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The surface enzymatic reactions on biopolymer microarrays incorporating enzyme adsorption and 

surface enzyme reaction are discussed. This model is based on one-dimensional first-order nonlinear 

equations with a nonlinear term related to Langmuir adsorption and Michaelis-Menten kinetics. This 

equation is solved analytically using the homotopy perturbation method for deriving the fractional 

surface coverages of three species at the reacted and unreacted surfaces. The normalized signal response 

consists of three rate constants (enzyme adsorption, enzyme de-sorption and enzyme catalysis), and a 

diffusion parameter is reported. The influence of the parameter on fractional surface coverage is also 

reported. The obtained analytical results are compared with simulation results for the experimental 

values of parameters, and satisfactory agreement is noted. 

 

 

Keywords: Surface enzyme kinetics, Langmuir adsorption, Biopolymer microarrays, Non-linear 

equations, Homotopy perturbation method. 

 

 

1. INTRODUCTION 

 

The biopolymers attached to surfaces in a microarray format to analyze affinity interactions have 

become a crucial tool for modern biology, biochemistry, and biotechnology. Surface plasmon resonance 

imaging (SPRI) has recently emerged as a highly flexible method for detecting biopolymer (e.g., DNA, 

RNA, peptide, protein, carbohydrate) microarray adsorption [1]. SPRI can also detect the adsorption of 

many biomolecules, including DNA, RNA, lectins, and antibodies [2-7]. 

The surface enzymatic reaction rates have been studied quantitatively using various analytical 

methods. At the same time, most research approaches have been focused on the fluorescent based 

technique [8–10] and the SPR-based technique [11–14]. The kinetics of enzyme reactions and Langmuir 

adsorption on surfaces can be studied using the SPR technique. Takashi Kakiuchi and colleagues [15] 
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developed a kinetic model to describe how phospholipase D breaks down phosphatidylcholine 

monolayers. These models integrate the hydrolysis kinetic model at the interface and the enzyme 

diffusion from the bulk to the bulk interface. 

A recent approach that links adsorption and enzyme kinetics has been proposed by Lee and 

coworkers [16] for analyzing enzyme-catalyzed surface reactions. Lee et al. [17] derived the fractional 

surface coverage using Euler integration methods. Manimozhi and Rajendran [18] derived an analytical 

expression of fractional surface coverages for the Langmuir kinetics model without catalytic activity.  

The Authors are unaware of the analytical results for the fractional surface coverage of all species 

up to this date [16]. In this communication, the closed and simple analytical expression of surface 

coverage of all species is derived in the presence of catalytic activity. The surface enzyme kinetics for 

biopolymer microarrays are analysed using these analytical results. The maximum value of the surface 

coverages of intermediate species and the time to reach the maximum value in terms of rate constants 

are also reported. The derived analytical results were compared with simulation results for the 

experimental values of parameters, and good agreement was observed. 

 

 

2. THEORY 

Recently Lee et al. [17] developed SPRI and SPFS measurements to determine the rate constant 

in enzyme surface catalysis reactions. The three processes depicted in Figure 1 define the simplest 

possible model for the surface enzyme reaction. This reaction scheme can be written as follows: 

𝐸(𝑥=∞)
𝑘∞
→ 𝐸(𝑥=0),      𝑆 + 𝐸(𝑥=0)

 
       𝐾1     
→      
    𝐾2      ⃖             𝐸𝑆,     𝐸𝑆

𝑘𝑐𝑎𝑡
→  𝑆∗ + 𝐸(𝑥=0)           (1)   

where 𝐸(𝑥=∞) and 𝐸(𝑥=0) are the bulk and surface enzyme concentrations. 𝑆 is the RNA-DNA surface 

bound substrate (the RNA-DNA heteroduplex), 𝐸𝑆 is the surface enzyme-substrate complex (the RNase 

H-heteroduplex complex), 𝑆∗is the surface product (ssDNA), and 𝑘𝑐𝑎𝑡 is the surface reaction rate for the 

enzyme complex. The steady-state mass transport coefficient (𝑘𝑚), which is also known as 𝐷/δ, controls 

the diffusion in the case of SPRI in microfluidic channels, where 𝐷 is the enzyme's diffusion coefficient 

and δ is the thickness of the steady-state diffusion layer.This condensed model also makes the 

assumption that there are only simple, non-interacting 1:1 substrate-enzyme surface complexes and that 

the enzyme 𝐸 does not bind to inactive surface sites. 

 

 
Figure 1. Reaction scheme of surface enzymatic process [16]. 

 

The kinetics for this reaction scheme are governed by the following nonlinear equations [16]. 

𝜃𝑆(𝑡) + 𝜃𝐸𝑆(𝑡) + 𝜃𝑆∗(𝑡) = 1                                  (2)  
𝑑𝜃𝐸𝑆(𝑡)

𝑑𝑡
=
𝑘𝑎[𝐸](1−𝜃𝐸𝑆(𝑡)−𝜃𝑆∗(𝑡))−(𝑘𝑑+𝑘𝑐𝑎𝑡)𝜃𝐸𝑆(𝑡)

1+𝛽(1−𝜃𝐸𝑆(𝑡)−𝜃𝑆∗(𝑡))
                     (3) 
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𝑑𝜃𝑠∗(𝑡)

𝑑𝑡
= 𝑘𝑐𝑎𝑡𝜃𝐸𝑆(𝑡)                              (4) 

The initial conditions are 

𝜃𝑆(𝑡 = 0) = 1, 𝜃𝐸𝑆(𝑡 = 0) = 0 and 𝜃𝑆∗(𝑡 = 0) = 0                (5) 

where the fractional surface coverages for the three surface species 𝑆, 𝐸𝑆, and 𝑆∗ are denoted as 

𝜃𝑥(𝑡) =
Γx

Γ𝑡𝑜𝑡
                                             (6) 

where 𝑥 = 𝑆, 𝐸𝑆, or 𝑆∗, [𝐸] is the bulk enzyme concentration, and 𝛽 is a dimensionless diffusion 

parameter defined by the following equation.  

𝛽 =
𝑘𝑎 Γ𝑡𝑜𝑡

𝑘𝑚
=
𝑘𝑎 Γ𝑡𝑜𝑡𝛿

𝐷
                        (7) 

 

This study uses the homotopy perturbation method to solve the nonlinear equations (2-4) [19–

23]. The concept for this method was initially proposed by He [24]. The constraints of the conventional 

perturbation methods have been overcome by this method, which combines the classical perturbation 

and homotopy techniques. By using this technique, in this work the analytical expressions of fractional 

surface coverage for the three species are derived. 

 

3. RESULTS AND DISCUSSION  

The approximate analytical expression of fractional surface coverage for the three surface species 

𝑆, 𝐸𝑆, and 𝑆∗ are obtained using HPM as follows (See supplementary material): 

𝜃𝑆(𝑡) = 1−𝜃𝐸𝑆(𝑡) − 𝜃𝑆∗(𝑡)                                      (8) 

𝜃𝐸𝑆(𝑡) ≈
2𝑘𝑎[𝐸]

√𝑎
 𝑒

−𝑚𝑡

2(1+𝛽)
 
{𝑠𝑖𝑛ℎ (

√𝑎 𝑡

2(1+𝛽)
)}                   (9) 

𝜃𝑠∗(𝑡) ≈ 1 − 𝑒
 
−𝑚𝑡

2(1+𝛽) [
𝑚

√𝑎
 𝑠𝑖𝑛ℎ (

√𝑎𝑡

2(1+𝛽)
) + 𝑐𝑜𝑠ℎ (

√𝑎𝑡

2(1+𝛽)
)]                     (10) 

The fractional surface coverage of 𝐸𝑆 on the unreacted surface using Eqs. (9-10) we get, 

𝜆𝐸𝑆(𝑡) =
𝜃𝐸𝑆(𝑡)

1−𝜃𝑆∗(𝑡)
≈

2𝑘𝑎[𝐸]

𝑚+√𝑎coth(
√𝑎𝑡

2(1+𝛽)
)
                               (11)  

where, 𝑎 = 𝑚2 − 4𝑘𝑎[𝐸]𝑘𝑐𝑎𝑡(1 + 𝛽),𝑚 = 𝑘𝑎[𝐸] + 𝑘𝑐𝑎𝑡 + 𝑘𝑑                 (12) 

The analytical expression for the fractional surface coverage for the three surface species 𝑆, 𝐸𝑆, 

and 𝑆∗ is valid provided the parameter 𝑎 > 0.  Eqs. (8-10), represent the new analytical expressions for 

the surface coverage 𝜃𝑆, 𝜃𝐸𝑆 , 𝜃𝑠∗ for all values of rate constant 𝑘𝑎[𝐸],  𝑘𝑐𝑎𝑡, 𝑘𝑑 and diffusion parameter, 

𝛽. The Eq. (11) is a closed analytical expression of fraction of unreacted surface sites, 𝜆𝐸𝑆.  

 

3.1 Validation of analytical results 

Lee et al. [16] obtained the time-dependent surface coverages 𝜃𝐸𝑆(𝑡), 𝜃𝑆(𝑡), and 𝜃𝑆∗(𝑡)  profile 

over the course of the enzymatic reaction by solving the Eqs. (2-4) using numerical methods. Figs. 2(a-

d) shows the profiles of relative surface coverage 𝜃𝑆, 𝜃𝐸𝑆 , 𝜃𝑠∗ for various experimental values of 

parameters (Table. A1). Our analytical results are compared with simulation results (Maple-19 software) 

in Figs. 2(a-d). A satisfactory agreement is noted.  
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Figure 2. Comparison of analytical expression of fractional surface coverages θS, θES, θs∗ and λES (Eqs.  

(8-11)) with simulation results for various experimental values of parameters.  

 

3.2 Characteristics of the fractional surface coverages 

The characteristics of the fractional surface coverages 𝜃𝑆 , 𝜃𝐸𝑆 , 𝜃𝑠∗ and 𝜆𝐸𝑆 which is observed 

from the analytical results (Eqs. (8-11)) are summarized in Table.1. These results are also confirmed in 

Fig. 2. 

 

Table 1.  Characteristics of the fractional surface coverage profiles 

 

Relative surface 

coverage 

Increasing/decreasing function 

 
Minimum value Maximum value 

𝜃𝑆(𝑡) Decreasing function 
𝜃𝑆𝑚𝑖𝑛 = 0  

(at 𝑡 = ∞) 

𝜃𝑆𝑚𝑎𝑥 = 1 

(at 𝑡 = 0) 

𝜃𝐸𝑆(𝑡) Pulsatile function 

𝜃𝐸𝑆𝑚𝑖𝑛 = 0  

(at 𝑡 = 0 

and 

𝑡 = ∞) 

𝜃𝐸𝑆𝑚𝑎𝑥 =
2𝑘𝑎[𝐸]

𝑚+√𝑎
(
𝑚−√𝑎

𝑚+√𝑎
)

1

2
 (
𝑚

√𝑎
−1)

  

𝑡𝑚𝑎𝑥 =
1+𝛽

√𝑎
ln (

𝑚+√𝑎

𝑚−√𝑎
)  

𝜃𝑠∗(𝑡) Increasing function 
𝜃𝑠∗𝑚𝑖𝑛 = 0 

(at 𝑡 = 0) 

𝜃𝑠∗𝑚𝑎𝑥 = 1 

(at 𝑡 = ∞) 

𝜆𝐸𝑆(𝑡) Increasing function 
𝜆𝐸𝑆𝑚𝑖𝑛 = 0 

(at 𝑡 = 0) 

𝜆𝐸𝑆𝑚𝑎𝑥 =
2𝑘𝑎[𝐸]

𝑚+√𝑎
  

(at 𝑡 = ∞) 
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In addition, from these figures, it is inferred that the surface coverage 𝜃𝐸𝑆(𝑡) increases abruptly 

and attains the maximum at the time  𝑡𝑚𝑎𝑥 and then decreases slowly and reaches its steady-state value. 

This result is also confirmed in Fig. 2(b) for the value of parameters,𝑘𝑎[𝐸] = 2 𝑠
−1, 𝑘𝑐𝑎𝑡 =

0.1 𝑠−1, 𝑘𝑑 = 3 𝑠
−1, 𝛽 = 5. The maximum value is 0.3513 at 𝑡 = 3.8781 𝑠.   

Fractional surface coverages  𝜃𝑆 , 𝜃𝐸𝑆, 𝜃𝑠∗ and 𝜆𝐸𝑆 from Eqs. (8-11) can be obtained as follows for 

short time: 

𝜃𝑆(𝑡) = 1 −
 𝑘𝑎[𝐸]𝑡

(1+𝛽)
+

𝑚𝑡2

2(1+𝛽)2
(𝑘𝑎[𝐸] −

𝑚

2
)                          (13) 

𝜃𝐸𝑆(𝑡) ≈  
 𝑘𝑎[𝐸]𝑡

(1+𝛽)
 (1 −

𝑚𝑡

2(1+𝛽)
)
 

                         (14) 

𝜃𝑠∗(𝑡) ≈ (
𝑚𝑡

2(1+𝛽)
)
2

                                         (15) 

𝜆𝐸𝑆(𝑡) ≈
2𝑘𝑎[𝐸] 𝑡

𝑚𝑡+2(1+𝛽)
                            (16) 

The steady-state (t → ∞) fractional surface coverage of the species can also be calculated using 

Eq. (8-11) as follows: 

𝜃𝑆(𝑡 → ∞) = 𝜃𝐸𝑆(𝑡 → ∞) = 0,𝜃𝑠∗(𝑡 → ∞) = 1, 𝜆𝐸𝑆(𝑡 → ∞) =
2𝑘𝑎[𝐸]

𝑚+√𝑎
          (17) 

 

3.3. Effect of the parameters on the steady-state fractional surface coverage ( 𝜆𝐸𝑆). 

 The analytical expression of steady-state value of  𝜆𝐸𝑆 from the Eq. (11) can be written as 

follows: 

𝜆𝐸𝑆 =
2𝑘𝑎[𝐸]

𝑘𝑎[𝐸]+𝑘𝑐𝑎𝑡+𝑘𝑑+√(𝑘𝑎[𝐸]+𝑘𝑐𝑎𝑡+𝑘𝑑)
2−4𝑘𝑎[𝐸]𝑘𝑐𝑎𝑡(1+𝛽)

           (18) 

The steady-state value of 𝜆𝐸𝑆 depends on the relative values of 𝑘𝑐𝑎𝑡, 𝑘𝑎[𝐸], 𝛽 and 𝑘𝑑. 

 

 
Figure 3. Deviation of steady-state fractional surface coverage (𝜆𝐸𝑆) versus 𝑘𝑐𝑎𝑡 (𝑠

−1) using Eq.(11). 

 

 

Figure 3(a-b) plots the variation of  𝜆𝐸𝑆  as a function of 𝑘𝑐𝑎𝑡 with some fixed values of other 

parameters. From Fig. 3a, it is inferred that 𝜆𝐸𝑆 increases when diffusion parameter increases. From the 

figure it is also observed that there is significant difference of 𝜆𝐸𝑆 with respect to the diffusion 

parameter 𝛽. In addition, the parameter 𝑘𝑎[𝐸]  produce the more effect on fractional surfaces. This is 

also confirmed in Fig.5. Table 2 lists the steady-state value of 𝜆𝐸𝑆 for extreme enzyme adsorption, 
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desorption, catalysis rate constant, and diffusion parameter values. The enzyme adsorption kinetics will 

only constrain the velocity of the surface enzyme reaction if 𝑘𝑐𝑎𝑡 is significantly greater than 𝑘𝑎[𝐸]. In 

this instance,  𝜆𝐸𝑆 = 0. 

Table 2. Characteristic of the steady-state value of  𝜆𝐸𝑆 for extreme values of rate constant.  

 

Value of diffusion parameter / Rate constant Steady-state fractional surface coverage  𝝀𝑬𝑺 

𝛽 = 0 

(Diffusion parameter) 

𝜆𝐸𝑆 = 2𝑘𝑎[𝐸] [𝑘𝑎[𝐸] + 𝑘𝑐𝑎𝑡 + 𝑘𝑑

+ √(𝑘𝑎[𝐸] + 𝑘𝑐𝑎𝑡 + 𝑘𝑑)
2 − 4𝑘𝑎[𝐸]𝑘𝑐𝑎𝑡]

−1

 

𝑘𝑐𝑎𝑡 = 0 

(Catalytic rate constant) 
𝜆𝐸𝑆 =

𝑘𝑎[𝐸]

𝑘𝑎[𝐸] + 𝑘𝑑
 

𝑘𝑐𝑎𝑡 → ∞  or 𝑘𝑑 → ∞ or 𝑘𝑎[𝐸] = 0 

(Catalytic and desorption  rate constant) or 

 (Kinetic enzyme parameter) 

𝜆𝐸𝑆 = 0 

𝑘𝑎[𝐸] → ∞ 
(Kinetic enzyme parameter) 

𝜆𝐸𝑆 = 2 

𝑘𝑐𝑎𝑡 = 𝑘𝑎[𝐸] 
𝜆𝐸𝑆 = 2𝑘𝑎[𝐸] [2𝑘𝑎[𝐸] + 𝑘𝑑

+√𝑘𝑑(4𝑘𝑎[𝐸] + 𝑘𝑑) − 4𝛽(𝑘𝑎[𝐸])
2]
−1

 

𝑘𝑐𝑎𝑡 ≫ 𝑘𝑎[𝐸] 𝜆𝐸𝑆 =
𝑘𝑎[𝐸]

𝑘𝑐𝑎𝑡 + 𝑘𝑑
≈ 0 

 

3.4 Normalized signal response 

The normalized signal response is the difference of two components .The normalized signal, 

which responds to both enzyme adsorption, and surface loss is obtained as follows: 

∆%𝑅(𝑡) = 𝜃𝐸𝑆  (𝑡) − 𝜃𝑆∗(𝑡) ≈
𝑒
 
−𝑚𝑡
2(1+𝛽)

√𝑎
[(𝑚 + 2𝑘𝑎[𝐸]) sinh (

√𝑎𝑡

2(1+𝛽)
) + √𝑎 cosh (

√𝑎𝑡

2(1+𝛽)
)] − 1   

                 (19)  

where, 𝑚 and 𝑎 are the parameters defined in Eq. (12).     

Figure 4 compares theoretical curves with experimental results for the normalized signal 

response for enzyme concentrations ranging from 50 nM to 320 nM. From the figure, it is observed that 

an increase in enzyme concentration leads to an increase in the peak value of the normalized signal 

response. This figure also shows that the pulsatile normalized signal response initially increases rapidly 

due to enzyme adsorption and reaches the maximum value, and then gradually decreases due to 

heteroduplex hydrolysis and release of enzyme back into solution to a steady-state value. 
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Figure 4. The plot of normalized signal response ∆%R versus time t (s) for experimental values of 

parameters [16] for different values of enzyme concentrations [E] (𝑛𝑀). The dotted line  

represent the analytical result and solid line represent the experimental result. 

 

3.5 Differential sensitive analysis of parameters 

Eq. (13) gives a new approximate analytical expression for the non-steady-state fractional surface 

coverage of the species 𝐸𝑆 on the unreacted surface for all values of parameter. The impact of these 

parameters on the fractional surface coverage 𝜆𝐸𝑆 can be determined by partially differentiating the 

fractional surface coverage with respect to these parameters.  

 

 
 

Figure 5. Sensitivity analysis of the parameters: Percentage change in fractional surface coverage for 

the surface species 𝐸𝑆, at the unreacted surface (Eq.13) where 𝑡 = 5 𝑠, 𝑘𝑎[𝐸] = 1 𝑠
−1, 𝑘𝑑 =     

2 𝑠−1, 𝑘𝑐𝑎𝑡 = 0.1 𝑠
−1, 𝛽 = 10. 

 

Figure 5 depicts the spreadsheet analysis of these results. With respect to 𝑘𝑎[𝐸], 𝑘𝑐𝑎𝑡, 𝑘𝑑, 𝑡 and 

𝛽, the percentages of change in 𝜆𝐸𝑆 are 61%, 16%, 13%, 7%, and 3%, respectively. As a result, it is clear 

that parameter 𝑘𝑎[𝐸] has a greater impact on 𝜆𝐸𝑆. This parameter is extremely sensitive. As a result, the 

adsorption rate constant (𝑘𝑎) and enzyme concentration ([𝐸]) have a greater impact on the fractional 
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surface coverage of species on the unreacted surface than the other factors. The factors 𝑘𝑐𝑎𝑡 and  𝑘𝑑 are 

referred to as moderately sensitive parameters because they influence  𝜆𝐸𝑆 by 16% and 13%, 

respectively. The other two factors, time (𝑡) and diffusion parameter (𝛽), are less sensitive.  

The model of enzyme adsorption and surface enzyme reaction kinetics was solved previously 

using the Euler integration method by Corn et al. [16]. He obtained the surface coverage profiles for all 

experimental values of parameters using the Euler integration method. In addition, Rajendran et al. [18] 

derived the approximate analytical solution for the fractional surface coverage profiles in the absence of 

diffusion parameter (𝛽 = 0). In this work, the effect of the parameters is found by using the analytical 

result. 

Our approximate analytic/symbolic solutions for enzyme adsorption and surface enzyme reaction 

kinetics give the answers to a whole set of parameters. Also, our analytic approach gives a closed-

form solution in terms of convergent series with easily computable components. But for every set of 

parameters, the numerical approach has to be recalculated. Analytical approaches can provide profound 

understanding, whereas general numerical approaches typically cannot. Numerical solutions can rarely 

contribute to proof of new ideas ( finding the maximum or minimum, influence of parameters etc.). The 

strength of analytical solutions is typically regarded as significant. Therefore, developing new techniques 

for analytical solutions to nonlinear equations in surface enzyme kinetics for biopolymer  is constantly 

of significant interest. 

 

 

4. CONCLUSIONS 

Theoretical investigations are made on the surface enzyme chemistry and bioaffinity interactions 

on biopolymer microarrays. In the absence of catalytic activity, the analytical expression of the surface 

coverage for the three surface species 𝑆, 𝐸𝑆, and 𝑆∗ is obtained in terms of four fundamental parameters 

(𝑘𝑎[𝐸], 𝑘𝑐𝑎𝑡 , 𝑘𝑑  and  𝛽).The maximum fractional surface coverage, 𝜃𝐸𝑆 and time to reach this peak value 

also reported. Fractional surface coverage of unreacted sites (𝜆𝐸𝑆) and normalized signal response are 

discussed. The Maple-19 software  is also used to present the numerical solution of this problem. The 

numerical results (or Euler integration method) are compared to our  analytical results. Thus, a good 

agreement with the present simulation results is notified. Increases in the diffusion parameter increase 

the steady-state diffusion layer thickness. The kinetic enzyme parameter 𝑘𝑎[𝐸] has more influence on 

surface coverage profiles. The theoretical model described here can only apply to systems where the 

enzyme binds to a surface target in a 1:1 relationship with no mass transport constraints. This analytical 

method can be extended for modeling of complex biochemical system involving multiple binding of 

metal or charged ligands. 

 

NOMENCLATURE: 

Parameter Meaning Units 

D Diffusion coefficient 𝑐𝑚2 𝑠−1 
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𝐸(𝑥=∞) Enzyme concentration in the bulk solution  𝑛𝑀 

𝐸(𝑥=0) Enzyme concentration in the surface 𝑛𝑀 

[E] Enzyme concentration 𝑛𝑀 

𝑘𝑎 Enzyme adsorption rate constant 𝑀−1𝑠−1 

𝑘𝑑 Enzyme desorption rate constant 𝑠−1 

𝑘𝑐𝑎𝑡 Enzyme catalysis rate constant 𝑠−1 

𝑘𝑎[𝐸] Kinetic enzyme parameter 𝑠−1 

𝑘𝑚 Mass transfer coefficient 𝑠−1 

a Parameter defined in Eq.(15) 𝑠−2 

m Parameter defined in Eq. (15) 𝑠−1 

δ Steady-state diffusion layer thickness 𝑐𝑚2 

Γ𝑥 Surface coverage  𝑀 

𝑡 Time s 

Γ𝑡𝑜𝑡 Total number of surface sites 𝑀 

𝛽 Dimensionless diffusion parameter None 

𝜃𝐸𝑆 Fractional surface coverages of the species 𝐸𝑆 on 

the reacted surface 

None 

𝜃𝑆 Fractional surface coverages of the species 𝑆 on 

the reacted surface 

None 

𝜃𝑆∗ Fractional surface coverages of the species 𝑆∗ on 

the reacted surface 

None 

𝜆𝐸𝑆 Fractional surface coverages of 𝐸𝑆 on the 

unreacted surface 

None 

∆%R Normalized signal response  None 

 

DECLARATION OF COMPETING INTEREST 

The authors declare that they have no known competing financial interests or personal relationships that 

could have appeared to influence the work reported in this paper. 

 

 

ACKNOWLEDGEMENT 

The authors thank the reviewers for their insightful comments, which helped to improve the manuscript's 

quality. The authors express their gratitude to Shri J. Ramachandran, Chancellor, Col. Dr. G. 

Thiruvasagam, Vice-Chancellor and Dr. M. Jayaprakashvel, Registrar, Academy of Maritime Education 

and Training (AMET), Deemed  university, Chennai, Tamil Nadu for their continuous encouragement. 

 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 220944 

  

10 

Appendix A. 

Table A1. Numerical value of kinetic parameter used in [17] and in this work. 

 

 

Appendix B 

1. Analytical solutions of nonlinear Eq. (2) and Eq. (3) using HPM 

The HPM constructed for Eq. (2) is as follows: 

(1 − 𝑝)((1 + 𝛽)
𝑑𝜃𝐸𝑆
𝑑𝑡

− 𝑘𝑎[𝐸](1 − 𝜃𝑆∗) + (𝑘𝑎[𝐸] + 𝑘𝑑 + 𝑘𝑐𝑎𝑡)𝜃𝐸𝑆) 

+𝑝 ((1 + 𝛽(1 − 𝜃𝐸𝑆 − 𝜃𝑆∗))
𝑑𝜃𝐸𝑆

𝑑𝑡
− 𝑘𝑎[𝐸](1 − 𝜃𝑠

∗) + (𝑘𝑎[𝐸] + 𝑘𝑑 + 𝑘𝑐𝑎𝑡)𝜃𝐸𝑆) = 0     (B1) 

The solution for the Eqs. (2-3) are 

𝜃𝐸𝑆(𝑡) = 𝜃𝐸𝑆0(𝑡) + 𝑝𝜃𝐸𝑆1(𝑡) + ⋯                      (B2) 

𝜃𝑆∗(𝑡) = 𝜃𝑆∗0(𝑡) + 𝑝𝜃𝑆∗1(𝑡) + ⋯                       (B3) 

Substituting and equating the coefficients of 𝑝0, 𝑝1 gives the following equations. 

𝑝0:   (1 + 𝛽)
𝑑𝜃𝐸𝑆0(𝑡)

𝑑𝑡
− 𝑘𝑎[𝐸] (1 − 𝜃𝑆∗0(𝑡)) + 𝑚 𝜃𝐸𝑆0(𝑡) = 0                (B4) 

𝑝0 :     
𝑑𝜃𝑆∗0

(𝑡)

𝑑𝑡
= 𝑘𝑐𝑎𝑡𝜃𝐸𝑆0(𝑡)                      (B5) 

For solving Eq. (B4) and Eq. (B5), differentiate the Eq. (B4) with respect to t gives,  

(1 + 𝛽)
𝑑2𝜃𝐸𝑆0(𝑡)

𝑑𝑡2
+ 𝑘𝑎[𝐸]

𝑑𝜃𝑠
∗
0(𝑡)

𝑑𝑡
+𝑚

𝑑𝜃𝐸𝑆0(𝑡)

𝑑𝑡
= 0              (B6) 

Parameter Name Unit Numerical 

value [17] 

This work 

Fig. 2 Fig. 3 Fig. 4 

(a) (b) (c) (d) (a) (b) 

𝑘𝑎 Adsorption rate 

constant 

𝑀−1𝑠−1 2 ×  105  to 

3 ×  106 

- - - - - - 2.2 × 105 

[E] Enzyme 

concentrations 

𝑛𝑀 

 

1  to 320 - - - - - - 50, 80, 

160, 320 

𝑘𝑎[𝐸] Kinetic enzyme 

parameter 

𝑠−1 0.2× 10−3  to 

960 × 10−3 

0.1 2 2 5 10−3 0.25 - 

𝑘𝑑 Desorption rate 

constant 

𝑠−1 0.056 to 0.1 0.01 3 2 5 0.3 0.025 0.056 

𝑘𝑐𝑎𝑡  Catalysis rate 

constant 

𝑠−1 0.009 to 1 0.1 0.1 0.1 0.005 - - 0.009 

𝛽 Dimensionless 

diffusion parameter 

none 0 to 650 0 5 10 500 0, 50, 

100,200 

0 0 
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From Eq. (B5), Eq. (B6) becomes,  

(1 + 𝛽)
𝑑2𝜃𝐸𝑆0(𝑡)

𝑑𝑡2
+𝑚

𝑑𝜃𝐸𝑆0(𝑡)

𝑑𝑡
+𝑘𝑎[𝐸]𝑘𝑐𝑎𝑡𝜃𝐸𝑆0(𝑡) = 0          (B7) 

The respective boundary conditions are as follows: 

𝜃𝐸𝑆0(𝑡 = 0) = 0                      (B8) 

𝑑𝜃𝐸𝑆0

𝑑𝑡
 (𝑡 = 0) =

𝑘𝑎[𝐸]

1+𝛽
                                (B9) 

The above boundary condition (B9) is obtained from the Eq. (B4). 

On solving the Eq. (B7) gives, 

𝜃𝐸𝑆0(𝑡) =
2𝑘𝑎[𝐸]

√𝑎
 𝑒−𝑚𝑡/2(1+𝛽) {𝑠𝑖𝑛ℎ (

√𝑎 𝑡

2(1+𝛽)
)}              (B10) 

Using the above equation, Eq. (B5) gives, 

𝜃𝑆∗0(𝑡) = 1 − 𝑒
 
−𝑚𝑡

2(1+𝛽) [
𝑚

√𝑎
 𝑠𝑖𝑛ℎ (

√𝑎𝑡

2(1+𝛽)
) + 𝑐𝑜𝑠ℎ (

√𝑎𝑡

2(1+𝛽)
)]            (B11) 

where, 

𝑎 = 𝑚2 − 4𝑘𝑎[𝐸]𝑘𝑐𝑎𝑡(1 + 𝛽),  𝑚 = 𝑘𝑎[𝐸] + 𝑘𝑐𝑎𝑡 + 𝑘𝑑        (B12) 

Using the first iteration, the solution of Eq. (3) and Eq. (4) is as follows: 

𝜃𝐸𝑆(𝑡) ≈  𝜃𝐸𝑆0(𝑡)                                                             (B13) 

𝜃𝑠
∗(𝑡) ≈  𝜃𝑆∗0(𝑡)                                                                               (B14) 

We can find the next iteration to improve the accuracy of the results. 

2.  Maple code to find the analytical solution of nonlinear equations (2) to (6) 

restart;with(DEtools); 

kae := 2;kd := 2;kcat := 0.1;beta := 100; 

DE1 := diff(u(t), t) - (kae*(1 - u(t) - v(t)) - (kd + kcat)*u(t))/(1 + beta*(1 - u(t) - v(t))) = 0, diff(v(t), t) - 

kcat*u(t) = 0, w(t) + u(t) + v(t) = 1; 

BC := u(0) = 0, v(0) = 0, w(0) = 1; 

soln := dsolve({BC, DE1}, numeric); 

y (t):= u(t)/(1 - v(t)); 

R(t) :=u(t) - v(t); 

num1 := plots:-odeplot(soln, [t, y(t)], 0 .. 150, color = blue): 

with(plots): 

display(num1); 
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