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Online model identification is critical for determining the accurate state of charge (SOC) for a battery 

based on a model, which depends on the use of complete and reliable measurement data. To ensure 

precision for parameter identification and reliability for SOC estimation in practical applications, the 

occurrence of data loss and noise interference must be considered. In this paper, a first-order resistor–

capacitor equivalent circuit model is developed to simulate the “black box” system of a battery. A 

recursive least square method based on a variable interval auxiliary model is proposed to compensate 

for the missing data in an unreliable actual environment. Meanwhile, a forgetting factor is introduced 

to prevent the influence of historical data in parameter identification. To further reduce the noise 

effects on SOC estimation, the extended Kalman filter (EKF) is applied to the algorithm. The proposed 

method is verified using CALCE experimental data. The experimental results show that the proposed 

method can be used to realize accurate model parameter identification and reliable online SOC 

estimation under conditions of data loss and noise interference. 
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1. INTRODUCTION 

 

Battery energy storage systems are widely used in electric vehicles (EVs), smart grids and 

many other fields in response to the need to reduce carbon emissions and improve energy efficiency. 

Among them, lithium-ion batteries (LIBs) stand out due to their high energy density, long cycle life 

and low self-discharge rate [1]. However, with the widespread application of battery energy storage 

equipment, the safety and reliability problems of LIBs are becoming increasingly prominent [2]. To 

ensure the safety and reliability of a battery, an advanced battery management system (BMS) is 

required to monitor and manage the various battery states [3], such as state of charge (SOC), state of 

health (SOH) and state of power (SOP). This can ensure the safety of the battery, prevent the 

occurrence of overcharge and discharge and make full use of the best battery performance. The SOC 

http://www.electrochemsci.org/
mailto:maoling2290@shiep.edu.cn


Int. J. Electrochem. Sci., 17 (2022) Article Number: 221269 

 

2 

represents the remaining available battery power as a percentage of the total capacity, which is one of 

the most important states in a BMS, and provides an important reference for battery safety 

management, charge and discharge control, energy management and other functions of a battery 

system. 

The LIB SOC estimation methods mainly include the ampere hour integration method [5], 

model-based method [6] and data-driven method [7]. Among them, the model-based SOC estimation 

method is widely considered because of its high accuracy and robustness [8]. Model-based SOC 

estimation methods can be divided into equivalent circuit models (ECMs), electrochemical models and 

neural network models [9-11]. The ECM is widely studied due to its high accuracy and low calculation 

cost [12,13]. 

The accuracy of SOC estimation based on a ECM depends on the result of circuit parameter 

identification. At present, circuit model parameter identification methods mainly include RLS [14], 

PLSLS [15], FRLS [16], RTLS [17], genetic algorithms [18], etc. The RLS algorithm shows good 

performance for online parameter identification because of its advantages in terms of operation speed. 

In addition, to prevent the influence of historical data, these parameter identification methods introduce 

the forgetting factor, which also correspondingly increases the volatility in the parameter identification 

results. 

In brief, the above online parameter identification methods can all show good performance in a 

laboratory environment, but there are still many challenges for practical applications. Due to defects in 

the sensor, noise and electromagnetic interference, the actual voltage and current measurement data 

contain a large amount of noise data [22], and when the amount of data reaches a certain scale, 

abnormal data will be produced [23] and data loss will occur in SOC [24] and SOH estimation [25]. In 

addition, to enhance the LIB system management, the collected battery data are transmitted to the 

cloud data management platform through a network [26-30], and the problems in the network 

environment can also lead to data loss [31,32]. For example, the data in the battery management unit 

(BMU) of EVs is transmitted through the in-vehicle network because of its advantages of reduced 

wiring, faster communication speed and easier troubleshooting [33]. However, due to physical 

constraints and cost considerations, the communication resources allocated to each electric vehicle are 

usually limited, which can lead to network congestion or even data loss when the BMU sends 

increasingly more data [34]. These disturbances greatly affect the accuracy of model parameter 

identification and further reduce the performance for SOC estimation. However, the above methods do 

not consider the influence of these disturbances on the parameter identification results. Therefore, how 

to obtain the ideal SOC estimation result in the case of a noisy environment and missing data is an 

urgent problem to be solved, which is the motivation of this study. 

To address the noise problem, many scholars have carried out in-depth research. Hu et al. [35] 

proposed a dual fractional extended Kalman filter to estimate the SOC, which has a certain accuracy 

and robustness. Jiang et al. [36] proposed a new adaptive square root extended Kalman filter 

algorithm, and the Sage-Husa adaptive filter was used to update the noise variables, which also leads 

to good accuracy and robustness for SOC estimation. However, the above two methods ignore the 

importance of parameter identification in the circuit model. Wei et al. [37] estimated the noise variance 

through the cooperation of least squares (LS) and a variable projection algorithm (VPA) to improve the 
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noise immunity performance for parameter identification, but its effectiveness in a LIB has not yet 

been verified. After that, Wei et al. [22] combined instrumental variable estimation and the parametric 

method of the bilinear principle to compensate for the deviation caused by noise in the process of 

model identification, which shows good performance for SOC estimation accuracy and noise 

tolerance. 

Meanwhile, the integrity of the data is also a critical condition for parameter identification [38]. 

Several simple methods can be used for the case of missing data in a BMS, such as the interpolation 

method, cluster analysis algorithm and regression analysis algorithm. The interpolation method is only 

applicable to the case where the missing values are scattered and the error is large [39]. In the 

clustering analysis algorithm, the filling accuracy of the K-means algorithm is high, but when the 

attribute of the missing data deviates far from the other attributes, this method cannot be used to find a 

similar attribute for replacement and ensure stability [40]. Due to the limitations of the method, the 

above methods considering the data loss are only applicable offline and cannot be used during real-

time online SOC estimation. Recently, Chen et al. [23] proposed a data-unavailability-resistant 

nonlinear recursive filtering algorithm to estimate the online SOC in an unreliable industrial 

environment, but the performance for parameter identification was not mentioned. 

It can be seen that although the online parameter identification method for immune noise can 

be used to obtain a more accurate SOC estimation, most of the reported methods do not take into 

account the occurrence of data loss. In addition, the above methods for battery data loss cannot ensure 

accuracy and cannot be used to carry out online parameter identification and SOC estimation. 

Therefore, to solve the abovementioned problems, an online SOC estimation method is proposed in 

this paper. The contributions of this paper are mainly summarized as follows: 1) The random data loss 

for a LIB, which is characterized by a discrete-time deterministic system with unavailable output, is 

considered for SOC estimation. 2) A recursive algorithm based on an auxiliary model is proposed to 

identify the reliable parameter for a ECM by compensating for the missing data due to sensor defects 

and network fluctuations. 3) The EKF is applied to eliminate the SOC estimation error caused by 

environmental noise and ensure robustness for online SOC estimation. 4) The proposed method is 

validated by comparison with the RLS method under two typical dynamic driving cycles. 

The rest of this paper is organized as follows: in Section 2, the modelling of an ECM is 

introduced, and the SOC-open circuit voltage (OCV) curve is fitted. Section 3 presents the principle 

and workflow for the recursive least square method based on the variable interval auxiliary model and 

EKF algorithm. In Section 4, the performance of the proposed method and traditional method for 

different working conditions is compared and discussed. The conclusion is presented in Section 5. 

 

 

 

2. EQUIVALENT CIRCUIT MODELING 

At present, ECMs are widely used for model-based battery SOC estimation due to the 

advantages of simple calculation and clear physical meaning. Therefore, an accurate ECM is the key to 

obtaining the dynamic parameters for a battery and provides the basis for parameter identification. An 

ECM can be divided into internal resistance models, n-order RC models and so on. In light of the 
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complexity and computational cost of the model [41], this paper selects the first-order RC circuit 

model shown in Fig. 1 for analysis. According to Kirchhoff's law, the first-order RC circuit model can 

be expressed as follows: 

{
𝐼0 =

𝑈𝑝

𝑅𝑝
+ 𝐶𝑝

𝑑𝑈𝑝

𝑑𝑡

𝑈 = 𝑈𝑂𝐶 + 𝐼0𝑅0 + 𝑈𝑝

(1) 

where 𝑅0  is the internal ohmic resistance; 𝑅𝑝  and 𝐶𝑝  are the polarization resistance and 

polarization capacitance, respectively, which are used to simulate the dynamic characteristics of the 

battery terminal voltage; C is the battery capacity; 𝑈, 𝑈𝑂𝐶 and 𝑈𝑝 are the terminal voltage, OCV and 

polarization voltage of the battery, respectively; and 𝐼0 denotes the loading current. 

 

 

R0

Rp

Cp

UOC

I0

Up

U

 
 

Figure 1. The first-order RC circuit model 

 

 

By defining 𝐸 = 𝑈 − 𝑈𝑂𝐶 and Laplace transforming Equation (1), the transfer function of the 

system can be expressed as follows: 

𝐺(𝑠) =
𝑈(𝑠)

𝐼0(𝑠)
= 𝑅0 +

𝑅𝑝

𝑅𝑝𝐶𝑝𝑆
(2) 

This paper uses the following bilinear transformation method to obtain the transfer function for 

a discrete system: 

𝑠 =
2

𝑇𝑆

1 − 𝑧−1

1 + 𝑧−1
(3) 

where 𝑇𝑆 is the sample time. 

Therefore, the discrete transfer function can be obtained as follows: 

𝐺(𝑧) =
𝑈(𝑧−1)

𝐼0(𝑧−1)
=

𝑎2 + 𝑎3
1 − 𝑎1𝑧−1

(4) 

where 

{
  
 

  
 𝑎1 = −

𝑇𝑆 − 2𝑅𝑝𝐶𝑝

𝑇𝑆 + 2𝑅𝑝𝐶𝑝

𝑎2 =
𝑅0𝑇𝑆 + 𝑅𝑝𝑇𝑆 + 2𝑅0𝑅𝑃𝐶𝑃

𝑇𝑆 + 2𝑅𝑃𝐶𝑃

𝑎3 =
𝑅0𝑇𝑆 + 𝑅𝑝𝑇𝑆 − 2𝑅0𝑅𝑃𝐶𝑃

𝑇𝑆 + 2𝑅𝑃𝐶𝑃

(5) 

The corresponding difference equation for Equation (3) is given by 
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𝑈(𝑘) = 𝑎1𝑈(𝑘 − 1) + 𝑎2𝐼0(𝑘) + 𝑎3𝐼0(𝑘 − 1) (6) 

Which can be transferred to the discrete-time system: 

𝑦(𝑘) = 𝜑𝑇(𝑘)𝜃(𝑘) + 𝑣(𝑘) (7) 

where the information vector 𝜑(𝑘) = [𝑈(𝑘 − 1)  𝐼0(𝑘) 𝐼0(𝑘 − 1)]
𝑇, the parameter vector 

to be identified 𝜃(𝑘) = [𝑎1 𝑎2 𝑎3]𝑇 , and 𝑣(𝑘) is zero-mean white noise. 

Finally, 𝑅0, 𝑅𝑝, and 𝐶𝑝 can be expressed as follows: 

{
  
 

  
 𝑅0 = 𝑇𝑠

𝑎2 − 𝑎3
𝑇𝑠 + 𝑎1

𝑅𝑝 = 2
𝑎1𝑎2 + 𝑎3

𝑎1
2 − 1

𝐶𝑝 =
𝑇𝑠(𝑎1 + 1)

2

−4𝑎1𝑎2𝑎3

(8) 

The SOC-OCV curve required for model parameter identification can be obtained by a SOC-

OCV test. In this paper, the incremental current test for an INR18650-20R battery in the University of 

Maryland test is used to analyse the SOC-OCV relationship. Specifications for the tested battery cell 

are shown in Table 1. The environmental temperature of the incremental current test is 25 ℃, and the 

frequency is set to 1 Hz. 

 

Table 1. Specifications for the tested battery cell 

 

Parameters Value 

Type INR18650-20R 

Rated Capacity 2000 mAh 

Cell Chemistry LNMC/Graphite 

Upper Cut-off Voltage 4.2 V 

Lower Cut-off Voltage 

Weight 

2.5 V 

45.0 g 

Length 64.85 ± 0.15 mm 

 

To obtain a better fitting effect, this paper compares the 𝑆𝑆𝐸, 𝑅2, 𝐴𝑑𝑗𝑢𝑠𝑡𝑅2 and 𝑅𝑀𝑆𝐸  for 

different orders of polynomial fitting. The formula of the index is expressed as follows: 

{
 
 
 
 

 
 
 
 𝑆𝑆𝐸 =∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

                         

𝑅2 =∑(�̂�𝑖 − �̅�)
2

𝑛

𝑖=1

∑(𝑦𝑖 − �̅�)
2

𝑛

𝑖=1

⁄

𝐴𝑑𝑗𝑢𝑠𝑡𝑅2 = 1 − (1 − 𝑅2)
𝑛 − 1

𝑛 − 𝑘
 

𝑅𝑀𝑆𝐸 = √𝑆𝑆𝐸 𝑛⁄                             

(9) 

Compared with low-order polynomials, the curve formed by fitting high-order polynomials can 

show more details, but, at the same time, the calculation complexity and calculation cost are greatly 

increased. Therefore, the 8th-order polynomial is finally adopted to fit the SOC-OCV curve. The fitting 

result is shown in Fig. 2. 
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Figure 2. SOC-OCV curve 

 

3. JOINT ALGORITHMS FOR VI-AM-RLS AND EXTENDED KALMAN FILTER WITH 

MISSING DATA 

3.1 Parameter identification under different situations of missing data 

The input and output data are not completely available in the data loss system. Due to various 

practical reasons, the data loss system can be divided into three cases [42]: 

(1) Loss of output data: the input data are complete, but part of the output data are lost; 

(2) Loss of input data: the output data are complete, but part of the input data are lost; 

(3) Loss of input and output data: only some input and output data are available. 

The most common situation is case 1 because the input data are basically known and the 

original data are complete and available. Therefore, this case is worthy of further study. If case 2 does 

arise, it can be transformed into the problem of case 1 by inverting the system under some standard 

assumptions, such as stability and minimum phase. Case 3 is a completely different and complex 

situation that does not need to be discussed. Therefore, in this paper, we mainly focus on the loss of 

output data, which is the partial loss of voltage data for a LIB. 

 

3.2 VI-AM-RLS parameter identification method with missing data and noise 

For a system with missing data, the conventional least square algorithm cannot be directly 

applied to complete parameter identification. Therefore, to solve this problem, the least square method 

based on the variable interval auxiliary model (VI-AM-RLS) is proposed to identify the parameters 

that build an auxiliary model based on the measurable variables for the original system to compensate 

for the missing data. 

In Section 1, considering the occurrence of data loss, the actual output model can be expressed 

as follows: 

{
𝑦(𝑘) = 𝑥(𝑘) + 𝑣(𝑘)

𝑥(𝑘) = 𝜑𝑇(𝑘)𝜃(𝑘)
(10) 
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where the intermediate variable 𝑥(𝑘) is the output of the system without any interference, 

which cannot be directly measured due to the noise interference in the actual system; 𝑦(𝑘) is the actual 

measured system output, which is disturbed by the noise variable 𝑣(𝑘). 

To deal with the missing data, time series are defined as {𝑘𝑠, 𝑠 = 0,1, … }, which meets 0 =

𝑘0 < 𝑘1 < 𝑘2 < 𝑘3 < ⋯ < 𝑘𝑠−1 < 𝑘𝑠 < ⋯ , and 𝑘∗ = 𝑘𝑠 − 𝑘𝑠−1 ≥ 1 , so that when 𝑘 = 𝑘𝑠 , 

measurement data 𝑦(𝑘) and 𝜑(𝑘) are available and the series {𝑦(𝑘𝑠), 𝜑(𝑘𝑠): 𝑠 = 0,1, … } contains all 

observable output data. 

By replacing 𝑘 with 𝑘𝑠 in Equation 10, we can obtain the identification model: 

{
𝑦(𝑘𝑠) = 𝜑

𝑇(𝑘𝑠)𝜃(𝑘𝑠) + 𝑣(𝑘𝑠)

𝑥(𝑘𝑠) = 𝜑𝑇(𝑘𝑠)𝜃(𝑘𝑠)
(11) 

The information vector 𝜑(𝑘𝑠) contains 𝑈(𝑘𝑠 − 1)、𝐼0(𝑘𝑠) and 𝐼0(𝑘𝑠 − 1), in which 𝐼0(𝑘𝑠) and 

𝐼0(𝑘𝑠 − 1) are available and 𝑈(𝑘𝑠 − 1) contains 𝑢(𝑘𝑠 − 1) with missing data. Therefore, the unknown 

vector 𝑢(𝑘𝑠 − 1) can be replaced with the output of the auxiliary model [42]. 

The auxiliary model can be constructed using the system input 𝐼0(𝑘𝑠), as shown in Fig. 3: 

𝑢𝑎(𝑘𝑠) = 𝜑𝑎
𝑇(𝑘𝑠)𝜃𝑎(𝑘) (12) 

where the information vector 𝜑𝑎
𝑇(𝑘𝑠) is the polynomial of the same order as 𝜑(𝑘𝑠) and 𝜃𝑎(𝑘) 

is the parameter vector of the auxiliary model. 

 

 

I (k)
0 x(k)

v(k)

u(k)

u (k)a

Auxiliary Model

Origin System

(k)θ

 (k)aθ

 
 

Figure 3. The missing-data battery system with the auxiliary model 

 

 

Use 𝜃(𝑘𝑠) and �̂�(𝑘𝑠) as the parameter vector 𝜃𝑎 and information vector 𝜙𝑎(𝑘𝑠) of the auxiliary 

model, which represent estimates of 𝜃 and 𝜑(𝑘𝑠), respectively. It is obvious that 

{
𝜃𝑎(𝑘) = 𝜃(𝑘𝑠)

𝜑𝑎(𝑘𝑠) = �̂�(𝑘𝑠)
(13) 

The output of the auxiliary model can be expressed as 

𝑢𝑎(𝑘𝑠 − 𝑖) = �̂�
𝑇(𝑘𝑠 − 𝑖)𝜃(𝑘𝑠) (14) 

By using 𝑢𝑎(𝑘𝑠 − 𝑖)  to replace the unmeasurable output 𝑢(𝑘) , the problem of unknown 

variables in the information vector can be solved so that the noise interference can be effectively 

reduced. VI-AM-RLS can be used to determine the result for the case of when data loss occurs by 

replacing the missing data 𝑢(𝑘𝑠 − 𝑖) with 𝑢𝑎(𝑘𝑠 − 𝑖): 
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{

𝑒(𝑘𝑠) = 𝑦(𝑘𝑠) − �̂�(𝑘𝑠)𝜃(𝑘𝑠−1)]

 𝜃(𝑘𝑠) = 𝜃(𝑘𝑠−1) + 𝑃(𝑘𝑠)�̂�(𝑘𝑠)[𝑦(𝑘𝑠) − 𝑒(𝑘𝑠)]

𝑃−1(𝑘𝑠) = 𝑃
−1(𝑘𝑠−1) + �̂�(𝑘𝑠)�̂�(𝑘𝑠)

(15) 

In the missing data section, the estimate for the parameter vector remains unchanged: 

𝜃(𝑘) = 𝜃(𝑘𝑠), 𝑘𝑠 ≤ 𝑘 ≤ 𝑘𝑠+1 − 1 (16) 

We define the gain matrix 𝐿(𝑘𝑠) as follows: 

𝐿(𝑘𝑠) = 𝑃(𝑘𝑠)𝜑(𝑘𝑠) = 𝑃(𝑘𝑠−1)�̂�(𝑘𝑠)[1 + �̂�
𝑇(𝑘𝑠)𝑃(𝑘𝑠−1)�̂�(𝑘𝑠)]

−1 (17) 

Let λ (0 < 𝜆 ≤ 1) be the forgetting factor. According to identification Model (11), we define 

𝐽(𝜃) =∑𝜆𝑠−𝑖[𝑦(𝑘𝑖) − 𝜑
𝑇(𝑘𝑖)𝜃]

2

𝑠

𝑖=1

(18) 

By minimizing 𝐽(𝜃), the covariance matrix 𝑃(𝑘𝑠) can be updated as follows: 

𝑃(𝑘𝑠) =
1

𝜆
[𝐼𝑛 − 𝐿(𝑘)�̂�

𝑇(𝑘𝑠)]𝑃(𝑘𝑠−1) (19) 

The initial value of 𝜃(𝑘0) is generally a small real vector, and 𝑃(𝑘0) is a large positive-definite 

matrix. In this paper, 𝜃(𝑘0) = 1𝑛 𝑝0⁄ , 𝑃(𝑘0) = 𝑝0𝐼𝑛, 𝑝0 = 106. To a certain degree, the VI-AM-RLS 

dealing with missing data uses the output of the auxiliary model for parameter estimation. The detailed 

process for the VI-AM-RLS algorithm for model parameter identification is listed in Table 2. 

 

Table 2. Model parameter identification based on VI-AM-RLS 

 

(1) Initialization 

𝜑(𝑘)， 𝜃(𝑘)， 𝑦(𝑘)， 𝑢𝑎(𝑘𝑠 + 𝑖)， 𝑃(𝑘0)， 𝑝0, 𝜆 

(2) Information and Parameter Vector 

{
𝜑(𝑘) = [𝑈(𝑘 − 1)  𝐼0(𝑘) 𝐼0(𝑘 − 1)]

𝑇

𝜃(𝑘) = [𝑎1 𝑎2 𝑎3]𝑇
 

(3) Auxiliary Model 

𝑢𝑎(𝑘𝑠 + 𝑖) = �̂�𝑇(𝑘𝑠 + 𝑖)𝜃(𝑘𝑠) 
(4) Gain and Covariance Matrix 

{
𝐿(𝑘𝑠) = 𝑃(𝑘𝑠−1)�̂�(𝑘𝑠)[1 + �̂�

𝑇(𝑘𝑠)𝑃(𝑘𝑠−1)�̂�(𝑘𝑠)]
−1

𝑃(𝑘𝑠) =
1

𝜆
[𝐼𝑛 − 𝐿(𝑘)�̂�

𝑇(𝑘𝑠)]𝑃(𝑘𝑠−1)
 

(5) Model Parameter Update 

{
𝑒(𝑘𝑠) = 𝑦(𝑘𝑠) − �̂�

𝑇(𝑘𝑠)𝜃(𝑘𝑠−1)

𝜃(𝑘𝑠) = 𝜃(𝑘𝑠−1) + 𝑃(𝑘𝑠)�̂�(𝑘𝑠)𝑒(𝑘𝑠)
 

 

The flowchart for the battery SOC estimation based on the VI-AM-RLS parameter 

identification method is illustrated in Fig. 4. The measured current and voltage data from the sensor 

and network are sent to the proposed algorithm using an auxiliary model to obtain the parameter vector 

𝜃(𝑘) = [𝑎1 𝑎2 𝑎3]𝑇. After that, the value of 𝑅0, 𝑅𝑝, and 𝐶𝑝 in the first-order RC model can be 

obtained from Equation 8, which can be used to calculate the model voltage. The SOC result can be 

finally estimated through the use of the extended Kalman filter algorithm. 
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Figure 4. Flowchart for the proposed method for battery SOC estimation 

 

3.3 SOC estimation with an extended Kalman filter 

The joint RLS-based method and extended Kalman filter (EKF) are widely used in parameter 

and state coestimation [43]. The core idea of the estimation is to correct the dynamic states of the 

system and bias states by using the estimated values for the bias state. Since the EKF can only be 

applied to linear systems and ECM as a typical nonlinear model cannot be applied directly, the 

principle of the EKF algorithm used in this paper is to expand the nonlinear model to obtain an 

approximate linearized model, and then the estimation result can be obtained by the EKF. 

The state equation of the nonlinear system can be expressed as follows: 

{
𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘) + 𝑤𝑘
𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘) + 𝑣𝑘

(20) 

where 𝑓  and 𝑔 are the nonlinear functions of the system, 𝑤𝑘  is the process noise, 𝑣𝑘  is the 

measurement noise, and both are independent, zero mean, Gaussian noise. 

The linearized model of the system can be obtained by linearizing the nonlinear function in the 

system by using the first-order Taylor series: 

{
𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + [𝑓(�̂�𝑘, 𝑢𝑘) − 𝐴𝑘�̂�𝑘] + 𝑤𝑘
𝑦𝑘 = 𝐶𝑘𝑥𝑘 + [𝑔(�̂�𝑘, 𝑢𝑘) − 𝐶𝑘�̂�𝑘] + 𝑣𝑘

(21) 

where 𝐴𝑘 and 𝐶𝑘 are the state transition and observation matrices, respectively: 

{
 
 

 
 𝐴𝑘 =

𝜕𝑓(𝑥𝑘 , 𝑢𝑘)

𝜕𝑥𝑘
= [

1 − 𝑇𝑠 𝑅𝑝𝐶𝑝⁄ 0

0 1
]

𝐶𝑘 =
𝜕𝑔(𝑥𝑘, 𝑢𝑘)

𝜕𝑥𝑘
= [1

𝜕𝑈𝑂𝐶
𝜕𝑆𝑂𝐶

]

(22) 

After discretizing the first-order RC model shown in Equation (1) and assuming the state vector 

𝑥𝑘 = [𝑈𝑝 𝑆𝑂𝐶]𝑇, the state equation can be obtained as follows: 
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{
 

 [
𝑈𝑝,𝑘+1
𝑆𝑂𝐶𝑘+1

] = [
1 − 𝑇𝑠 𝑅𝑝𝐶𝑝⁄ 0

0 1
] [
𝑈𝑝,𝑘
𝑆𝑂𝐶𝑘

] + [
𝑇𝑠 𝐶𝑝⁄

𝑇𝑠 𝐶⁄
] 𝐼𝑘

𝑈𝑘 = [1 0] [
𝑈𝑝,𝑘
𝑆𝑂𝐶𝑘

] + 𝑅0𝐼𝑘 + 𝑈𝑂𝐶,𝑘

(23) 

so that the state can be predicted and updated according to the recursive process of the EKF 

algorithm shown in Table 3. 

 

Table 3. SOC estimation based on EKF 

 

(1) Initialization 

{
𝑥0
+ = 𝐸(𝑥0) 

𝑃0
+ = 𝑣𝑎𝑟(𝑥0)

 

(2) Prediction 

{
�̂�𝑘
− = 𝑓(�̂�𝑘−1

− , 𝑢𝑘−1)

𝑃𝑥,𝑘
− = 𝐴𝑘−1𝑃𝑘−1

+ 𝐴𝑘−1
𝑇 + 𝑄𝑘−1

 

(3) Update 

{

𝐾𝑘 = 𝑃𝑥,𝑘
− 𝐶𝑘

𝑇(𝐶𝑘𝑃𝑥,𝑘
− 𝐶𝑘

𝑇 + 𝑅𝑘)
−1

�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘[𝑦𝑘 − 𝑔(�̂�𝑘
−, 𝑢𝑘)]

𝑃𝑥,𝑘
+ = (𝐼 − 𝐾𝑘𝐶𝑘)𝑃𝑥,𝑘

−

 

 

where �̂�𝑘
− is the predicted value for the estimated state, �̂�𝑘

+ is the updated estimated state, 𝐾𝑘 is 

the Kalman gain matrix, 𝑃𝑥,𝑘
−  is the predicted value for the covariance matrix, 𝑃𝑥,𝑘

+  is the updated 

covariance matrix, and 𝑄𝑘  and 𝑅𝑘  is the variance in the process noise and measurement noise, 

respectively. 

After estimation of the SOC by the EKF, 𝑈𝑂𝐶 is calculated by a fit to the SOC-OCV curve to 

obtain the predicted model voltage, as shown in Fig. 2, which can be circularly used in VI-AM-RLS. 

 

 

 

4. EXPERIMENT 

In this section, to analyse the complex battery loading conditions, test subjects were exposed to 

two dynamic testing profiles, including a dynamic stress test (DST) and a federal urban driving 

schedule (FUDS). Figure 5 plots the current and voltage profiles for the DST and FUDS profiles. All 

the experimental data for the LIB used in this paper were obtained from the CALCE battery research 

group of the University of Maryland, which is an open battery test database. [dataset] The 

environmental temperature was set to 25 ℃, and the initial SOC was 80%. As shown in Figs. 6(a) and 

(b), the parameter identification model can be used to accurately predict the voltage response of the 

test battery under two different working conditions. The error between the measured voltage and 

predicted voltage is within 3%, as shown in Figs. 6(c) and (d). The model parameters are identified 

online and offline. In this paper, the experimental parameter identification reference values are 

obtained by offline identification under the noise-free case. The DST condition for the INR18650-20R 

battery at 25℃ tested by the University of Maryland is used for offline parameter identification, where 
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a general method is adopted. The process mainly includes two steps: (1) Because the internal 

resistance 𝑅0 is proportional to the instantaneous voltage drop under the known discharge pulse, which 

can be achieved by injecting a current 𝐼0  and measuring the attenuation of the relevant voltage 

response. (2) The polarization resistance 𝑅𝑃  and polarization capacitance 𝐶𝑃  are estimated by an 

offline least square estimation algorithm. As shown in Figs. 6(e)-(g), the black triangle represents the 

offline parameter identification result, which is provided for reference, and the red line represents the 

online parameter identification result. 

The performance of the framework proposed in this paper is verified by comparison with that 

obtained for current mainstream algorithms, such as RLS, SVM, FOM, LSVPA and RLS-EKF which 

is the most common traditional method. The average errors in the SOC estimation result are shown in 

Table 4. It can be observed that the average error using the VI-AM-RLS proposed in this work is the 

lowest. The average MAE, MAPE and RMSE for the proposed method are 0.64%, 0.71% and 0.85%, 

respectively. 

In addition, in an actual battery management system, we face many complex and changeable 

situations. Different situations lead to different forms of missing data. For example, under 

electromagnetic interference or due to the limitation of sensor equipment, there are occasional random 

losses of individual data; due to the limitation of the data transmission system or computer memory, 

paragraph data or data packets can be lost. 

 

 

Table 4. Error analysis for the model proposed in this work compared to that for other models 

 

Model Average MAE% Average MAPE% Average RMSE% 

RLS [44] 4.24 4.33 4.54 

SVM [45] 2.58 2.69 2.87 

FOM [46] 2.16 2.24 2.35 

LSVPA [47] 1.52 1.67 1.74 

RLS-EKF [48] 1.84 1.95 2.17 

VI-AM-RLS [this work] 0.64 0.71 0.85 
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Figure 5. (a) Current profiles for the DST; (b) voltage profiles for the DST; (c) current profiles for the 

FUDS; (d) voltage profiles for the FUDS. 
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Figure 6. (a) Evolution for the predicted and measured voltages in the DST; (b) Evolution of the 

predicted and measured voltages in the FUDS; (c) Error between the predicted and measured 

voltages in the DST; (d) Error between the predicted and measured voltages in the DST; (e) 

The internal resistance 𝑅0; (f) The polarization resistance 𝑅𝑃; (g) The polarization capacitor 𝐶𝑃. 

 

4.1 Parameter identification and SOC estimation with missing data in the DST 

In the DST condition, the voltage signals are subjected to random single data losses, and the 

measured voltage is compensated by the method proposed above.  
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Figure 7. (a) Parameter identification with complete data; (b) parameter identification with a data loss 

rate of Pr{𝛼1(𝑘) = 0} = 0.1; (c) parameter identification with a data loss rate of Pr{𝛼1(𝑘) =
0} = 0.2. 
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The battery random single data loss rates are set as Pr{𝛼1(𝑘) = 0} = 0.1 and Pr{𝛼2(𝑘) = 0} =

0.2. The traditional method involves the combination of RLS and EKF for parameter identification. In 

addition, to simulate the noise environment, the variance in the current and voltage noise are added as 

𝜎𝑣
2 = 20𝑚𝑉2 and 𝜎𝑖

2 = 20𝑚𝐴2, respectively. 
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Figure 8. (a) SOC estimation result with complete data; (b) SOC estimation result with a data loss rate 

of Pr{𝛼2(𝑘) = 0} = 0.1; (b) SOC estimation result with a data loss rate of Pr{𝛼2(𝑘) = 0} =
0.2. 

 

The parameter identification results are shown in Fig. 7, and the reference value is the 

parameter identification result obtained under offline conditions. The result of SOC estimation is 

shown in Fig. 8, and the reference SOC obtained using the ampere hour integration method under a 

noiseless environment and with complete input and output data is shown for comparison. When the 

data loss rate is 10%, the traditional SOC estimation method and the method proposed in this paper can 

quickly converge to the reference value in the initial stage. At the same time, the proposed method 

maintains high robustness and converges near the reference value. With an increase in the missing data 
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rate to 20%, the traditional method gradually deviates from the reference value and converges again 

after a long period of iteration. The fluctuation in the traditional method is more intense and difficult to 

converge, and a final error of 11.32% is obtained. In contrast, the proposed method still converges near 

the reference value in these cases and maintains high robustness. The MAE and RMSE for the two 

cases is shown in Table 4. 

 

 

Table 5. Comparison of MAE and RMSE with single data losses 

 

Loss rate 
10% 20% 

MAE RMSE MAE RMSE 

VI -AM-RLS 0.92% 0.96% 2.56% 2.63% 

RLS 3.34% 3.57% 11.32% 11.51% 
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Figure 9. (a) The state of data packet losses with Pr{𝛽1(𝑘) = 0} = 0.1; (b) The state of data packet 

losses with Pr{𝛽2(𝑘) = 0} = 0.2. 

 

For the case of data packet losses, the data loss rates are set to Pr{𝛽1(𝑘) = 0} = 0.1 and 

Pr{𝛽2(𝑘) = 0} = 0.2. The state of data packet losses is shown in Figs. 9 (a) and (b), where ‘0’ and ‘1’ 

indicate the missing and available data packets, respectively, and the length of every data loss packet is 

1%. Similar to the single data loss, the variance in the current and voltage noise is added as 𝜎𝑣
2 =

20𝑚𝑉2 and 𝜎𝑖
2 = 20𝑚𝐴2, respectively. 
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Figure 10. (a) Parameter identification with a data packet loss rate of Pr{𝛽1(𝑘) = 0} = 0.1 ; (b) 

parameter identification with a data packet loss rate of Pr{𝛽1(𝑘) = 0} = 0.2. 
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Figure 11. (a) SOC estimation result with a data packet loss rate of Pr{𝛽1(𝑘) = 0} = 0.1; (b) SOC 

estimation result with a data packet loss rate of Pr{𝛽1(𝑘) = 0} = 0.2. 

 

The parameter identification results are shown in Fig. 10. It can be observed that for the case of 

data packet loss, the estimated SOC results shown in Fig. 11(a) for the proposed method also show a 

higher convergence, less fluctuation and less error than the result obtained using the traditional method 

shown in Fig. 11(b). In addition, the parameter identification result for RLS shows obvious 

fluctuations, which illustrates that although the traditional method has a degree of accuracy in SOC 
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estimation, it cannot accurately reflect the identification results obtained for circuit parameters in the 

ECM. The MAE and RMSE are shown in Table 5. 

 

Table 6. Comparison of the MAE and RMSE with data packet losses 

 

Loss rate 
10% 20% 

MAE RMSE MAE RMSE 

VI-AM-RLS 2.82% 2.91% 3.11% 3.19% 

RLS 13.23% 13.65% 15.44% 15.92% 

 

4.2 Parameter identification and SOC estimation with missing data packets in FUDS 

To further demonstrate the performance of the proposed method under different working 

conditions, experimental verification under the condition of data loss in a FUDS test was carried out in 

this paper. The voltage signals were subjected to a combination of random single data losses and data 

packet losses. The battery data loss rates were set as Pr{𝛾1(𝑘) = 0} = 0.2 and Pr{𝛾2(𝑘) = 0} = 0.3, 

where 𝛾1(𝑘) = 𝛼1(𝑘) + 𝛽1(𝑘) ; 𝛾2(𝑘) = 𝛼1(𝑘) + 𝛽2(𝑘) . To simulate the noise environment, the 

variance in the current and voltage noise was added as 𝜎𝑣
2 = 20𝑚𝑉2 and 𝜎𝑖

2 = 20𝑚𝐴2, respectively. 
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Figure 12. (a) Parameter identification with a data packet loss rate of Pr{𝛾1(𝑘) = 0} = 0.2 ; (b) 

parameter identification with a data packet loss rate of Pr{𝛾1(𝑘) = 0} = 0.3. 
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Figure 13. (a) SOC estimation result with a data packet loss rate of Pr{𝛾1(𝑘) = 0} = 0.2; (b) SOC 

estimation result with a data packet loss rate of Pr{𝛾1(𝑘) = 0} = 0.3. 

 

When the combined data loss rate is set as Pr{𝛾1(𝑘) = 0} = 0.2, the parameter identification 

results are shown in Fig. 12(a). The traditional method shows a slow convergence speed and drastic 

fluctuation. The method proposed in this paper shows small fluctuations and high accuracy and can 

quickly converge to the vicinity of the reference value. Both the traditional and proposed methods can 

finally converge to the reference value. The error for SOC estimation is shown in Fig. 13(a). The final 

error for the proposed method is less than 3%, while the error for the traditional method is more than 

15%. 

When the combined data loss rate is increased to Pr{𝛾2(𝑘) = 0} = 0.3, as shown in Fig. 12 (b), 

the parameter identification fluctuation for the proposed method is drastic in the initial stage and 

converges quickly, while the traditional method cannot converge to the reference with increasing data 

loss. The final estimated SOC error for the traditional method is more than 30%, and the final error for 

the method proposed in this paper is less than 4%. When the rate of missing data reaches 30, the 

traditional method cannot accurately reflect the identification results obtained for the circuit 

parameters in the equivalent circuit model and the SOC estimation. The MAE and RMSE for the 

estimation results are shown in Table 6. 

 

Table 7. Comparison of the MAE and RMSE obtained for combined data losses 

 

Loss rate 
20% 30% 

MAE RMSE MAE RMSE 

VI -AM-RLS 2.88% 2.94% 3.43% 3.51% 

RLS 15.44% 15.87% 32.86% 34.47% 
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Therefore, the experiment based on the FUDS test further proves the adaptability and 

robustness of the method proposed for the situation of combined data loss. 

 

 

 

5. CONCLUSION 

In this paper, a recursive least square method based on a variable interval auxiliary model is 

proposed for parameter identification and SOC estimation for LIBs when experiencing data loss and 

noise interference. This conclusion follows from the facts listed below: 

1). The random missing data were compensated for by an auxiliary model so that VI-AM-RLS 

was applied to identify the model parameter. In addition, the EKF was combined to eliminate the SOC 

estimation error caused by environmental noise. 

2). Simulation results further demonstrate the feasibility and efficiency of the proposed method. 

Even if the data loss rate is set to 30%, the accuracy and convergence for the estimation results also 

show good performance. 

3). Under two different working conditions and various numerical simulations, the maximum 

SOC estimation error for the proposed method is 3.19% and 3.51%, respectively, which is far less than 

the 15.92% and 34.47% obtained for the RLS. 

However, the proposed method is only validated in DST and FUDS at 25℃. There are many 

other factors that are not considered, such as the influence of temperature and battery ageing. Both of 

these factors can lead to an error in the SOC-OCV curve and further affect the parameter identification, 

which will be included in future work. 
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