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The state of health (SOH) estimation for Lithium-ion batteries (LIBs) plays an important role in battery 

management system (BMS), and the data-driven based SOH estimate methods mainly depend on the 

measurement data which is usually corrupted by non-Gaussian noise or other random disturbances 

because BMS usually works under complex environmental conditions. To achieve more accurate and 

robust SOH estimation, a novel robust extreme learning machine (ELM) based SOH estimation method 

is proposed. An improved Blinex Loss (IB-Loss) function is defined to replace the mean square error 

(MSE) loss in traditional ELM, and a novel robust estimation method called ELM with IB-Loss (IB-

ELM) is derived, which can reduce the effect of noise. Through the comprehensive analysis of the aging 

experimental data of LIBs, we extract health features (HFs) from the charging data as the input of the 

estimation model, and the gray relational analysis (GRA) is utilized to evaluate the correlation between 

HFs and SOH to determine the rationality of selected HFs. Finally, the battery datasets provided by 

NASA are used as the training set and testing set to verify the effectiveness of the proposed method, and 

experimental results show that it has higher estimation accuracy than other existing data-driven methods 

under non-Gaussian noise conditions.  

 

 

Keywords: State of health estimation; Extreme learning machine; Improved Blinex Loss; Non-Gaussian 

noise 

 

 

1. INTRODUCTION 

The emergence of new energy electric vehicles (EVs) has just been changing the existing energy 

consumption mode dominated by oil, greatly reducing the utilization of non-renewable energy and the 

release of various exhaust pollutants, and playing a crucial role in building a green and clean environment. 
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LIBs have become the best choice for new energy EVs and energy storage systems [1, 2] because of 

their high energy density, long service life, high power tolerance, high rated voltage, light weight, low 

self-discharge rate, no memory effect and environmental friendliness [3]. But the capacity of LIBs will 

gradually decline with the increasing of the charge-discharge cycle number, and its performance will 

deteriorate due to aging and operating environment [4], which seriously affects the driving safety of EVs 

and the safety of human life and property. Consequently, achieving accurate SOH estimation for LIBs 

is an essential part of the BMS. Accurate SOH estimation can not only make full use of the performance 

of LIBs, but also improve more safe and reliable protection for the battery, so as to greatly prolong the 

service life of the battery system [5, 6]. 

Recently, more and more methods have been developed to estimate the SOH of LIBs. Generally 

speaking, the existing SOH estimation methods can be roughly divided into three categories: direct 

measurement methods, model-driven (MD) methods and data-driven (DD) methods. Direct measure- 

ment methods obtain the capacity or impedance of LIBs by specific experimental manipulations as well 

as calculations. The most common methods are open circuit voltage (OCV) method [7, 8] and coulomb 

counting method [9]. These methods are simple, convenient, easy to implement and with low computa- 

tional complexity. However, the OCV method demands the battery to stand for a long time to achieve 

stable SOH estimation and Coulomb counting method can obtain the SOH of the battery only under the 

complete charge-discharge process. Therefore, these methods are not only time-consuming and labor-

intensive, but also easily affected by the accuracy of voltage and current acquisition, making it difficult 

to achieve online estimation. In addition, measuring the battery impedance to estimate the current SOH 

of the battery is one of the methods currently used, which has high accuracy but easily affected by 

ambient temperature and measuring equipment. 

To solve the problems brought by direct measurement methods, the MD methods are proposed. 

The MD methods simulate the aging phenomenon of LIBs by combining measurement data (voltage, 

current, and temperature) with electrochemical models (EMs) [10] or equivalent circuit models (ECMs), 

and estimate the battery's SOH directly or indirectly. The EMs comprehensively analyze the internal 

mechanism and chemical reaction of LIBs, establish the related mathematical equation, and construct 

the aging model from the essence of LIBs. Although the EMs can analyze the aging process of LIBs 

from the chemical reactions level, which have clear physical significance and high prediction accuracy, 

the construction of the EMs must clarify the complex chemical reactions inside LIBs, so more physical 

parameters inside LIBs need to be measured, which will lead to high computational complexity and great 

difficulty in practical application. The ECMs use the existing knowledge of circuit theory to fully 

simulate the operating characteristics of the battery with relatively small amount of calculation and high 

model accuracy, which are the most widely used battery model at present. Common ECMs include Rint 

model, Thevenin model, first-order RC model and second-order RC model [11], etc., which are often 

combined with various filters, such as Kalman filter (KF) [12-16], particle filter (PF) [17-20], H∞filter 

[21], or observers [22, 23] to estimate SOH. Although the above methods can achieve accurate 

estimation, there are still many shortcomings that their performance is highly dependent on the stability 

and accuracy of the developed battery model or observer, and the accurate battery model will seriously 

increase the computational complexity [24]. 

With the emergence of cloud devices and the development of artificial intelligence technology, 
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machine learning algorithms have made great progress in the field of power battery SOH estimation, 

forming DD battery SOH estimation methods. DD methods have received increasing attention from 

academia and industry due to the advantages of not involving complex physical models, flexibility, and 

model-free nature. This method completely relies on battery data, only analyzes and considers the factors 

affecting aging of LIBs from the data to establish estimation model, and achieves accurate SOH 

estimation with the least possible human intervention. DD model building greatly depends on the 

selected HFs, and suitable HFs are a prerequisite for accurate SOH estimation of LIBs which are usually 

extracted from online measurement data. Reference [25] proposed a new method for SOH estimation 

based on the combination of multiscale logistic regression (LR) and Gaussian process regression (GPR) 

which can not only track the degradation behavior of LIBs as they change, but also reduce the effects of 

local regeneration phenomena. Xiong et al. [26] improved the standard support vector machine (SVM) 

through weighting function and linear equation, and obtained an online SOH estimation method based 

on weighted least squares SVM (WLS-SVM), which improved the accuracy and robustness of the model. 

To address the problem of low accuracy of traditional estimation methods, Li et al. [27] achieved more 

accurate and robust SOH estimation by using an improved ant lion optimization algorithm to optimize 

the support vector regression (SVR) model. Except the methods mentioned above, many DD methods 

have also been used to achieve accurate SOH estimation, such as random forest regression (RFR) [28], 

radial basis function neural network (RBFNN) [29], relevance vector machine (RVM) [30], long short-

term memory network (LSTM) [31] and so on. Although these methods can achieve good SOH 

estimation, the large amount of training data and their own complex model structure are unavoidable, 

which will undoubtedly make the training time longer, computationally more intensive, and require 

iterative adjustment, eventually leading to a decrease in the speed and accuracy of estimation. Moreover, 

achieving stable and accurate estimation is also an essential goal in the operation of EVs. To solve the 

above problems, Huang et al. [32] proposed a novel neural network method-ELM with faster learning 

speed, stronger generalization ability and higher computational efficiency which has been widely used 

in regression and prediction problems [33, 34]. Taking advantage of ELM, Guo et al. [35] proposed an 

ELM model with an ensemble learning structure for SOH estimation to reduce the estimation error of a 

single ELM model. Chen et al. [36] developed SOH estimation model for batteries based on a metabolic 

ELM which achieves SOH estimation for different types of batteries by building a degradation state 

model and adding error compensation. Li et al. [37] used the heuristic Kalman filter (HKF) algorithm to 

optimize the ELM and obtained an optimized estimation model HKF-ELM. Compared to existing 

models, faster and more accurate SOH estimation is achieved. In addition, considering the problem that 

the external information (voltage, current and temperature, etc.) of the battery is unstable and easy to 

fluctuate, Fu et al. [38] chose impedance as the HFs reflecting the aging state of the battery from the 

perspective of electrochemical impedance spectrum (EIS), and then realized the fast acquisition of EIS 

by improved fast Fourier transform (FFT), and finally realized the SOH estimation for LIBs based on 

the regularized ELM. In a word, DD methods have many obvious advantages, especially ELM, which 

has been rapidly developed in the field of SOH estimation with its excellent performance. 

However, the BMS often works in complex environmental conditions, which makes the 

measurement data used for model training vulnerable to non-Gaussian noise or other random 

disturbances. In this case, the DD methods with MSE may not be robust to SOH estimation, because 
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MSE is optimal when the data obey Gaussian distribution. Hence, the traditional ELM based on MSE is 

not suitable for SOH estimation in complex environment. How to design robust DD model becomes an 

urgent task for SOH estimation. Recently, a simple and robust Blinex loss (B-Loss) function is defined 

in [39] to design robust methods for credit risk evaluation. In this work, the square of error is used to 

replace the error in the definition of the original B-Loss, and then an IB-Loss is defined, which can be 

used as a novel robust cost for machine methods. Combining the outstanding performance of the ELM 

and B-Loss, we incorporate the IB-Loss into the ELM framework to study a new robust estimation model, 

called IB-ELM model and the proposed model is used to estimate SOH to address the problem of non-

Gaussian noise disturbance in the measurement data used for training. The main contributions of this 

paper are as follows: 

(1) Based on the B-Loss function, an IB-Loss function is defined, which can be used as a new 

robust learning criterion for neural network models due to its wide performance surface. 

(2) Combining the traditional ELM with IB-Loss, a new robust ELM model is obtained, which 

greatly improves the robustness and estimation accuracy of the traditional ELM.  

(3) Based on the NASA battery datasets, HFs are extracted from the charging data as the input 

of the model, and then GRA is used to evaluate the correlation between HFs and SOH to determine the 

rationality of the selected HFs. Next, IB-ELM model is used to estimate SOH under the interference of 

non-Gaussian noise. Through cross-experimental verification, this approach not only achieves robust 

SOH estimation, but also has high estimation accuracy.  

The other work of this paper is organized as follows. Section 2 introduces the ELM model and 

defines the IB-Loss. Section 3 deduces the IB-ELM model and introduces the process of SOH estimation. 

Section 4, the performance of the proposed model is verified by experimental simulation. Section 5 

summarizes the full text. 

 

 

2. RELATED WORK 

2.1. Extreme learning machine  

As a single hidden layer feed-forward neural network (SLFNN) model, the ELM with random 

hidden layer nodes can obtain the only optimal solution after one calculation, i.e., there is no need for 

iterative adjustment. Therefore, it can perform with high learning efficiency, fast computing speed and 

strong generalization ability. The topology of ELM is shown in Fig.1, in which three layers are included 

(input layer, hidden layer and output layer). The neurons of each layer are fully connected. 
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Figure 1. The topology of ELM. 

 

 

Here setting the training samples as 1{ , }N

i i it x , where 1 2[ , , , ]T N

i i i iNx x x x  is the input vector and 
D

it   is target response. Then the output of the SLFNN with L hidden nodes can be defined as 

1
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where ( )g  represents the activation function which usually is sigmoid function, 1 2[ , , , ] d

j j jdj w w w w

and ( 1,2, , )j j Lb    are the input weight and bias of the jth hidden node, and j   denotes the weight 

of the link connecting the jth hidden node to the output node. Then the matrix form of the equation (1) 

can be expressed as 

βY = H                                                                         (2) 
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stands for the output matrix of the hidden layer. 

Usually, the output weight vector β can be obtained by minimizing MSE as 
2

min


βH T                                                                    (4)                                             

where || ||  denotes the Fresenius norm and 1 2( , , , )T

Nt t tT is the target response vector. The 

optimal solution of equation (4) can be solved by gradient descent method as 
†β H T                                                                        (5)                                                

Where 1† ( )T TH H H H  is the Moore-Penrose generalized inverse which can be obtained by 

orthogonal projection method when T
H H  is nonsingular. In addition, another learning criterion of the 

ELM with a regularization parameter to prevent over-fitting can be expressed as  

2 2 2 2

MSE 2 2 2

1

( ) || || || || || ||
N

i

i

J e  


    β β β βH T                                            (6)                                  

where i i ie t y   is the error between the ith target response and the ith actual output. The optimal 

solution of β under the loss in (6) can be obtained by a pseudo inversion operation as 
1

T T


   β IH HH T                                                           (7) 
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2.2. The improved Blinex loss  

The traditional B-Loss is bounded and asymmetric, and it is robust to noise [39]. The expression 

is as follows: 
1 1

( ) [1 ]
1 ( ( ) 1)

L e
b exp ae ae

 
  

                                                    (8) 

where ( )exp   represents exponential function, e is the error, a, b and are free parameters which 

control the performance shape of the proposed loss function.  

However, it is hard to obtain an explicit solution when the B-Loss is used as the error criterion in 

ELM framework. To address this problem, we define an IB-Loss by using the square of error to replace 

the error in original B-Loss, which not only inherits the boundness of the traditional B-Loss, but also has 

symmetry, and can be solved very efficiently by using gradient optimization techniques. The IB-Loss is 

defined as (9) 

2 2

1 1
( ) [1 ]

1 ( ( ) 1)
L e

b exp ae ae
 

  
                                                    (9) 

Fig.2 draws the IB-Loss image under distinct parameter combinations. From these figures, we can 

clearly see that each parameter has different effects on the performance of the function. Next, we will 

describe these three parameters in detail from several different angles. 

The positive and negative of parameter a play a decisive role in the change trend of loss function. 

When a > 0, the IB-Loss function shows an exponential trend with the increase or decrease of e, while it 

changes almost linearly when a < 0.Therefore, the change trend of the IB-Loss function is affected by 

parameter a. For different changes of different problems, the corresponding parameter value a can be 

selected. In the IB-Loss function, ae2 can be regarded as a whole. At this time, the change of a has an 

impact on the smoothness of the IB-Loss function. When a is positive, the larger value causes the steeper 

curve and the smaller value brings about the smoother curve when a is negative, as shown in Fig.2(a).As 

shown in Fig.2(b), parameter b reflects the steepness of the IB-Loss function. The larger b, the steeper 

the function curve. In addition, it can be clearly seen that the change degree of loss curve is much greater 

than that when a > 0. The parameter  determines the peak range of the IB-Loss function which is set 

between 0 and 1/  . A larger parameter  will lead to a smaller function peak, as shown in Fig.2(c). 

According to the above analysis, we know that the data by measure is easily contaminated by various 

noises [40], and the bounded IB-Loss helps to enhance the robustness.  

 

 

(a)  
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(b) 

 

(c) 

 

Figure 2. Improved Blinex loss function with different parameters a (b = 0.01, = 1), b (a = 5, = 1) 

and  (a = 5, b = 0.1). 

 

 

3. ELM WITH IB-LOSS FOR SOH ESTIMATION 

3.1. ELM with IB-Loss 

In this section, a novel robust ELM model with the IB-Loss is developed, we called it as IB-ELM 

model. In order to derive the novel ELM under the IB-Loss , a new error criterion with regularization 

term is further defined as 
2
2
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Note that unlike the MSE loss function in equation (6), the upper limit of the new loss function is 

1.0, so it is not easy to be affected by large errors. Therefore, we use the gradient descent method to 

minimize loss function in equation (10) to find the optimal solution of the weight β . By solving the partial 

differential of the IB-Loss function with respect to the β  and setting the result equal to zero, we can 

obtain the optimal solution form of the β  as 
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where / abN    and   is a diagonal matrix with elements ( )ii if e  , with 
2 2 2 2( ) (1 exp( )) / (1 (exp( ) 1))i i i if e ae b ae ae                                     (12) 

It can be seen from equation (11) that the form of the optimal solution of β  is not closed, and its 

value can be obtained only by solving the matrix   of the error term on the right side of the equation.So 

the equation (11) is a fixed-point equation in reality. Finally, this paper obtains the best result of weight 

in this way. The specific process of the algorithm is shown in Table 1. 

 

 

Table 1. IB-ELM model. 

 

Algorithm: IB-ELM 

Input: samples 1{ , } , ,N d

i i i i it t  x x  

Output: weight vector β  

Parameters setting : number of hidden nodes L, regularization parameter

,  maximum number of iterations M, the parameters of loss function a, b,

1 and end condition  

Initialization: Set 0 0β  and randomly initialize the parameters jw and jb

( 1,2, , )j L  

1: for k=1,2,…,M do 

2:   Calculation the error based on 11k i i i ke t   hβ β:  

3:   Calculation the diagonal matrix ( )ii if eΛ :Λ  

4:   Update the weight vector 1[ ]T T
k k      β β I: H H H T  

5:   Until 1( ) ( )IB k IB kJ J β β| |<  

6: end for  

 

3.2. SOH estimation using the IB-ELM  

3.2.1. Definition of SOH 

SOH as an evaluation index reflecting the current aging state of LIBs, has no definite standard at 

present. Common characterization methods include battery capacity, internal resistance and so on [41], 
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and the battery capacity is the most widely used characterization method. In this paper, we define the 

capacity as the current SOH of LIBs, as:  

100%current

new

C
SOH

C
                                                               (13)  

where newC  and currentC  denote the rated and current capacity, respectively. The SOH of newly 

manufactured LIBs is 100%.With the increasing use of LIBs, the aging state of batteries gradually 

intensifies, leading to the decline of SOH. When the capacity of the battery drops below 80% of the initial 

capacity, it is generally considered that it is no longer suitable for further use, and a new battery should 

be replaced for EVs immediately. 

 

3.2.2. Data Analysis 

In order to evaluate the performance and stability of the proposed model, the 18650 lithium battery 

public datasets with the rated capacity of 2Ah provided by NASA Ames Research Center [42] was 

selected as the data source of this article. In the following experiments, the B5, B6 and B7 battery 

datasets were used to extract HFs and SOH estimation. The accelerated aging test of LIBS was completed 

by continuously charging and discharging the battery at room temperature of 24°C. The specific process 

of charging was divided into constant current (CC) charging and constant voltage (CV) charging. First, 

the LIBs were charged with a constant current of 1.5A until the battery voltage reached the maximum 

cut-off voltage of 4.2V, and then continued to charge the battery with a constant voltage of 4.2V until 

the charging current dropped below 20mA.The discharge process was mainly to discharge the LIBs at a 

constant current of 2A until the battery voltage droped below 2.7V, 2.5Vand 2.2V respectively. The 

specific parameters related to NASA batteries are detailed in Table 2. The capacity change curves of 

NASA batteries are shown in Fig.3. 

 

 

Table 2. Parameters of NASA Batteries 

 

Properties NASA Battery 

Cathode material LFP 

Shape Cylinder 

Nominal capacity (mAh) 2000 

Charge mode CC/CV 

Maximum cut-off voltage (V) 4.20 

Minimum cut-off voltage (V) 2.7、2.5、2.2 

End-of-charge current (mA) 20 

Charging current (A) 1.5 

Discharge current (A) 2 
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Figure 3. Capacity change curves of NASA batteries. 

 

3.2.3. Feature Extraction 

The HFs have a significant impact on understanding and estimating the current SOH of LIBs, 

and thus they need to be easy to obtain, simple to compute, and effective against interference. During 

the operation of EVs, the discharge mode of batteries is random and unpredictable [43] due to the 

complexity and uncertainty of the environment, so it is difficult to achieve accurate SOH estimation 

through discharge data. However, in most cases, the charging mode of LIBs is unified, and the energy is 

obtained from the power grid in a specific mode. Therefore, we choose relatively stable charging data 

and capacity change curves to extract HFs and realize SOH estimation. 

 

 

(a) Voltage Curve 

 

(b) Current Curve 
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(c) Temperature Curve 

 

Figure 4. CC-CV charging profiles under different cycles. 

 

In the accelerated aging experiment of LIBS, as the number of charge-discharge cycles gradually 

increases, we can clearly see from the charging curves that the charging time of the battery under the two 

modes has changed significantly. These changes are closely related to the aging of batteries, and reflect 

the changes of battery health status to a certain extent. Fig.4 shows the CC-CV charging curves of B5 

battery under different cycles. As can be seen from Fig.4 (a), the charging duration in CV mode increases 

with the increase of the number of cycles. CV duration directly affects the charging capacity of the battery 

in CV mode, and also represents the polarization characteristics of the battery. As the number of cycles 

increases, the aging and polarization of the battery will gradually intensify, resulting in an increase in CV 

duration. In the actual operation of EVs, it is difficult to obtain the current remaining capacity and usage 

of batteries. Therefore, the relationship between CV duration and SOH is found by analyzing the charging 

voltage curves of LIBs, and the CV duration is extracted as a HF and expressed as F1, as shown in Fig.5. 

 

CV duration

F1

CV modeCC mode

 

 

Figure 5. Selection of feature in charging voltage curve. 
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CV mode
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Figure 6. Selection of feature in charging current curve.  
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Figure 7. Selection of feature in charging temperature curve. 

 

Fig.4(b) gives the charging current curves under different cycle times. We can see that the 

charging time in the CV stage increases significantly with the cycle experiment, which makes the charging 

capacity in the CV mode also tend to increase. In addition, there are also large fluctuations in the CV 

charging capacity around some cycle times. It can be seen that there is also a certain correlation between 

CV charging capacity and SOH. The CV charging capacity is extracted as another HF and denoted as F2, 

as shown in Fig.6. 

When LIBs are charging, the variation curves of its shell temperature with the number of cycles 

is shown in Fig.4(c). As the increase of cycle times, the maximum temperature that LIBs can reach during 

the charging process shows a trend of first increasing and then decreasing, and the time to reach the 

maximum temperature point is gradually advanced. This is because the aging of LIBs brings about the 

continuous increase of internal resistance, so that the heat generated by the battery during CC process also 

increases, which in turn leads to a gradual increase in the maximum temperature of the battery. However, 

as the aging degree intensifies, the increase of the internal resistance of the battery gradually slows down, 

and CC duration is also significantly shortened, which eventually leads to a gradual decrease in the heat 

generated by the battery, and thus the maximum temperature that the battery can reach during charging 

will also decrease. To sum up, by analyzing the temperature change law of LIBs during charging, the 

duration of reaching the maximum temperature is selected as a HF, expressed as F3, and as shown in Fig.7. 

For further analysis and comparison, all obtained HFs were normalized. 
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3.2.4. Gray Relational Analysis for Extracted Features with SOH 

In practice, the accuracy of the estimation model benefits from the selection of input vectors, 

which are affected by the actual application scenario and the correlation between HFs and estimated 

objects.  

 

Given data set

Determine the 

analysis sequence

Nondimensionalization

Calculate the grey 

correlation coefficient

Calculating the 

relation degree

Reference sequence

n is the sequence length

Comparison sequence

     represent F1-F3

( )
( ) i

i

i

x k
x k

x


     is the resolution coefficient, the smaller the   , 

the stronger the resolution .      is usually taken as 

0.5.

 



{SOH , 1,2,3, , }k k n Y{ ( )}ix kX

ix

 
1

1
, ( )

m

i i i

k

r k
m




 X Y

min min SOH ( ) max max SOH ( )
( )

SOH ( ) max max SOH ( )

k i k i
i k i k

i

k i k i
i k

x k x k
k

x k x k






  


  

 

 

Figure 8. The specific implementation flow chart of GRA. 

 

Therefore, appraising the correlation between SOH and HFs is a significant step to determine the 

input variables of the model. In order to determine the rationality of the selected HFs, GRA is used to 

evaluate the relationship between SOH and HFs [44] in this work. The principle of GRA is to measure 

the degree of correlation between factors according to the similarity or difference of development trends 

between factors. If the change trend of the two factors is consistent, the correlation degree between them 

is large, on the contrary, the correlation degree is small. The specific implementation flow chart of GRA 

is shown in Fig.8.Table 3 gives the GRA of three HFs and SOH. According to the evaluation rules of 

GRA, the closer the grey correlation degree r is to 1, the stronger the correlation is. GRA results show 

that the correlation between each HF and SOH is greater than 0.5, so the HFs selected in this paper are 

reasonable. 

 

Table 3. GRA results between SOH and HFs. 

 

 
NASA battery 

B5 B6 B7 

F1 0.5470 0.6191 0.5767 

F2 0.5499 0.5251 0.5975 

F3 0.8306 0.7539 0.6949 
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3.2.5. Evaluation Criteria 

In order to evaluate the estimation performance of the proposed method, the maximum absolute 

error (MAE), MSE, root mean square error (RMSE) and symmetric mean absolute percentage error 

(SMAPE) are used as the criteria to evaluate the performance of the model. The aforementioned indexes 

can comprehensively evaluate the average estimation performance, of which smaller value implies better 

estimation accuracy , and they are defined as: 
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                                                      (14)  

where N is the total number of samples, iy  and ˆ iy  are the measured value and estimated value of 

the ith sample. 

To sum up, the specific process of the network model for SOH estimation proposed in this paper 

is as follows: 

Step 1: Data collection. The data (voltage, current and temperature) obtained from each charge 

discharge cycle will be used to select the HFs, and then form the input vector. The SOH determined after 

each charge discharge cycle can be used as the output of the model, which can be represented as 1{ , }N

k k kx y , 

and each sample can be written as [SOH ]k ky .  

Step 2: Feature extraction. The voltage, current and temperature change curves are obtained from 

the charging data in Step 1, and then HFs related to SOH change are selected, denoted as 1 2 3[F ,F ,F ]k x . 

Step 3: Correlation analysis. The correlation between HFs and SOH is calculated by GRA to 

prove the rationality of the selected HFs. 

Step 4: Formation of training and testing sets. The suitable training and testing sets are 

determined with the data of charge-discharge cycles under different capacity changes. 

Step 5: Data preprocessing. The unified normalization of the extracted HFs can not only speed 

up the calculation speed of the model, but also increase the estimation accuracy of the model. 

Step 6: Parameter setting. Selecting suitable static and dynamic parameters for IB-ELM to 

facilitate different data distribution problems. 

Step 7: Model training. By using the training data to train the proposed IB-ELM model to obtain 

the optimal weight vector. 

Step 8: Model testing. When the model training is completed, we input the test data into the 

trained network model to obtain the corresponding SOH estimation. Through the above-mentioned 

evaluation criteria (MSE, RMSE, MAE and SMAPE), we can distinctly understand the estimation 

performance of each model. Fig.9 shows the specific flow of IB-ELM for SOH estimation. 
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Figure 9. Flow chart of SOH estimation. 

 

 

4. RESULTS AND DISCUSSION 

Since BMS usually works under complex environmental conditions, the real SOH data are 

vulnerable to non-Gaussian noise or other random interference, which makes it difficult to obtain the 

actual data through the measurement method, which may eventually lead to measurement errors in the 

data used for model training. Thus, the noise interference in SOH data cannot be ignored. In this chapter, 

we carry out experimental simulation and compare it with conventional neural network methods to verify 

the function of the method studied in this paper under the interference of non-Gaussian noise. 

The non-Gaussian noise ( )v i is a weighted combination of two noises in the form of

( ) (1 ( )) ( ) ( ) ( ))v i a i A i a i B i   , where ( )a i  is a binary independent identically distributed process with 

probability mass Pr{ ( ) 1} ,Pr{ ( ) 0} 1 (0 1).a i c a i c c       ( )A i is background noise and ( )B i is abnor- 

mal noise. ( )A i and ( )B i  are independent of each other and both are independent of ( )a i with variances
2

A and 2

B . Generally, the variance of ( )B i  is much larger than the variance of ( )A i , so ( )B i  can produce 

large outliers. In this section, c is set to 0.05. ( )B i is the zero-mean Gaussian noise with 2 2.0B   and 

( )A i  is the mean noise uniformly distributed in [0, 0.1]. In addition, all experiments were completed 

under the interference of non-Gaussian noise ( )v i . 

 

Case 1 SOH estimation under B5 as the training set 

Based on the aging data of NASA battery datasets, the proposed method is experimentally 

verified and analyzed, and compared with the existing DD methods BP [45], ELM [38], RBFNN [29], 
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SVM [26] and RVM [30]. The parameters of all models and the experimental environment should be as 

consistent as possible. As shown in Table 4, B5, B6 and B7 are training set and testing set respectively 

to realize cross-validation. And the values of free parameters of IB-ELM model under different 

conditions are also given in Table 4. Moreover, considering the interference of non-Gaussian noise, the 

number of hidden layer neurons in BP, ELM, RBFNN and IB-ELM is 10. Finally, the average values of 

several independent Monte Carlo experiments are given to ensure the validity and reliability of the 

results. 

 

 

Table 4. Free parameters settings of IB-ELM model and distribution of training and testing sets. 

 

Training set Testing set free parameters 

B5 
B6 3, 2, 1a b     

B7 5, 10, 1a b     

B6 
B5 5, 10, 1a b     

B7 3, 2, 1a b     

B7 
B5 5, 10, 1a b     

B6 3, 2, 1a b     

 

The HFs of B5, B6, and B7 batteries are extracted as the input of the model, and their 

corresponding SOHs are used as the output of the model, and then all models are trained and tested. 

First, we use B5 battery as the training set, B6 and B7 battery as the testing set respectively to verify the 

performance of the proposed model. Fig.10-11 show the SOH estimation results and absolute error 

curves for each model under non-Gaussian noise. Fig.12 presents the performance results of all models 

under different evaluation criteria. It can be clearly seen from Fig.10-11 that BP has great fluctuations 

in the estimation process, with low estimation accuracy and poor effect. This is because BP is a simple 

neural network, which is easily disturbed by noise and is very sensitive to noise. The traditional ELM 

and RBFNN based on MSE is optimal only under Gaussian noise, and thus its performance shows a 

large degradation in the case of non-Gaussian noise.  

 

 

(a) 
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(b) 

 

Figure 10. SOH estimation results and absolute error under different models for B6 with training set B5. 

(a) Estimation results. (b) Absolute Error. 

 

 

 

(a) 

 

(b) 

 

Figure 11. SOH estimation results and absolute error under different models for B7 with training set B5. 

(a) Estimation results. (b) Absolute Error. 

 

 

At the same time, the estimation accuracy and performance of SVM and RVM also decrease 

under the interference of noise. Compared with the above methods, the model proposed in this paper 

still has good stability, robustness and lower estimation error under the interference of non-Gaussian 

noise due to its wider performance surface. For example, when B7 battery is used as the testing set, it 

can be seen from Fig.11 that the mean absolute error of the IB-ELM model is kept below 3%. As shown 

in Fig.12, compared with B6 battery as the testing set, the performance of all models is improved when 
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B7 battery is used as the testing set. In particular, the MSE, RMSE, MAE and MAPE of the model 

proposed in this paper reached 1.89×10
−4

, 1.37%, 1.01% and 2.8×10
−3

 respectively. This is because the 

capacity change curves of B5 battery and B7 battery have the same change trend, and the corresponding 

HFs also have similar change characteristics, leading to the improvement of the estimation accuracy of 

the model. 

 

 

 

(a) 

 

(b) 

 

Figure 12. Results of performance evaluation criteria for different models with different testing sets. 

(a)B6. (b)B7. 

 

Case 2 SOH estimation under B6 as the training set 

Then we take B6 battery as the training set, B5 and B7 battery as the testing set respectively to 

verify the performance of the proposed model. The SOH estimation results and absolute error curves of 

each model under non-Gaussian noise are given in Fig.13-14. The performance results of all models 

under different evaluation criteria are given in Fig.15. It can be seen that the estimation accuracy and 

performance of all models are greatly reduced when the B6 battery is used as the training set. This is 

because the capacity change curve of B6 battery fluctuates greatly compared with B5 and B7. Although 

there are similarities between them, there are still great differences in general. Due to different working 

environments and manufacturing methods, even the same batch or same type of battery will have a very 

different aging process. As a result, all models show large estimation biases under the dual influence of 

non-Gaussian noise and the dataset. Although there are inevitable deviations in the model proposed in 

this paper, it is still within the acceptable range. The mean absolute errors are kept at about 4%.  
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(a) 

 

(b) 

 

Figure 13. SOH estimation results and absolute error under different models for B5 with training set B6. 

(a) Estimation results. (b) Absolute Error. 

 

 

(a) 

 

(b) 

 

Figure 14. SOH estimation results and absolute error under different models for B7 with training set B6. 

(a) Estimation results. (b) Absolute Error. 
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(a) 

 

(b) 

 

Figure 15. Results of performance evaluation criteria for different models with different testing sets. 

(a)B5. (b)B7. 

 

As shown in Fig.15, when the training set is B6 battery and the testing set is B7 battery, the 

corresponding MSE, RMSE, MAE and MAPE of IB-ELM are 3.66×10
−4

, 1.91%, 1.43% and 4.2×10
−3

 

respectively. Thus it can be seen that the model proposed in this paper can achieve better estimation even 

under complex conditions. 

 

Case 3 SOH estimation under B7 as the training set 

Finally, we use B7 battery as the training set, B5 and B6 battery as the testing set to verify the 

performance of the proposed model. Fig.16-17 show the SOH estimation results and absolute error 

curves for each model under non-Gaussian noise. Fig.18 presents the performance results of all models 

under different evaluation criteria. As you can see, the estimated effect is similar to that of Case 1. Here 

we will not go into too much detail. In this case, the model proposed in this paper also has accurate 

estimation accuracy and stability compared to the existing DD methods (BP, ELM, RBFNN, SVM and 

RVM ). As can be seen from Fig.16-17, the mean absolute error mostly stays within 5%, especially when 

the testing set is B5 battery, the mean absolute error is kept around 3%. As shown in Fig.18, since B5 

and B7 battery have similar variation characteristics, the estimation accuracy and performance of all 

models are better than that of B6 battery as the testing set when B5 battery is the testing set, among 

which the model proposed in this paper is optimal. At this time, the MSE, RMSE, MAE and MAPE 

corresponding to IB-ELM are1.46×10
−4

, 1.21%, 0.97% and 2.8×10
−3

, respectively. 
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(a) 

 

(b) 

 

Figure 16. SOH estimation results and absolute error under different models for B5 with training set B7. 

(a) Estimation results. (b) Absolute Error. 

 

 

(a) 

 

(b) 

 

Figure 17. SOH estimation results and absolute error under different models for B6 with training set B7. 

(a) Estimation results. (b) Absolute Error. 
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In summary, the model proposed in this paper can provide more stable and accurate estimation 

results under the interference of non-Gaussian noise. It not only greatly improves the estimation 

performance and accuracy of traditional ELM, but also improves the adaptability of the model to the 

environment. Compared to the existing DD methods, this method can not only estimate the SOH of the 

whole life cycle of LIBs, but also estimate the SOH of different batteries of the same type. In addition, 

through experiments, we have found that the estimation accuracy of the model is not only disturbed by 

non-Gaussian noise, but also affected by the training and testing set. Datasets with closer variation 

characteristics can achieve more accurate estimation. 

  

 

(a) 

 

(b) 

 

Figure 18. Results of performance evaluation criteria for different models with different testing sets. 

(a)B5. (b)B6. 

 

Case 4 SOH estimation under different input variate 

Generally, for the aging data of LIBs, the charging voltage, current and temperature curves of 

each cycle are used to extract the HFs as the input vector of SOH estimation. Therefore, appropriate HFs 

are important factors to realize SOH estimation. The correlation between the selected HFs and SOH has 

been studied by GRA in section 3.2.4, and we will improve the existing experiment to evaluate the 

impact of different HFs on SOH estimation by combining different HFs to form new inputs to the model. 

From Case 1, we know that when B5 battery or B7 battery is used as training set and testing set, more 

accurate SOH estimation can be achieved. Hence, we select B5 battery and B7 battery as the training set 

and testing set of the model in this experiment.  
 

javascript:;
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(a) 

 

(b) 

 

Figure 19. SOH estimation results and absolute error using F3 as input vector under different models. 

(a) Estimation results. (b) Absolute Error. 

 

(a) 

 

(b) 

 

Figure 20. SOH estimation results and absolute error using F1-F3 as input vector under different models. 

(a) Estimation results. (b) Absolute Error. 
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(a) 

 

(b) 

 

Figure 21. SOH estimation results and absolute error using F1-F2 as input vector under different models. 

(a) Estimation results. (b) Absolute Error. 
 
 

 

(a) 

 

(b) 

Figure 22. SOH estimation results and absolute error using F1-F2-F3 as input vector under different 

models. (a) Estimation results. (b) Absolute Error. 
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Relevant parameters settings are the same as Case 1. Fig.19-22 show the SOH estimation results 

and absolute error curves under different combinations of HFs (including F3, F1-F3, F1-F2, F1-F2-F3), and 

Table 5 shows the performance results of different models under all evaluation criteria. 

 

 

Table 5. Results of performance evaluation criteria under different input variable. 

 

Input   

vector 
Method MSE RMSE MAE SMAPE 

F3 

BP [45] 1.62E-03 0.0402 0.0346 0.0097 

ELM [38] 9.59E-04 0.0310 0.0278 0.0079 

RBFNN [29] 9.57E-04 0.0309 0.0274 0.0078 

SVM [26] 7.95E-04 0.0282 0.0254 0.0071 

RVM [30] 1.81E-03 0.0426 0.0279 0.0082 

IB-ELM 6.76E-04 0.0260 0.0228 0.0064 

F1-F2 

BP [45] 1.69E-03 0.0411 0.0354 0.0109 

ELM [38] 1.63E-03 0.0403 0.0351 0.0107 

RBFNN [29] 1.52E-03 0.0389 0.0338 0.0103 

SVM [26] 2.11E-03 0.0459 0.0389 0.0120 

RVM [30] 1.49E-03 0.0386 0.0341 0.0105 

IB-ELM 1.54E-03 0.0393 0.0347 0.0106 

F1-F3 

BP [45] 1.27E-03 0.0357 0.0209 0.0062 

ELM [38] 4.89E-04 0.0221 0.0185 0.0055 

RBFNN [29] 4.07E-04 0.0202 0.0158 0.0046 

SVM [26] 8.05E-04 0.0284 0.0258 0.0074 

RVM [30] 8.78E-04 0.0296 0.0243 0.0073 

IB-ELM 3.06E-04 0.0175 0.0126 0.0036 

F1-F2-F3 

BP [45] 2.74E-04 0.0165 0.0129 0.0037 

ELM [38] 3.16E-04 0.0178 0.0134 0.0039 

RBFNN [29] 4.88E-04 0.0221 0.0183 0.0055 

SVM [26] 3.44E-04 0.0185 0.0145 0.0042 

RVM [30] 9.78E-04 0.0313 0.0271 0.0082 

IB-ELM 2.03E-04 0.0142 0.0100 0.0029 

 

As can be seen from Fig.19, the estimation results of all models have large deviations when F3 is 

used as the only input of the model. In this case, although the estimation effect of IB-ELM model is not 

satisfactory, the estimation trend can still be consistent with the real SOH because of the strongest 

correlation between F3 and SOH. Compared to the single-input model, all models show better estimation 

results when F1 and F3 are the input of the model. As shown in Fig.20, the estimation accuracy of all 

models is improved. However, for the combination of F1 and F2, all models do not have good estimation 

performance due to the weak correlation between F1, F2 and SOH, as shown in Fig.21. Finally, according 

to the results in Fig.22, when all the HFs are selected as the input of the model, each model plays a good 

estimation effect, which indicates that the HFs F1, F2, and F3 as a good input combination could be used 

to estimate SOH. In addition, although the correlation between some HFs and SOH is low, an appropriate 

number of HFs can not only improve the estimation accuracy of the model, but also provide more 

references for SOH estimation, so it can also be considered in SOH estimation. What is more, we can 

see from Table 5 that when the HFs F1, F2 and F3 are used as the inputs of the model, the estimation 

accuracy and stability of IB-ELM studied in this paper are significantly improved under the interference 

of non-Gaussian noise. The MSE, RMSE, MAE and MAPE are  2.03×10
−4

, 1.42%, 1.00% and  
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2.9×10
−3

, respectively. Consequently, one can conclude that different input vectors also will have 

different influence on the estimation results of the proposed model. 

 

Case 5 SOH estimation under different free parameters  

In Section 2.2, we discussed and studied the IB-Loss function in detail whose performance is 

affected by different free parameters. Hence, we conduct new experiments using different free 

parameters (a, b,  ) to assess the performance of IB-ELM in this situation. Similarly, we take B5 battery 

as the training set, B7 battery as the testing set, and add non-Gaussian noise to the SOH in the training 

set. Fig.23-25 show the SOH estimation results and absolute error curves of the IB-ELM model with 

different free parameters (a, b, ). Table 6 presents the performance results of the proposed model with 

different free parameters under all evaluation criteria. It can be seen from Fig.23-25 that when two free 

parameters are determined, the remaining one has a certain impact on the performance of the model. 

Among them, when  is used as the uncertain free parameter, the impact on the performance of the 

model is the greatest. Smaller  values help enhance the performance of the model. 

 
 

 

(a) 

 

(b) 

 

Figure 23. SOH estimation results and absolute error of IB-ELM with different a values (b = 5,  =1). 

(a) Estimation results. (b) Absolute Error. 
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(a) 

 

(b) 

 

Figure 24. SOH estimation results and absolute error of IB-ELM with different b values (a = 10,  = 1). 

(a) Estimation results. (b) Absolute Error. 
 

 

(a) 

 

(b) 

 

Figure 25. SOH estimation results and absolute error of IB-ELM with different  values (a = 5, b = 8). 

(a) Estimation results. (b) Absolute Error. 
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Table 6. Results of performance evaluation criteria with different free parameters. 
 

free parameters values MSE RMSE MAE SMAPE 

a 

2 5.26E-04 0.0229 0.0186 0.0056 

4 4.13E-04 0.0203 0.0157 0.0047 

6 2.18E-04 0.0148 0.0113 0.0032 

8 5.86E-04 0.0242 0.0202 0.0060 

10 2.40E-04 0.0155 0.0124 0.0036 

b 

1 5.80E-04 0.0241 0.0204 0.0061 

2 2.19E-04 0.0148 0.0099 0.0027 

3 2.80E-04 0.0167 0.0142 0.0042 

4 4.53E-04 0.0213 0.0183 0.0054 

5 1.72E-04 0.0131 0.0099 0.0028 

  

2 1.61E-04 0.0127 0.0097 0.0028 

4 3.36E-04 0.0183 0.0134 0.0038 

6 4.64E-04 0.0215 0.0149 0.0041 

8 4.22E-04 0.0205 0.0153 0.0043 

10 1.20E-03 0.0342 0.0164 0.0049 

 

 

 

5. CONCLUSION 

The traditional ELM takes MSE as the error criterion with fast learning speed and high 

generalization ability, and has the best performance in Gaussian noise, which can be used for SOH 

estimation. However, since EVs usually operate in complex environments, they are easily affected by 

non-Gaussian noise or other random fluctuations, resulting in greatly reduced stability and generalization 

ability of the model. Therefore, the traditional ELM may perform unsuitable SOH estimation in presence 

of non-Gaussian noise environments. To address the problem of inaccurate and unstable estimation 

model under non-Gaussian noise, an ELM model based on IB-LOSS is studied to realize robust SOH 

estimation. As a result, the specific work of this paper is as follows: First, we define a new criterion, 

called IB-LOSS. Secondly, by replacing MSE with IB-LOSS, a new robust ELM model, namely IB-

ELM, is derived, which can enhance the stability and estimation accuracy of the traditional ELM model. 

Third, we use the proposed IB-ELM model for SOH estimation and achieve good estimation results 

under the condition that the measured data (especially the SOH values as labels) contain non-Gaussian 

(or outliers) noise. Finally, we evaluate the performance of the proposed model under different 

experimental conditions, and the experiment results show that the model proposed in this paper can 

achieve higher estimation accuracy contrast with other existing methods. Moreover, considering the 

actual working environment of LIBs, the model has a great application prospect. 

The SOH estimation in this paper is realized around a single battery. In order to make the model 

applied in practice situations, it will be our next step to realize the SOH estimation of battery packs in 

complex environments. In addition, this paper only considers the SOH estimation under a single 

temperature change (24oC), so studying the SOH estimation under different temperature changes and 

different charging and discharging modes will also be our research direction. In the future, how to 

optimize the free parameters in IB-ELM according to different problems will be another focus worthy 

of research. 
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