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The corrosion behavior of FeCrNiTi soft magnetic materials has been studied in different concentrations 

of NaCl solution over different immersion times using electrochemical methods. Changes in the 

magnetic properties of FeCrNiTi materials after salt spray testing were evaluated. Results showed that 

the open circuit potential became more negative and the corrosion current density increased with 

increasing NaCl solution concentration. Nyquist plots demonstrated similar shapes and only displayed 

one capacitive loop over the frequency range, the radius of the capacitive loop gradually decreased with 

the NaCl concentration and immersion time, and the corrosion process was controlled by a charge 

transfer mechanism. Corrosion occurred preferentially in the surface area with low Ti content, and the 

area covered with a Ti-rich surface film had a relatively strong corrosion resistance. Rupturing of the 

protective oxide film was shown to occur more easily at lower critical potentials at higher NaCl solution 

concentrations. The magnetic properties of FeCrNiTi were shown to be degraded by corrosion due to 

the formation of corrosion products, the precipitation of Fe elements from the matrix, and the internal 

stress induced by corrosion pits. 
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1. INTRODUCTION 

 

Soft magnetic alloys have been widely used due to their high maximum magnetic permeability 

and initial magnetic permeability, low coercivity, high saturation magnetization, and low remanent 

magnetization [1,2]. With the rapid development of automation technology, iron-based soft magnetic 

alloys, as one of the most important categories of soft magnetic alloys, have become very important 

functional materials in the fields of radio, motors, communications, home appliances and computers [2]. 
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However, the iron-based soft magnetic alloy often serves in the marine environment containing chlorides 

or a humid industrial environment, where it is susceptible to atmospheric corrosion and local corrosion 

[3,4]. The corrosion may affect its magnetic properties and service life and may cause serious economic 

losses [5]. 

So far, much attention has been paid to the alloys. However, there are few works in the literature 

associated with their corrosion behavior in aggressive environments and the effects of corrosion on the 

magnetic properties [6]. Hayashi et al. [7] pointed out that FeCo-based alloys showed good atmospheric 

corrosion-resistant performance and preferable magnetic properties. May et al. [8] indicated that a large 

decrease (about 20%) in the magnetic properties of FeCo-based alloys can be caused by corrosion. 

Mariano et al. [9] noted that the saturation magnetic flux density of FeCuNbSiB alloys exhibited a slight 

decrease, likely caused by the corrosion process of the alloys. Ouadah et al. [10] found that when the 

corrosion was presented in the magnetic circuits of an induction machine, the hysteresis loss increased, 

which consequentially reduced the machine efficiency. Peng et al. [11] reported that the corrosion 

resistance of amorphous FeZrNbBCu alloys showed obvious decreases after partial crystallization and 

protective oxide layers could be observed on the surface of this alloy after corrosion, which resulted in 

poor soft magnetic properties, higher threshold field, and higher relaxation frequency. Szewieczek et al. 

[12] found that the corrosion occurring on the surface of the FeSiNbCu alloy can lead to a reduction in 

local defects caused by impurities and can also degrade the magnetic properties of this alloy. Sitek et al. 

[13] studied the corrosion and the effects of corrosion on the magnetic properties of amorphous and 

nanocrystalline Finemet and Nanoperm. They indicated that the nanocrystalline sample was more 

corrosion resistant than the amorphous version, and the surface saturation magnetization of the former 

after corrosion did not change significantly, but the surface saturation magnetization of the latter 

obviously decreased [13]. 

The above-mentioned results indicate that the magnetic properties can be affected by the surface 

corrosion of soft magnetic alloys because these properties can be influenced by the surface quality 

[11,14]. Furthermore, the influence of corrosion on the magnetic properties of these materials can be 

usually stated by the presence of non-conductor and/or non-magnetic oxides on the corroded surfaces. 

However, the results mainly stem from the amorphous alloys and there is a disagreement between the 

results from different researchers.  

Therefore, this paper focuses on crystalline soft magnetic alloys and investigates the corrosion 

behaviors and magnetic property degradation of FeCrNiTi soft magnetic alloy specimens in NaCl-

containing environments. Electrochemical corrosion measurements and neutral salt spray tests were 

carried out, and corrosion morphology observations, corrosion products analysis, and magnetic 

properties measurements were performed.  

 

 

2. EXPERIMENTAL 

2.1. Materials and solutions 

The FeCrNiTi soft magnetic materials used in this work were purchased from Central Iron & 

Steel Research Institute (China). The chemical compositions of the soft magnetic materials are given in 
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Table 1. All FeCrNiTi specimens were cut into circular shapes and then welded with copper wire with 

an insulated protective layer. The FeCrNiTi specimens were sealed with a cured epoxy resin, and only 

one working surface with an area of around 2 cm2 remained. The left surface was ultrasonically washed 

with ethanol for 10 min and then deionized water for 10 min, and finally dried with compressed air for 

use. 

The experimental solutions included 40, 60 and 70 g/L NaCl prepared with analytical reagent 

grade NaCl and deionized water.  

 

Table 1. Chemical composition of FeCrNiTi soft magnetic materials (wt.%) 

 

C Si Mn P S Cr Ni Ti Fe 

0.012 0.13 0.47 0.0052 0.0036 18.06 0.62 0.61 Bal. 

 

2.2. Electrochemical measurements 

Electrochemical tests were performed via a traditional three-electrode configuration connected 

to an electrochemical measurement system (CHI660E, Shanghai CHI, China). The three-electrode 

configuration consisted of the working electrode (WE), counter electrode (CE), and reference electrode 

(RE), which corresponded to the FeCrNiTi specimen sealed with epoxy, a platinum net electrode, and 

an Ag/AgCl/saturated KCl electrode, respectively. The electrochemical tests of the FeCrNiTi specimens 

included open circuit potential (OCP) testing, potentiodynamic polarization testing, and electrochemical 

impedance spectroscopy (EIS). All tests were carried out after immersion in 40, 60, and 70 g/L NaCl 

solution at 35 ℃ over different durations (72, 120, 168, 240 h). The solutions were heated in a water 

bath with automatic temperature control. The open circuit potentials of the specimens were recorded 

during the initial 100 s after immersion in NaCl solution. For EIS testing, the EIS frequencies were 

scanned from 0.01 Hz to 100 kHz, and the AC signal amplitude potential was set to 10 mV (vs. OCP). 

The potentiodynamic polarization curves were scanned from –0.4 V to +1.5 V (vs. OCP) and the 

scanning rate was set to 1 mV/s.  

 

2.3. Neutral salt spray test 

Neutral salt spray (NSS) testing of the FeCrNiTi specimens were conducted in a salt spray test 

chamber (FQY025, Shanghai Laboratory Instrument Works Co., Ltd, China) at 35 ℃ according to 

ASTM B117 Standard Salt Spray testing. The spray solution was 5 wt.% NaCl solution, and its pH was 

adjusted to 6.5–7.2. The sedimentation rate of salt spray should be controlled between 1–2 mL/80 cm2·h. 

The circular FeCrNiTi specimens were placed in a test chamber and directly exposed to salt spray. The 

specimens were removed from the chamber after different salt spray corrosion times (24, 48, 72, and 

200 h) to evaluate the magnetic properties. In addition, the surface morphology and elemental 

composition were examined by scanning electron microscopy (SEM) and energy dispersive 

spectroscopy (EDS) analyzer. Before all examinations, the specimens were gently cleaned with running 
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water and then alcohol so as to clear away salt deposits from the surface, followed by quick drying with 

cold compressed air. 

 

2.4. Characterization of corrosion products 

After immersion in NaCl solution at 35 ℃ for 240 h, X-ray diffraction patterns of corrosion 

products of the FeCrNiTi specimen were obtained using an X-ray diffractometer (DX-2700, Shandong 

Fangyuan, China) operating at 30 kV and 20 mA. The XRD data were recorded within a 2q range of 5–

90 ° at a scanning rate of 0.04° per step using Cu Kα radiation. 

After salt spray testing for 200 h, the surface morphology and elemental composition of the 

FeCrNiTi specimens were studied by a SEM (S-3700N, Hitachi, Japan) equipped with an EDX analyzer.  

 

2.5. Characterization of magnetic properties 

The magnetic properties of the FeCrNiTi specimens after salt spray testing for varying durations 

were evaluated by a soft magnet test system (MATS-2010S, China) with a maximum applied magnetic 

field of 5 kOe at room temperature. The magnetic parameters extracted from the hysteresis loops of the 

soft magnetic alloy FeCrNiTi were the initial magnetic permeability (μi), maximum magnetic 

permeability (μm), saturation magnetization (Bs), coercivity (Hc), remanent magnetization (Br), and 

hysteresis loss (Pu).  

 

3. RESULTS AND DISCUSSION 

3.1. Electrochemical corrosion behaviors after immersion tests 

3.1.1 Open circuit potential 

Figure 1 shows the evolution of open circuit potential of FeCrNiTi soft magnetic alloy specimens 

after 240 h immersion in 40, 60, and 70 g/L NaCl aggressive solution at 35 ℃.  

 

 
 

Figure 1. Open circuit potentials of FeCrNiTi soft magnetic alloy specimens after 240 h immersion in 

40, 60, and 70 g/L NaCl aggressive solution at 35 ℃ 
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After immersion for 240 h, the OCP of each FeCrNiTi specimen remained stable, which shows 

that the specimens were in a steady corrosive state. At this time, the overall corrosion possibly dominated 

the whole corrosion reaction process or no new localized corrosion occurred by chloride ions, which 

indicates no abrupt potential caused by localized corrosion. The OCP values of the specimens in 40, 60, 

and 70 g/L NaCl solution were around –0.296 V, ν0.329 V and –0.356 V, respectively. From the 

perspective of corrosion thermodynamics, the more positive the open circuit potential is, the less likely 

the metal is to corrode. [15]. It can be noticed that the OCP of the specimens gradually became more 

negative with increasing NaCl solution concentration, which means that the increase in NaCl solution 

concentration can increase the possibility of corrosion of FeCrNiTi soft magnetic alloys [15].  

 

3.1.2 Potentiodynamic polarization curves 

Potentiodynamic polarization curves of FeCrNiTi soft magnetic alloy specimens after 240 h 

immersion in 40, 60, and 70 g/L NaCl aggressive solution at 35 ℃ are illustrated in Fig. 2. Table 2 

summarizes the fitting results of the potentiodynamic polarization curves of FeCrNiTi specimens, where 

icorr is the corrosion current density (μA /cm2), Ecorr the corrosion potential (V), and ba the anodic Tafel 

slope (mV/dec).  

Generally speaking, it is common knowledge that a higher Ecorr and lower icorr correlates to better 

corrosion resistance [16]. With increasing NaCl solution concentration, the corrosion potential Ecorr 

gradually became more negative and the anodic Tafel slope ba decreased, which indicates that the 

corrosion of the FeCrNiTi specimens was more likely to occur when the concentration of NaCl solution 

increased. Moreover, the corrosion current density icorr increased with the concentration of NaCl solution, 

although the changes in corrosion current density were relatively insignificant. 

 In addition, it can be observed that all the cathodic branches showed almost the same shape, as 

well as the anodic branches. The anodic polarization curves of the FeCrNiTi specimen have a slightly 

passive platform [16] and the anodic Tafel region is still clear. For the cathodic reaction in neutral NaCl 

solutions open to the air, oxygen is reduced to hydroxyl ions (O2+2H2O+4e−→4OH−). The anodic 

reaction is the oxidation of Fe to ferrous ions ( Fe→Fe2++2e−) resulting in anodic dissolution [17,18]. 

When the anodic branches were polarized to potentials of 0.506 V, 0.321 V, and 0.301 V in 40, 60, and 

70 g/L NaCl aggressive solution, respectively, the corrosion current density suddenly increased, which 

may be due to the rupture of the protective oxide film or corrosion product film on the surface of the 

FeCrNiTi specimens. The potentials are the critical polarization potential causing surface film ruptures. 

It is known that the critical potentials of the specimens will be more negative and the changes in corrosion 

current density were more obvious at higher NaCl solution concentrations.  
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Figure 2. Potentiodynamic polarization curves of FeCrNiTi soft magnetic alloy specimens in 40, 60, 

and 70 g/L NaCl aggressive solution after immersion for 240 h at 35 ℃ 

 

 

 

Table 2. Electrochemical parameters for potentiodynamic polarization curves of FeCrNiTi soft magnetic 

alloy specimens after 240 h immersion in 40, 60, and 70 g/L NaCl aggressive solution at 35 ℃  

 

CNaCl（g/L） Ecorr（V） Eb（V） icorr（μA·cm-2） ba(mV/dec) 

40 -0.369 0.506 33.5 301 

60 -0.350 0.321 46.2 212 

70 -0.394 0.301 55.7 203 

 

3.1.3 Electrochemical impedance spectroscopy 

The EIS Nyquist plots of the corrosion of FeCrNiTi soft magnetic alloy specimens after 

immersion in 40, 60, and 70 g/L NaCl aggressive solution at 35 ℃ over varying durations are illustrated 

in Fig. 3a-c.  

All Nyquist plots of the corrosion of FeCrNiTi have similar shapes and only one displayed a 

semicircular capacitive loop over the entire frequency range for different NaCl solutions and different 

immersion times. A Nyquist plot with a single semicircular capacitive loop means that the corrosion 

electrochemical reaction is primarily governed by the charge transfer process at the interface between 

the solution and metal [19]. Furthermore, it is worth noting that all the semicircles were depressed, which 

represents a certain dispersion effect. This effect may be due to heterogeneity of the tested surface and 

the charge distribution in the EIS tests [14], such as the uneven phenomenon of the electrode surface 

caused by corrosion or the formation of a corrosion product film. Thus, the electric double layer of the 

FeCrNiTi electrode in the NaCl solution deviated from the ideal capacitance state. 
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Here, the most common equivalent electrical circuit used for a metal corrosion model in aqueous 

electrolyte was adopted, as shown in Fig. 3d. The equivalent circuit consisted of a solution resistance Rs, 

metal charge transfer resistance Rct, and capacitance of constant phase element CPE after fitting and 

simulation. The fitted EIS results of the FeCrNiTi soft magnetic alloy specimens obtained using the 

proposed equivalent electrical circuit are listed in Table 3. 

Generally, a larger capacitive loop indicates good corrosion resistance [20]. According to Fig. 3 

and Table 3, it is observed that the radius of the capacitive loop and Rct gradually decreased with 

increasing NaCl concentration. In addition, with prolonged immersion time, the radius of the capacitive 

loop and Rct also gradually decreased. These results mean that the corrosion resistance of the FeCrNiTi 

soft magnetic alloy specimens gradually decreased with increasing NaCl solution concentration and 

immersion time. This coincides with the results from the potentiodynamic polarization testing. 

 

 

  

 

 

  

 

Figure 3. EIS plots of the corrosion of FeCrNiTi soft magnetic alloy specimens after immersion in 40 

(a), 60 (b), and 70 g/L (c) NaCl aggressive solution at 35 °C for different hours and the 

corresponding equivalent circuit model (d) 
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Table 3. EIS fitting results for the corrosion of FeCrNiTi soft magnetic alloy specimens in 40, 60, and 

70 g/L NaCl aggressive solution after immersion for 240 h at 35 ℃ 
 

 

CNaCl (g/L) Time /h Rs（Ω· cm2) CPE (Ω-1·s-n·cm-2) n Rct（Ω·cm2) 

40 

72 1.22 9.86×10-4 0.79 2.29×103 

120 2.04 1.09×10-3 0.80 1.82×103 

168 3.14 1.34×10-3 0.78 9.17×102 

240 1.60 1.90×10-3 0.65 8.13×102 

60 

72 0.62 4.71×10-4 0.66 2.11×103 

120 1.36 9.54×10-4 0.75 1.50×103 

168 2.66 1.09×10-3 0.81 8.17×102 

240 1.59 8.78×10-4 0.84 6.81×102 

70 

72 0.94 1.36×10-3 0.78 1.13×103 

120 3.38 1.10×10-3 0.82 1.00×103 

168 5.05 1.21×10-3 0.80 8.72×102 

240 7.71 1.23×10-3 0.75 6.57×102 

 

3.2. Corrosion products after immersion testing 

After immersion in NaCl solution for 240 hours, the surfaces of the FeCrNiTi soft magnetic alloy 

specimens were slightly corroded with a small amount of corrosion products, but some red corrosion 

product precipitates were observed in the immersion solution (Fig. 4a). After vacuum-filtration of the 

solution, the collected corrosion products were dried at 100 ℃ and then a black brown solid powder was 

obtained (Fig. 4b). The obtained products were tested by XRD (Fig. 4c). The XRD pattern indicates that 

the solid powder mainly consisted of NaCl and corrosion products including Fe(OH)3, FeOOH, and γ-

Fe2O3. The relatively loose corrosion products tended to fall off and precipitate in the NaCl aggressive 

solution with longer immersion time. In addition, the ferrous ions caused by anodic corrosion dissolution 

also diffused into the NaCl solution and were further oxidized by oxygen to form new iron oxides, 

hydroxides, and hydroxyl oxides. It is well known that chemical composition can significantly affect the 

magnetic behavior of magnetic materials [21]. After the FeCrNiTi specimens were corroded in NaCl 

solution, changes in the compositional structure were observed in the local area of the surface. In 

particular, the corrosion products are non-ferromagnetic phases, which can affect the magnetic properties. 

 

 

 

(a) (b) 
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Figure 4. Appearance of tested specimens and NaCl solution (a), corrosion products powder (b), XRD 

pattern of corrosion products (c) of FeCrNiTi soft magnetic alloy specimens in 60 g/L NaCl 

aggressive solution after immersion for 240 h at 35 ℃ 

 

3.3. Magnetic properties and corrosion morphology after salt spray testing 

3.3.1 Corrosion morphology 

The corrosion morphology of FeCrNiTi soft magnetic alloys after different salt spray times (0, 

24, 200 h) were analyzed, as shown in Fig. 6a-c. From the SEM images of corrosion morphology, it can 

be seen that some corrosion pits began to occur after the salt spray test, and the longer the salt spray 

time, the deeper the corrosion pits and the larger the corrosion area. After 200 h, even some of the deep 

pits continued to develop outward, finally connecting to each and causing more serious corrosion. In the 

process of salt spray corrosion, chloride ions play a major role. They have strong penetration ability and 

can easily penetrate the metal oxide layer into the metal interior and destroy the passive state of the 

metal. At the same time, chloride ions have very low hydration energy, which can be easily adsorbed on 

the metal surface to replace the oxygen in the oxide layer protecting the metal, so that the metal is 

damaged. 

The corresponding EDS of the complete surface regions (Regions A, C, and E) with no obvious 

pitting corrosion after salt sprays of 0, 24, and 200 h are given in Fig. 6-f, respectively. The 

corresponding EDS of the complete surface regions (Regions B, D, and F) with pitting corrosion are 

shown in Fig. 6g-i, respectively. In all EDS maps of FeCrNiTi soft magnetic alloys, the main elements 

of Fe, Cr, Ti, etc. were detected. Typically for FeCrNiTi soft magnetic alloys, its high chromium content 

(~18%) can react easily with oxygen giving rise to an oxide layer on the surface. This passive layer 

mainly consists of hydrated chromium oxyhydroxide acting as a protective barrier against aggressive 

environments, thereby improving the corrosion resistance of the alloy [22,23]. Significantly, the content 

of Ti in the complete surface area regions (Regions A, C, and E) reached about 80 wt.%, which means 

that the surface was covered with a layer of Ti-rich film. In the corrosion pits (Regions B, D, and F), Fe 

and Cr accounted for about 90 wt.%, while Ti only accounted for 2 wt.%. The relationship between the 

distribution of Ti and the corrosion resistance of the alloy shows that the pitting corrosion caused by salt 
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spray testing occurred preferentially in the surface area with low Ti content, and the area covered with 

high Ti-containing surface film showed strong corrosion resistance, which means that the content and 

distribution of Ti on the surface of FeCrNiTi soft magnetic alloy had a significant effect on its corrosion 

resistance. The aforementioned sudden increase in corrosion current density in the potentiodynamic 

polarization test should be due to the rupture of this high Ti- and Cr-containing surface film. It is worth 

noting that the corrosion product film and the high Ti- and Cr-containing surface protective film may 

affect the magnetic properties of the FeCrNiTi alloy. As mentioned before in many cases, the effect of 

corrosion on the magnetic properties of magnetic material is explained by the presence of non-conductor 

and/or non-magnetic oxides on the oxidized surfaces [3]. 

 

 

   

   

   
  

 

Figure 6. Corrosion morphology and EDS analysis of the FeCrNiTi soft magnetic alloy after different 

salt spray times (0 h, 24 h, 200 h) 

 

3.3.2 Magnetic properties 

  The influence of different salt spray corrosion times (24, 48, 72 and 200 h) on the magnetic 

properties of soft magnetic alloy FeCrNiTi is shown in Fig. 5. It can be seen from Fig. 5 that the initial 

magnetic permeability (μi), maximum magnetic permeability (μm), and saturation magnetization (Bs) 

decreased significantly, while the coercivity (Hc), remanent magnetization (Br), and hysteresis loss (Pu) 

increased with increasing salt spray corrosion time. The significant changes of these important properties 

indicate that the soft magnetic properties were degraded by the salt spray corrosion. The degradation of 
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the soft magnetic properties with increasing corrosion could be related to the corroded film formation 

[24,25]. Hayashi et al. [7] also found that magnetic properties change with corrosion because magnetic 

properties are strongly affected by the material surface quality, that is, the influence of corrosion on 

magnetic properties is a surface phenomenon [3].  

The corrosion of metal materials by salt spray is mainly caused by the penetration of conductive 

salt solution into the metal to produce a electrochemical reaction, thereby forming a "low potential metal- 

electrolyte solution-high potential impurity" micro galvanic system, which generates electron transfer, 

and the metal as the anode dissolves to form a new compound, namely a corrosion product. The corrosion 

product film can cause a larger coercive field (Hc) [10]. The specimen becomes more permeable with 

longer corrosion time. In addition, the hysteresis loss in the case of the sample with long-term corrosion 

is more than the case of the sample with short-term corrosion. It can be concluded that the pitting 

corrosion induced by chloride ions from salt spray and the presence of the corrosion product film on this 

magnetic material have significant influences on its magnetic behavior of the FeCrNiTi alloy. Corrosion 

not only changes the magnetic properties of magnetic materials, but also destroys the integrity of 

magnetic materials, thus affecting their actual use. 

 

   

   
 

Figure 5. Effect of salt spray time on the magnetic properties of FeCrNiTi soft magnetic alloy 

specimens: (a) initial magnetic permeability (μi), (b) maximum magnetic permeability (μm), (c) 

coercivity (Hc), saturation magnetization (Bs), remanent magnetization (Br), and hysteresis loss 

(Pu) 

 

As Sitek et al. [13] reported, the magnetic microstructure can be influenced by corrosion process. 

Corrosion can cause a change in direction of the net magnetic moment, intensity, and distribution of 

internal magnetic field [13]. Based on the results from salt spray testing and immersion testing, the main 

reasons for the degradation of magnetic properties of FeCrNiTi soft magnetic alloy include [26-28]: (1) 

iron oxide is precipitated in the matrix after corrosion and the precipitation of iron elements reduced the 

ferromagnetic elements in the matrix, resulting in decreased saturation magnetization. The iron oxide 

increased the magnetostrictive coefficient of the alloy, which can cause decreased magnetic 
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permeability; (2) After corrosion, some corrosion pits occurred on the substrate surface, which increased 

the internal stress on the substrate surface. The increase of internal stress can increase the magnetic 

anisotropy constant, thus reducing the magnetic permeability and degrading the soft magnetic properties. 

 

 

 

4. CONCLUSIONS 

(1) The concentration of NaCl solution and the immersion time have an effect on the 

electrochemical corrosion behaviors of FeCrNiTi soft magnetic alloys. The corrosion can be accelerated 

by higher concentrations of NaCl solution and longer immersion times. 

(2) The magnetic properties of FeCrNiTi soft magnetic alloys can be degraded by corrosion. 

With increasing corrosion time, μi, μm, and Bs significantly decreased, while Hc, Br, and Pu increased. 

The degradation of the magnetic properties of FeCrNiTi soft magnetic alloys can be attributed to the 

formation of corrosion products, the precipitation of Fe elements from the matrix, and the internal stress 

induced by corrosion pits. 

(3) The corrosion of FeCrNiTi soft magnetic alloys occurred preferentially in the surface area 

with low Ti content, and the area covered with high Ti-rich surface film showed strong corrosion 

resistance. The passive layer with certain content and distribution of Ti elements may act as a protective 

barrier against aggressive environments improving the corrosion resistance of the FeCrNiTi soft 

magnetic material. 
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