 80..99 -8970.02  -2..2  9.82 2..7 ..0. 808.02 .03.3. .9..22 

1,3-Diethyl-2-

thiourea 

00.70 8.22 7.92 32.99 -...7.38  -2..9  9.02 2.32 0... .30.87 .79.2. 07.92 

1,3-Dimethyl-2-
thiourea 

02.00 8.33 7.98 7..99 -..98.8.  -2.80  9..0 2.33 0..8 .78.02 03.8. 09... 

Thiourea 90.04 2.58 2.81 9.00 -791.42 -8.59 -0.06 8.53 5.15 91.98 63.75 89.70 

Propagyl alc. 02.29 8.72 8..0 .9.99 -757.9 -.9.37  ...2 .8.8. ..0. 20.29 20.28 2..37 

2-Pentyn-1-ol 87.67 2.84 2.92 35.00 -1069.76 -10.26 1.40 11.66 2.18 129.72 92.67 85.48 

3-Butyn-1-ol 89.63 2.42 2.50 20.00 -913.79 -10.64 1.75 12.39 1.41 108.55 76.20 82.12 

2-Butyn-1-ol 74.07 2.74 2.83 20.00 -913.97 -10.31 1.38 11.69 2.08 107.91 76.05 83.90 

2-Butyn-1,4-diol 02.20 8.30 8.0. 72.99 -.87....  -.9.78  ..88 ...2. 8.72 ..0.22 2..02 22.23 

 

Table 1 shows the molecular structures for the studied inhibitors with their inhibition 

efficiencies calculated from weight loss method as presented in the literature [1]. 
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Table 2 shows the structural descriptors for the 23 inhibitors. It also records their inhibition 

efficiencies. Unless otherwise specified, the following unites are used for quantities calculated by 

QSAR descriptors and properties; area (Å
2
), volume (Å

3
) , dipole moment (e Å), HOMO and LUMO 

(eV). The atom volumes and surfaces model calculates surface areas and volumes of surfaces around 

atomistic structures using the atom volumes and surfaces functionality of the Materials Studio software 

[24].  

 

Table 3. Correlation matrix of the studied variables 

 
 B : 

Inhibition 

Efficiency 

C : 

Balaban 

index 

JX 

D : 

Balaban 

index 

JY 

E : 

Wiener 

index 

F : Total 

energy 

H : Heat 

of 

formation 

I : HOMO 

eigenvalue 

J : LUMO 

eigenvalue 

K : 

Energy 

Gap 

L : Total 

dipole 

T : 

Molecular 

area (vdW 

area) 

U : 

Molecular 

volume 

(vdW 

volume) 

B : 

Inhibition 
Efficiency 

..9999 9..277 9...22 9..800 9..32. 9.808. 9..092 -0.5481 -0.5824 9.72.2 9.73.9 9..980 

C : Balaban 

index JX 

9..277 ..9999 9.0203 9.7237 -0.5054 -0.1503 9.778. -0.3790 -0.4088 9.8229 9..222 9..288 

D : Balaban 

index JY 

9...22 9.0203 ..9999 9.7.02 -9...20  -9.930. 9.7329 -9..227  -9..2.2 9.7022 9.720. 9.729. 

E : Wiener 

index 

9..800 9.7237 9.7.02 ..9999 -9.02.2  -9.8780 9.7732 -9.9023  -9..0.. -9..933  9.0803 9.0.23 

F : Total 

energy 

-9..32. -9.292. -9...20 -9.02.2  ..9999 9.87.3 -9...90 9..73. 9.830. 7.0732e-

3 

-9.0.00  -9.0002 

H : Heat of 
formation 

9.808. -9..297 -9.930. -9.8780  9.87.3 ..9999 9.222. -9.0020 -9.3932 9.7807 -9...03  -9.7.22 

I : HOMO 

eigenvalue 

9..092 9.778. 9.7329 9.7732 -9...90  9.222. ..9999 -9.2729 -9.2..8 9.2..2 9.7.37 9.70.2 

J : LUMO 

eigenvalue 

-9.2.2. -9.7309 -9..227 -9.9023  9..73. -9.0020 -9.2729 ..9999 9.0829 -9.082. 9...00 9.9370 

K : Energy 
Gap 

-9.228. -9..922 -9..2.2 -9..0..  9.830. -9.3932 -9.2..8 9.0829 ..9999 -9.00.0 -9.9200 -9..928 

L : Total 
dipole 

9.72.2 9.8229 9.7022 -9..933  7.0732e-
3 

0.3293 9.2..2 -9.082. -9.00.0 ..9999 -9.920. -9.9072 

T : 
Molecular 

area (vdW 

area) 

9.73.9 9..222 9.720. 9.0803 -9.0.00  -9...03 9.7.37 9...00 -9.9200 -9.920. ..9999 9.0020 

U : 
Molecular 

volume 

(vdW 
volume) 

9..980 9..288 9.729. 9.0.23 -9.0002  -9.7.22 9.70.2 9.9370 -9..928 -9.9072 9.0020 ..9999 

 

Molecular area (vdW area) in Table 2, describes the volume inside the van der waals area of 

the molecular surface area determines the extent to which a molecule exposes to the external 

environment. This descriptor is related to binding, transport, and solubility. Molecular volume (vdW 

volume) in Table 2, describes the volume inside the van der waals area of a molecule. Total molecular 

dipole moment, this descriptor calculates the molecule dipole moments from partial charges defined on 

the atoms of the molecule. If no partial charges defined, the molecular dipole moment will be zero. 

Total energy, HOMO and LUMO energy have been described in our previous study in details [39]. 

For understanding the quantitative structure and activity relationships, statistical analysis using 

genetic function approximation (GFA) method, first a study table was belt and presented in Table 2. 

Second, a correlation matrix, Table 3 was derived, and then regression parameters were obtained. 
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Table 2 shows the structural descriptors for the 23 inhibitor molecules used in this study (training set). 

The structure descriptors presented in Table 2 include total energy, HOMO and LUMO energy as well 

as the area and volume of the studied molecules. Also, distance and connectivity based topological 

indices and their applications are used in understanding the quantitative structure-activity relationship 

(QSAR). Use of topological indices has been well illustrated in the literature [40]. The topological 

indices used in this study and presented in Table 2 , namely Balaban (J) and Wiener indices both are 

well presented in the literature [41]. In the fields of chemical graph theory, molecular topology, and 

mathematical chemistry, a topological index also known as a connectivity index which is a type of a 

molecular descriptor that is calculated based on the molecular graph of a chemical compound [42]. 

Topological indices are used in the development of quantitative structure-activity relationships 

(QSARs) in which the activity or other properties of molecules are correlated with their chemical 

structure [43]. Topological indices are 2D descriptors based on graph theory concept. These indices 

have been widely used in QSAR studies. They help to differentiate molecules according to their size, 

degree of branching, flexibility, and overall shape. 

 

Table 4. Univariate analysis of the inhibition data 

 

Statistical parameters 

Number of sample points 87.9 

Range 34.15 

Maximum 97.76 

Minimum 63.61 

Mean 84.25 

Median 87.67 

Variance 122.02 

Standard deviation ...80 

Mean absolute deviation 0.00 

Skewness -0.42 

Kurtosis -1.34 

 

A univariate analysis is performed on the inhibition efficiency data in Table 1 as a tool to 

assess the quality of the data available and its suitability for next statistical analysis. Data in Table 1 

show acceptable normal distribution. Statistical parameters presented in Table 4 have been discussed 

in details in our previous study [39]. 

Table 3 contains a correlation matrix which gives the correlation coefficients between each pair 

of columns included in the analysis in Table 2. Correlation coefficients between a pair of columns 

approaching +1.0 or -1.0 suggest that the two columns of data are not independent of each other. The 

cells in the correlation matrix, Table 3 are colored according to the correlation value of each cell. 

Inspection of Table 3 shows that the descriptors most highly correlated with corrosion inhibition 

efficiency include: LUMO energy and volume of the inhibitor molecule. After constructing the 

correlation matrix the genetic function approximation algorithm will be used to perform a regression 
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analysis. The GFA algorithm works with a set of strings, called a population. This population is 

evolved in a manner that leads it toward the objective of the search. Following this, three operations 

are performed iteratively in succession: selection, crossover, and mutation. Newly added members are 

scored according to a fitness criterion. In the GFA, the scoring criteria for models are all related to the 

quality of the regression fit to the data. The selection probabilities must be re-evaluated each time a 

new member is added to the population [26].The procedure continues for a user-specified number of 

generations, unless convergence occurs in the interim. Convergence is triggered by lack of progress in 

the highest and average scores of the population. 

 

4.1 Friedman LOF measure 

Various statistical measures can be adapted to measure the fitness of a GFA model during the 

evolution process.  

 

Table 5. Validation Table of the Genetic Function Approximation 

 

Predicted Inhibition Efficiency = -4.90 (LUMO) + 0.102 (Molecular Volume) +82.88  

Friedman LOF 83.18 

R-squared 0.498 

Adjusted R-squared 9...2 

Cross validated R-squared 9.702 

Significant Regression Yes 

Significance-of-regression F-value 0.08 

Critical SOR F-value (95%) ..0.9 

Lack-of-fit points 89.99 

Min expt. error for non-significant LOF (95%) 0.02 

 

Use of the Friedman lack-of-fit (LOF) measure has several advantages over the regular least 

square error measure. In Materials Studio [24], LOF is measured using a slight variation of the original 

Friedman formula[44]. The revised formula is: 

 

2(1 )

SSE
LOF

c dp

M






      (4) 

Where SSE is the sum of squares of errors, c is the number of terms in the model, other than 

the constant term, d is a user-defined smoothing parameter , p is the total number of descriptors 

contained in all model terms (again ignoring the constant term) and M is the number of samples in the 

training set. Unlike the commonly used least squares measure, the LOF measure cannot always be 

reduced by adding more terms to the regression model. While the new term may reduce the SSE, it 

also increases the values of c and p, which tends to increase the LOF score. Thus, adding a new term 
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may reduce the SSE, but actually increases the LOF score. By limiting the tendency to simply add 

more terms, the LOF measure resists overfitting better than the SSE measure [26]. 

Table 5 shows the GFA analysis which gives summary of the input parameters used for the 

calculation. Also, it reports whether the GFA algorithm converged in specified number of generations. 

The GFA algorithm is assumed to have converged when no improvement is seen in the score of the 

population over a significant length of time, either that of the best model in each population or the 

average of all the models in each population. When this criterion has been satisfied, no further 

generations are calculated. 

 

Actual values for corrosion inhibition [1]
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Figure 1. Plot of predicted inhibition and residuals versus measured corrosion inhibition [1] 

 

The Friedman's lack-of-fit (LOF) score in Table 5 evaluates the QSAR model. The lower the 

LOF, the less likely it is that GFA model will fit the data. The significant regression is given by F-test, 

and the higher the value, the better the model. 

Figure 1 shows the relationship between the measured corrosion inhibition efficiencies of the 

studied inhibitors presented in Table 2 and the predicted efficiencies calculated by the following 

equation: 

Predicted Inhibition Efficiency = -4.90 (LUMO) + 0.102 (Molecular Volume) +82.88         (5) 

The distribution of the residual values against the measured corrosion inhibition efficiencies 

values are presented in Figure 1. The residual values can be defined as the difference between the 

predicted value generated by the model and the measured values of corrosion inhibition efficiencies. 
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Figure 2. Outlier analysis for inhibition efficiency 

 

 

 

Figure 2a-b represents the potential outlier that used to test the constructed QSAR model. An 

outlier can be defined as a data point whose residual value is not within two standard deviations of the 

mean of the residual values. Figure 2a represents the residual values plotted against the measured 

corrosion inhibition efficiencies. Figure 2b shows the residual values plotted against Table 2 row 

number. Figure 2a-b contains a dotted line that indicates the critical threshold of two standard 



Int. J. Electrochem. Sci., Vol. 6, 2011 

  

4090 

deviations beyond which a value may be considered to an outlier. Inspection of Fig. 2a-b shows that 

there is no points appeared outside the dotted lines which make the QSAR model acceptable. 

 

4.2 Molecular dynamic simulations 

To investigate the adsorption mechanism of the studied compounds on the steel surface, the 

adsorption of tributylamine was studied theoretically by using molecular dynamics simulation 

methods.  
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Figure 3. Adsorption energy distribution of the adsorbate (tributylamine) on Fe (111) 

 

Figure 3, shows the distribution of adsorption energy of the adsorbate (tributylamine ) Fe (111). 

As can be seen in Fig. 3, the adsorption energy of tributylamine is more than -100 kcal mol
−1 

which 

explain its highest inhibition efficiency compared to the other series of inhibitors. Figure 4 shows the 

most suitable configurations for adsorption of tributylamine on Fe (111) substrate obtained by 

adsorption locator module [45,46] in Materials studio [24]. The outputs and descriptors calculated by 

the Monte Carlo simulation are presented in Table 6. The parameters presented in Table 6 include total 

energy, in kcal mol
−1

, of the Fe(111)– tributylamine configuration. The total energy is defined as the 

sum of the energies of the adsorbate components, the rigid adsorption energy and the deformation 

energy. In this study, the substrate energy (iron surface) is taken as zero. In addition, adsorption energy 

in kcal mol
−1

, reports energy released (or required) when the relaxed adsorbate component 

(tributylamine) is adsorbed on the substrate. The adsorption energy is defined as the sum of the rigid 

adsorption energy and the deformation energy for the adsorbate components. The rigid adsorption 

energy reports the energy, in kcal mol
−1

, released (or required) when the unrelaxed adsorbate 

components (i.e., before the geometry optimization step) are adsorbed on the substrate.  
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Figure 4. The most suitable configuration for adsorption of tributylamine on Fe (111) substrate 

obtained by adsorption locator module 

 

 
 

Figure 5. The adsorption density field of tributylamine on the Fe (111) substrate. 
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Table 6. Outputs and descriptors calculated by the Mont Carlo simulation for adsorption of 

tributylamine on iron (111) 

 

Inhibitor Total 

energy 

kcal 

mol
-1

 

Adsorption 

energy/ kcal 

mol
-1

 

Rigid 

adsorption / 

energy kcal 

mol
-1

 

Deformation 

energy/ kcal 

mol
-1

 

dEad/dNi 

kcal mol
-

1
 

Calculated 

binding 

energy / kcal 

mol
-1

 

tributylamine 156.75 -121.66 -122.37 0.703 -121.66 132.45 

 

The deformation energy reports the energy, in kcal mol
−1

, released when the adsorbed 

adsorbate components are relaxed on the substrate surface. Table 6 shows also (dEads/dNi), which 

reports the energy, in kcal mol
−1

, of substrate–adsorbate configurations where one of the adsorbate 

components has been removed. The binding energy introduced in Table 6 calculated from equation (1). 

As can be seen from Table 6, tributylamine gives high adsorption energy during the simulation 

process. High values of adsorption density presented in Fig. 5 indicates that tributylamine is likely to 

adsorb on the iron surface to form stable ad layers and protect iron from corrosion. 

 

 

 

5. CONCLUSIONS 

QSAR methods are now being used for predicting the inhibition efficiencies for corrosion 

inhibitors in dry laboratories. Success depends upon having data on a large number of compounds 

available. The computational method has proved satisfactory for the inhibition efficiency estimations. 

High correlation was obtained with the multivariate correlation, i.e. all the indices combined together, 

where the prediction power was very high for GFA. Although GFA proved to be efficient in predicting 

ability, more work is still required toward understanding structure-property correlation on inhibition 

corrosion studies, particularly concerning the analysis of different structural chemical descriptors. 

Understanding adsorption phenomena is of key importance in corrosion problems. Computational 

studies helps to find the most stable adsorption sites for a broad range of materials. This information 

can help to gain further insight about corrosion system, such as the most likely point of attack for 

corrosion on a surface, the most stable site for inhibitor adsorption and the binding energy of the 

adsorbed layer. 
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