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The dynamic Nernst-Planck-Poisson equations are used to describe a model system in which an 

infinitesimal partially permeable membrane separates two different ionic solutions which extend freely 

in either direction. The spatial extent of the resulting potential difference is assessed, and we 

demonstrate that non-zero electric field may extend several nanometres into solution, outside the 

membrane itself. This latter effect is not considered by traditional theories of membrane potentials. 
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1. INTRODUCTION 

Traditional approaches to the description of potential differences arising at partially permeable 

membranes assume that concentrations are constant at the membrane surface and that the potential 

difference is exclusively internal to the membrane [1]. This approach may yield accurate values for 

potential difference at steady state, but does not provide information about the real dynamic behaviour 

or likely spatial extent of such potential differences. In the limit of a membrane which is thin compared 

to Debye length, traditional assumptions of a finite membrane with constant surface concentrations 

have been criticised as ‘unphysical’[2,3]. 

In this paper we consider a crude model of a biological membrane by studying an 

infinitesimally thin membrane which is either fully permeable or fully impermeable to different ionic 

species, with free and continuous solution to either side. The Nernst-Planck-Poisson system of 

equations is then solved dynamically and without further approximation. Empirically determined 

concentrations are studied which are typical for a biological cell. It is determined that for this model 
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system, the electric field associated with the membrane potential extends into the solution either side 

of the membrane a distance of approximately ±2 nm, which is comparable to the thickness of a typical 

biological membrane. The dynamic behaviour is also examined. A thorough description of a biological 

membrane must necessarily extend this model in a number of ways - we intend to demonstrate simply 

that there is no reason to assume electric fields to be confined to the interior of the membrane and that 

a physically consistent determination of the behaviour of a biological membrane must consider 

solution dynamics well outside the membrane, as well as its interior. For a real, finite (but thin) 

membrane, we may expect the potential difference to extend similarly into solution from each face of 

the membrane. 

 

1.1. The calculation of membrane potentials: prior art 

Since our approach examines transient behaviour, the steady-state Goldman equation only 

relates loosely, but this equation is very common in the study of membrane potentials and therefore it 

is useful to draw some comparisons. The potential difference is given by the Goldman 

equation as: 

 

       
  

 
   

                       

                       
                          (1.1) 

 

where uq and cq are the mobility and concentration respectively of ionic species q; subscripts 

‘+’ and ‘−’ represent positive and negative species respectively; and ‘i’ and ‘e’ represent the interior 

and the exterior compartments of the cell respectively. 

This equation is derived based on the assumption of arbitrarily invoked Dirichlet boundaries at 

the membrane-solution interface, that is, the concentrations of all ionic species at these interfaces are 

maintained at constant values, necessarily restricting any potential difference in the system to the 

interior of the membrane. This same approximation has been used in most previous theoretical studies 

of membrane systems. For a full discussion of possible physical inconsistencies in this description, the 

reader is referred to Perram et al. [2] and Ward et al. [3]
 

 

 

 

2. THEORETICAL MODEL 

2.1. Nernst-Planck-Poisson Equations 

For any electrolyte system in which the mass transport of ions is linear and may be described 

solely in terms of diffusion and migration (i.e. there are no sources of convectional motion), the flux of 

each species, q, at any point in the system is described by the Nernst-Planck equation: 

 

       
   

  
 

   

  
  

  

  
                                                      (2.1) 
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where Jq, Cq, Dq and zq are the x component of the flux vector, the concentration, the diffusion 

coefficient and the charge respectively for species q, φ is the potential, and F, R and T have their usual  

meanings. The first term is the diffusional contribution and the second is the migrational one. 

By conservation of mass, the space-time evolution of Cq is given by:  

 
   

  
  

   

  
                                                          (2.2) 

 

From this follows: 

 

   

  
    

    

   
 

   

  

 

  
   

  

  
                                    (2.3) 

 

The potential at any point must further satisfy the Poisson equation: 

 
   

   
 

 

    
                                                     (2.4) 

 

Together, equations (2.3) and (2.4) constitute the well known Nernst-Planck-Poisson (NPP) 

equation set that completely describes the time evolution of a simple electrolyte system. [4-6]
 

 

2.2. Membrane Model and Simulation 

For our membrane system, we assume two different solutions of binary monovalent electrolyte 

to be separated by a semi-permeable, infinitesimally thin membrane which completely blocks the 

transport of one or more selected species, but has no effect on the mobility of the remaining species. 

After some time, t = 0, the movement of permeant species through the membrane is permitted, 

and the evolving concentration profiles of all species, as well as their dependent properties (potential 

difference, electric field, etc.), may be observed. Prior to this time the system may be considered to 

consist of two separate sub-systems (‘left and right’ or ‘interior and exterior’) each of which is uniform 

and electroneutral. We assume for simplicity and to avoid confusion of our conclusions that the 

solutions are homogeneous within all planes parallel to the membrane, which is clearly a simplification 

for a real biological system. Then mass transport is neglected in all axes except for that perpendicular 

to the membrane (defined as x). The mass transport of any impermeant species is also governed by the 

NPP set, except at the location of the membrane, where Jq ≡ 0. 

As the system evolves in time, the diffusion layer will expand outwards from the location of the 

membrane. The root mean square displacement of molecules, and therefore the mean thickness of the 

diffusion layer, is given by the Einstein equation [7] as     . Therefore, in order to accurately model 

such a system, the extent of the space in our mathematical framework should significantly exceed this 

diffusion layer. This differs considerably from previous works which have arbitrarily invoked 

boundaries of constant concentration at the membrane edges (as though the external solutions were 
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constantly being stirred), necessarily restricting any potential difference to the interior of the 

membrane. 

Through the use of the NPP set along with appropriate boundary conditions (as given in this 

section), it is possible to simulate, to any arbitrary time, the complete space-time evolution of an 

infinitesimal membrane system, examining how changes in concentrations lead to the development of 

a potential difference, and considering the spatial extent over which this potential difference arises. 

Full details of the numerical simulation system are available in past work.
3
 

 

 

 

3. MEMBRANE SPATIAL EXTENT 

Most literature on the subject makes use of the Goldman equation (Equation 1.1) to determine 

the resting potential. Our preliminary simulations have shown that this equation may generally be 

considered valid for a so called ‘type 1’ membrane system (denoted AX|AX) in which the membrane 

separates two solutions of the same binary electrolyte with different concentrations and is impermeable 

to one ion (e.g. X). However, for a ‘type 2’ system (denoted AX|BX) in which two different binary 

electrolyte solutions of the same concentration with a common ion (X) that is impermeant, the 

simulated potential difference differs to some degree from that predicted by the Goldman equation. In 

the latter case, a substantial portion of the potential difference was seen to extend far beyond the 

confines of the membrane, its extent increasing indefinitely. [3]
 

 

3.1. Empirical Data 

The resting potential of a membrane system depends on the relative concentrations and 

permeabilities  of the ions involved. In a neuron, the only ions with significant permeability are K
+
, 

Na
+
 and Cl

−
. This permeability is granted by resting channels that are always open and not influenced 

by the external  environment, such as changes in potential difference across the membrane. It is known 

from classical experiments conducted by Hodgkin and Katz[8] that in the resting state, the 

permeabilities of potassium and chloride are greater than that of sodium. 

Hodgkin and Katz[8] used the Goldman equation to analyze changes in the membrane 

potential. By the use of a voltage clamp, they measured the variation in membrane potential of a squid 

(Loligo) giant axon while systematically changing the extra-cellular concentrations of K
+
, Na

+
 and Cl

−
. 

They found that if the membrane potential, Δφ, is measured shortly after the extra-cellular 

concentration is changed (before the internal ionic concentrations are altered), [K
+
]exterior has a strong 

effect on the resting potential, [Cl
−
]exterior has a moderate effect and [Na

+
]exterior has little effect. The 

data for the membrane at rest could be fit accurately by the Goldman equation using the following 

permeability ratios: 

 

PK : PNa : PCl = 1.0 : 0.04 : 0.45                                    (3.1) 
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This was determined using the experimentally derived data reproduced in Table 1. 

 

Table 1. Squid Axon Concentrations / mM. [8]
 

 

Ion Intracellular Extracellular 

K
+ 

400 20 

Na
+
 50 440 

Cl
- 

40-150 560 

Ca
2+ 

0.0003 10 

X
- 

300-400 5 

 

From the Goldman equation, this gives a resting potential of between -63 mV and -59 mV 

at 298 K (for Cl
−
 concentrations of 40 mM and 150 mM respectively). 

 

3.2. Simulation 

A membrane system was simulated using the initial conditions detailed in Table 2. Potassium 

and chloride are simulated as being permeable while sodium is simulated as impermeable based on 

Equation (3.1). When compared to the data above, this is a necessarily crude model; we are principally 

concerned with observing the order of magnitude over which a potential difference extends into  

solution rather than a particularly exact description of a specific biological system. For the same 

reason, variation of diffusion coefficients between the intracellular and extracellular solutions is also 

ignored. 

 

Table 2. Initial conditions for infinitesimal membrane simulations. 

 

       Ion   Left / mM Right/mM  Diffusion / cm
2
 s

-1
         Permeant? 

       K
+ 

  400 20 1.95 × 10
-5

 YES 

       Na
+
   50 540 1.33 × 10

-5
 NO 

       Cl
- 

  50 560 2.02 × 10
-5

 YES 

       X
- 

  400 0 2.56 × 10
-6

 - 2.56 × 10
-8

 NO 

 

The diffusion coefficients of the inorganic ions were based on those observed at infinite 

dilution in aqueous solution at 298 K. [9] The species ‘X
−
’ represents the assortment of impermeant 

organic ions present in high concentration in the cell interior. As these are large, organic species, they 

have diffusion coefficients much smaller than those of the inorganic ions[10] and are consequently 

represented by a single species with an ‘averaged’ diffusion coefficient. This dimensionless diffusion 

coefficient was varied from 2.56 × 10
−6

 to 2.56 × 10
−8

 cm
2
 s

-1
 in a range of simulations and its value 

was not found to significantly alter the simulated resting potential, as can be seen in Figure 1, the time 
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evolution of the membrane potential. To ensure initial electroneutrality, the other, positively charged 

inorganic ions (Ca
2+

, etc.) present in the extracellular medium were incorporated into the Na+ species. 

This is a reasonable approximation as these species have similar diffusion coefficients, are present at 

comparatively low concentration, and are also impermeant. 

 

 

 

Figure 1. Evolution in time of the membrane potential, ΔφMem, for DX-  = 2.56 × 10
−6

 to 2.56 × 10
−8

 

cm
2
 s

-1.
 

 

Figure 2 shows the long time concentration profiles of all the species in the simulated system. 

The time evolution of the potential profile of a simulated system using the conditions expressed in 

Table 2 is shown in Figure 3. The simulated limiting potential difference over all space, ΔφMem, is -

66.9 mV, 99% of which is contained within approximately 4 nm (approximately half the width of a 

biological membrane[11]) of the infinitesimal membrane. This is achieved in approximately 10 μs. 

Note that the distribution is asymmetric. 

 

 

 

Figure 2. Concentration profiles of all species at t ≈ 70 μs. 
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Figure 3. Potential profiles at t ≈ 7 ns, 70 ns, 700 ns, 7 μs and 70 μs. 

 

The Goldman equation for a membrane of finite thickness using the same initial conditions 

(with PK = PCl) gives a value of ΔφMem = −67.29 mV, which is in reasonable agreement with the 

simulated result, despite the difference in the models. While the potential difference extends some 

distance from the membrane, it does remain largely local to the membrane area and persists at a 

constant value up to  long time. 

 

4. CONCLUSION 

 

We have demonstrated that for a membrane system that has no arbitrary restrictions on its 

spatial extent, the potential difference may extend into solution a distance which is comparable to the 

thickness of a typical biological membrane. For a simulation modelling the squid giant axon, the 

limiting potential difference was achieved in approximately 40 μs and extended approximately 2 nm 

from the membrane in either direction. 

 

 

ACKNOWLEDGEMENT 

E.J.F.D. thanks St John’s College, Oxford, for support via a graduate scholarship. 

 

 

References 

 

1. D. E. Goldman, J. Gen. Physiol. 27 (1943) 37. 

2. J. W. Perram and P. J. Stiles, Phys. Chem. Chem. Phys. 8 (2006) 4200. 

3. K. R. Ward, E. J. F. Dickinson and R. G. Compton, J. Phys. Chem. B 114 (2010) 10763. 

4. I.Streeter, and R. G. Compton, J. Phys. Chem. C 112 (2008) 13716. 

5. E. J. F. Dickinson, L. Freitag and R. G. Compton, J. Phys. Chem. B 114 (2010) 187. 

6. K. R. Ward, E. J. F. Dickinson and R. G. Compton, J. Phys. Chem. B 114 (2010) 4521. 

7. A.Einstein, Ann. Phys. 17 (1905) 549. 

8. A.L. Hodgkin and B. Katz, J. Physiol. 108 (1949) 37. 

9. A.J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Ed., 

John Wiley & Sons, New York, 2001. 



Int. J. Electrochem. Sci., Vol. 5, 2010 

  

1534 

10. R. R. Walters, J. F. Graham, R. M. Moore and D. J. Anderson, Anal. Biochem. 140 (1984) 190. 

11. L. Stryer, J. M. Berg and J. L. Tymoczko, Biochemistry, 6th Ed., W. H. Freeman & Co., New 

York, 2006. 

 

 

© 2010 by ESG (www.electrochemsci.org) 

 

http://www.electrochemsci.org/

