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This paper uses the efficient, reliable, and widely accessible Akbari-Ganji’s method to solve the steady-

state problem of mediator concentration by bioelectrocatalysis. Analytical expressions of the mediator 

concentration and the normalized current are derived for all values of parameters. Compared to 

numerical simulations, the derived approximate analytical expressions of the mediator concentrations 

are more accurate than the expressions obtained by the well-founded homotopy perturbation method. 

The derived results will help in evaluating several important enzyme kinetic parameters.     
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1. INTRODUCTION 

 

An electrochemical process that uses biological materials as catalysts is called 

bioelectrocatalysis. The enzyme electrochemical reaction with an electrochemical regeneration of an 

electron acceptor of the enzyme is known as mediated bioelectrocatalysis [1, 2]. Bioelectrocatalysis 

yields the essential catalytic functions of redox enzymes to nonspecific electrode reactions. In recent 

years, the technology of bioelectrocatalysis has been widely used in various devices such as biosensors, 

biofuel cells, and bioreactors [3, 4].  

The catalytic current is governed by the kinetics of the enzyme reaction and the electrode and the 

mass transport process.Therefore obtaining an analytical expression of the intensity of the catalytic 

current would lead to understanding other important enzyme kinetic parameters. For example, one 
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critical case study is an electrolysis period when the substrate concentration is sufficiently more than the 

corresponding Michaelis constant [2].   

The case where the concentration of the mediator is significantly low compared to its Michaelis 

constant has been analytically discussed in [5, 6]. Ohgaru et al. [2] derived the steady-state limiting 

current of mediated bioelectrocatalysis for the case where the substrate concentration is sufficiently 

larger than its Michaelis constant. Thiagarajan et al. [7] employed the homotopy perturbation method to 

derive an approximate analytical solution of the steady-state nonlinear reaction-diffusion equation 

describing the Michaelis–Menten kinetics of the enzymatic reaction. 

Mathematical models that emerge from modern complex bioelectrocatalysis are nonlinear 

differential systems for which exact solutions can’t be found, and therefore researchers are opting for 

approximate numerical or analytical solutions. Though numerical solutions are relatively easy to obtain, 

some of their shortcomings cannot be avoided. In particular, the stability of the approximate numerical 

solution is not always guaranteed. In addition, with numerical solutions, it is difficult to adjust the model 

parameters to mimic the numerical data. With modern computational tools, many reliable and highly 

accurate analytical methods, which have been established in recent years, can be used to solve the 

underlying nonlinear steady-state catalytic current of mediated bioelectrocatalysis of the most common 

method that has shown remarkable success in solving complex nonlinear systems. These methods 

includes  the variation iteration method[8], homotopy analysis method [9], differential transformation 

method [10], Green’s function-fixed point method [11-13], exp-function method [14], and Taylor series 

method [15-17]. This article employs Akbari-Ganji’s method [18], which is highly accurate, efficient, 

and widely accessible to scientists other than mathematicians. 

 

2. THE MATHEMATICAL FORMULATION OF THE PROBLEM 

The following two-substrate redox enzyme reaction describes the oxidation of the substrate (𝑆) 

to the product (𝑃) in solution [1] 

S +Mox  
𝐾M
⇔  SMox

𝑘cat
→  𝑃 +Mred,                                                                                                                    (1) 

where Mox is the mediator and Mred is its reduced form. Under the assumption that the substrate 

concentration is larger than its Michaleis constant, the steady-state kinetic constant of the redox enzyme 

reaction (𝑣𝐸) is expressed by the following Michaelis-Menten equation 

𝑣𝐸 = 
𝑘cat [𝐸]

1 + 𝐾M [Mox]⁄
,                                                                                                                                   (2) 

where 𝑘cat is the catalytic constant, [E] is the soluble enzyme concentration, [Mox] and 𝐾M are the 

concentration and the Michaelis constant of Mox, respectively. In bioelectrocatalysis, Mox is generated 

by the oxidization of Mred at the electrode surface, that is  

Mred  → Mox + 𝑛𝑒
−,                                                                                                                                     (3) 

where n represents the number of electrons. The steady-state diffusion of the mediator with the enzyme 

reaction results as [1] 

𝐷𝑀  
d
2[Mox]

d𝑋2
−

𝑘cat [𝐸]

1 + 𝐾M [Mox]⁄
= 0.                                                                                                          (4) 

The boundary conditions become [1] 
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[Mox]𝑋=0 = [Mred
]∗,                                                                                                                                      (5) 

[Mox]𝑋=𝛿 = 0,                                                                                                                                                 (6) 

(
dMox

d𝑋
)
𝑋=𝛿

= 0,                                                                                                                                             (7) 

where 

𝛿 =  √
2 𝐷𝑀[M

red
]∗

𝑘cat[𝐸]
   and 𝐾 =  

𝑘cat [𝐸]

𝐾M

                                                                                                  (8) 

in which [M
red
]∗ is the bulk concentration of Mred, 𝐾 is a rate constant, and 𝛿 represents the diffusion 

layer thickness. The current is given by [7] 
𝑖

𝑛𝐹𝐴
=  −𝐷𝑀 (

d[Mox]

d𝑋
)
𝑋=0
,                                                                                                                       (9) 

where 𝐹, 𝐴, and 𝐷M are the Faraday constant, the surface area of the electrode, and the diffusion constant, 

respectively.  Using Eq. (8) with algebraic manipulation, Eq. (4) can be written as 

𝐷𝑀  
𝑑2[𝑀𝑜𝑥]

𝑑𝑋2
−

𝐾[Mox]

1 + [Mox] 𝐾M⁄
= 0.                                                                                                       (10) 

Introducing the following dimensionless parameters: 

𝑢 =  
[Mox]

[M
red
]∗
 , 𝑥 =  

𝑋

𝛿
 , 𝑘 =  

𝐾 𝛿2

𝐷𝑀
, and 𝛼 =  

[M
red
]∗

𝐾𝑀
,                                                                       (11) 

reduces Eq. (10) to the following dimensionless form 

𝑑2𝑢(𝑥)

𝑑𝑥2
= 

𝑘 𝑢(𝑥)

1 +  𝛼 𝑢(𝑥)
,                                                                                                                           (12) 

subject to the following dimensionless boundary conditions:  

𝑢(0) = 1,                                                                                                                                                         (13) 

𝑢(1) = 0,                                                                                                                                                         (14) 

𝑢′(1) = 0.                                                                                                                                                       (15) 

The dimensionless current can then be determined by    

ψ =  
𝑖 𝛿

𝑛 𝐹 𝐴 𝐷𝑀[Mred
]∗
= −(

𝑑𝑢

𝑑𝑥
)
𝑥=0
.                                                                                                     (16) 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Approximate analytical expression of the concentration using Akbari-Ganji method 

First introduced by Akbari and Ganji in 2014, the AGM [18] has been successfully employed to 

obtain highly accurate approximate analytical solutions of many nonlinear differential models that have 

emerged in science and engineering [19-21]. In this section, we use the AGM to solve Eq. (12) subject 

to boundary conditions (13)-(15).   

The approach begins by assuming that the solution to Eq. (12) is of the hyperbolic form: 

𝑢(𝑥) = 𝐴0 cosh(𝑚𝑥) + 𝐵0 sinh(𝑚𝑥),                                                                                                (17) 

where  𝐴0, 𝐵0 and 𝑚 are constant. From boundary conditions (13) and (14), the values of 𝐴0 and 𝐵0 are 

readily obtained, that is 
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𝐴0 = 1, 𝐵0 = 
− cosh(𝑚)

sinh(𝑚)
,                                                                                                                     (18) 

and hence Eq. (17) becomes 

𝑢(𝑥) =  
sinh(𝑚(1 − 𝑥))

sinh(𝑚)
.                                                                                                                        (19) 

To determine the constant 𝑚 in Eq. (19), we consider the functional form of Eq. (12)  

𝐹(𝑥) =  (1 + 𝛼 𝑢(𝑥))
𝑑2 𝑢(𝑥)

𝑑 𝑥2
− 𝑘 𝑢(𝑥) = 0.                                                                                    (20) 

By substituting Eq. (20) into Eq. (19), we obtain  

𝐹(𝑥)|𝑥=0 = (1 +
𝛼 sinh(𝑚)

sinh(𝑚)
)
𝑚2sinh(𝑚)

sinh(𝑚)
= 𝑘

sinh(𝑚)

sinh(𝑚)
,                                                             (21)

 
which implies that 

𝑚 = ±√
𝑘

1 + 𝛼
.                                                                                                                                          (22) 

Substitute Eq. (22) into Eq. (19) gives the following analytical expression of a mediator 

concentration 𝑢(𝑥) for all dimensionless parameters 𝑘 and 𝛼 

𝑢(𝑥) =

sinh(√
𝑘

1 + 𝛼 (1 − 𝑥))

sinh(√
𝑘

1 + 𝛼 )

.                                                                                                           (23) 

Now, from Eq. (16), the normalized current is given by 

𝜓 = √
𝑘

1 + 𝛼
coth(√

𝑘

1 + 𝛼
).                                                                                                                (24) 

Notice that Eqs. (23) and (24) were derived using boundary conditions (13) and (14). However, 

if we use boundary conditions (13) and (15), then it is straightforward to derive, respectively, the 

following mediator concentration and normalized current:  

𝑢(𝑥) =

cosh (√
𝑘

1 + 𝛼 (1 − 𝑥))

cosh (√
𝑘

1 + 𝛼 )

,                                                                                                          (25) 

and 

𝜓 =      √
𝑘

1 + 𝛼
tanh(√

𝑘

1 + 𝛼
).                                                                                                          (26) 

 

 

 

3.2

 

Previous analytical results 

Thiagarajan et al. used the homotopy perturbation method (HPM) to solve Eq. (12) with 

boundary conditions (13)-(14) [7]. They derived the following analytical expressions for the mediator 

concentration and normalized current, respectively, 
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𝑢 = 𝑒√𝑘𝑥 − 𝑒√𝑘  [
sinh(√𝑘𝑥)

sinh(√𝑘)
] −
𝛼𝑒2√𝑘𝑥 [𝑒−4√𝑘(𝑥−1) + 1 + 6𝑒−2√𝑘(𝑥−1)]

3(𝑒4√𝑘 − 2𝑒2√𝑘 + 1)
+ 𝐴𝑒√𝑘𝑥

+ 𝐵𝑒−√𝑘𝑥,                                                                                                                      (27) 

𝜓 = (𝐴 − 𝐵 + 1)√𝑘 −
𝑒√𝑘

sinh(𝑒√𝑘)
+

2𝛼 (𝑒4√𝑘 − 1)√𝑘

3(𝑒4√𝑘 − 2𝑒2√𝑘 + 1)
,                                                        (28) 

where 

𝐴 =
−𝛼[𝑒3√𝑘 − 7𝑒2√𝑘 − 𝑒√𝑘 − 1]

3(𝑒√𝑘 + 1)(𝑒4√𝑘 − 2𝑒2√𝑘 + 1)
  and  𝐵 =

𝛼[𝑒4√𝑘 + 6𝑒2√𝑘 + 1]

3(𝑒4√𝑘 − 2𝑒2√𝑘 + 1)
− 𝐴.                               (29) 

And for boundary conditions (13) and (15), they found that the analytical expressions for the 

concentration and the normalized currents are, respectively, given by 

𝑢 = 𝑒√𝑘𝑥 +
𝛼 (𝑒√𝑘𝑥 − 𝑒2√𝑘𝑥)

3
−

𝑒√𝑘

3 cosh(√𝑘)
[3 sinh(√𝑘𝑥) + 4𝛼𝑒√𝑘𝑥 − 𝛼𝑒2√𝑘𝑥 − 3𝛼]

+
𝛼𝑒2√𝑘

6 cosh(√𝑘)
2 [4 𝑒

√𝑘𝑥 − cosh(2√𝑘𝑥) − 3] − 2 𝐺 𝛼 sinh(√𝑘𝑥 ),                    (30) 

𝜓

= √𝑘 (
𝛼

3
− 1) +

√𝑘 (𝑒√𝑘(3 + 2𝛼) + 𝛼(𝑒√𝑘 − 2𝑒2√𝑘))

3 cosh(√𝑘)
+
√𝑘 (2𝛼 (−2 𝑒2√𝑘 + 𝑒3√𝑘) − 2𝛼𝑒2√𝑘)

3 cosh(√𝑘)2

+
𝛼√𝑘 (2𝑒3√𝑘 − 𝑒2√𝑘sinh (2√𝑘))

3 cosh(√𝑘)3
 ,                                                                                                     (31) 

where  

𝐺 =  
(𝑒√𝑘 − 2𝑒2√𝑘)

6 cosh(√𝑘)
−
(2𝑒2√𝑘 − 𝑒3√𝑘)

3 cosh(√𝑘)
2 +

(2𝑒3√𝑘 − 𝑒2√𝑘 sinh (𝑒2√𝑘))

6 cosh(√𝑘)
3 .                                    (32) 

 

3.3 Validation of analytical results and discussion 

In this section, we study the accuracy of the results obtained by the proposed AGM, analyze the 

results. Figure 1 shows the mediator concentrations obtained by AGM in Eqs. (23) and (25) are in solid 

agreement with the numerical results obtained by Maple RK45 procedure (Fehlberg fourth-fifth order 

Runge-Kutta method with degree four interpolant) for various values of the parameters 𝛼 and 𝑘. To 

further confirm the accuracy of the concentration expressions obtained by the proposed AGM, we 

compared the results with those obtained by the well-founded homotopy perturbation method (HPM).  

Tables 1 and 2 show that the analytical expressions of the mediator concentrations obtained by the AGM 

yielded significantly less deviations from the numerical results than the HPM method.  

From Figure 1, it is inferred that mediator concentration decreases as the reaction-diffusion 

parameter (𝑘) and the distance 𝑥 increase while saturation parameter 𝛼 ≤ 1.  When 𝛼𝑘 ≤ 0.1, the 

mediator concentration becomes a straight line with a negative slope, that is 𝑢 = −𝑥 + 1.  Notice that 

Eq. (11) can then be used to obtain [M
ox
] [M

red
]∗⁄  ≈ 1 − 𝑋 𝛿⁄ , which can be used to compute the 

thickness of the diffusion layer 𝛿. Figure 2 confirms the conclusions derived from Figure 1. 
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Figures 3 and 4 show several curves of the dimensionless current for various values of 𝛼 and 𝑘. 

It is observed that the current and the reaction-diffusion parameter are proportionally related, whereas 

the current and the simulation parameter are inversely related.   

 

 

 

  

 
 

Figure 1. Mediator concentration curves 𝑢(𝑥) computed using Eq. (23) for various values 𝑘 given that 

(a) 𝛼 = 0.1 (b) 𝛼 = 1 (c) 𝛼 = 10. 
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Figure 2. Mediator concentration curves 𝑢(𝑥) computed using Eq. (6.25) for various values k given that 

(a) 𝛼=0.1 (b) 𝛼 =1 (c) 𝛼 =10. 
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Figure 3. Dimensionless current 𝜓 for various values of 𝛼 and 𝑘 using Eq. (24). 

 
Figure 4. Dimensionless current 𝜓 for various values of 𝛼 and 𝑘 using Eq. (26). 

 

 

Table 1. Comparison beteween numerical and analytical results for dimensionless concentration of 

mediator  𝑢(𝑥) for various values of parameter 𝑘 when 𝛼 = 10. 

 
𝑥 𝑘 = 0.1 𝑘 = 0.5 𝑘 = 1 

 Num. Approximate 
concentration 

Error (%) Num. Approximate 
concentration 

Error (%) Num. Approximate 
concentration 

Error (%) 

Current 

AGM 
Eq. 

(23) 

HPM 

[7] 
Eq. 

(27) 

Current 

AGM 
Eq. 

(23) 

HPM 

[7] 
Eq. 

(27) 

Current 

AGM 
Eq. 

(23) 

HPM 

[7] 
Eq. 

(27) 

Current 

AGM 
Eq. 

(23) 

HPM 

[7] 
Eq. 

(27) 

 Current 

AGM 
Eq. 

(23) 

HPM 

[7] 
Eq. 

(27) 

Current 

AGM 
Eq. 

(23) 

HPM 

[7] 
Eq. 

(27) 
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0 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 

0.2 0.7973 0.7975 0.8252 0.0251 3.4993 0.7946 0.7958 0.9213 0.1510 15.945 0.7913 0.7936 1.0180 0.2907 28.641 

0.4 0.5954 0.5954 0.6277 0.0000 5.4249 0.5911 0.5931 0.7368 0.3383 24.649 0.5862 0.5902 0.8397 0.6824 43.245 

0.6 0.3930 0.3934 0.4183 0.1018 6.4376 0.3892 0.3914 0.5003 0.5653 28.546 0.3845 0.3889 0.5739 1.1443 49.259 

0.8 0.1913 0.1916 0.2042 0.1568 6.7433 0.1890 0.1905 0.2450 0.7936 29.630 0.1861 0.1891 0.2805 1.6120 50.725 

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0147 0.0000 1.0000 

 Average error (%) 0.0473 3.6842 Average error (%) 0.3080 8.2453 Average error (%) 0.6716 28.813 

 

 

Table 2. Comparison beteween numerical and analytical results for dimensionless concentration of 

mediator  𝑢(𝑥) for various values of parameter 𝑘when 𝛼 = 0.01 . 

 
𝑥 𝑘 = 0.1 𝑘 = 0.5 𝑘 = 1 

 Num. Approximate 

concentration 

Error (%) Num. Approximate 

concentration 

Error (%) Num. Approximate 

concentration 

Error (%) 

Current 
AGM 

Eq. 

(25) 

HPM 
[7] 

Eq. 

(30) 

Current 
AGM 

Eq. 

(25) 

HPM 
[7] 

Eq. 

(30) 

Current 
AGM 

Eq. 

(25) 

HPM 
[7] 

Eq. 

(30) 

Current 
AGM 

Eq. 

(25) 

HPM 
[7] 

Eq. 

(30) 

Current 
AGM 

Eq. 

(25) 

HPM 
[7] 

Eq. 

(30) 

Current 
AGM 

Eq. 

(25) 

HPM 
[7] 

Eq. 

(30) 

0 1.0000 1.0000 0.9715 0.0000 2.8500 1.0000 1.0000 0.9625 0.0000 3.7500 1.0000 1.0000 0.9567 0.0000 4.3300 

0.2 0.9826 0.9826 0.9568 0.0000 2.6257 0.9512 0.9513 0.9195 0.0105 3.3326 0.9235 0.9236 0.8885 0.0108 3.7899 

0.4 0.9692 0.9693 0.9457 0.0103 2.4247 0.9140 0.9141 0.8865 0.0109 3.0087 0.8657 0.8659 0.8363 0.0923 3.3299 

0.6 0.9598 0.9598 0.9382 0.0000 2.2505 0.8879 0.8880 0.8635 0.0113 2.7481 0.8255 0.8257 0.7996 0.0242 3.1375 

0.8 0.9542 0.9542 0.9342 0.0000 2.0960 0.8725 0.8726 0.8502 0.0115 2.5559 0.8020 0.8022 0.7780 0.0249 2.9925 

1 0.9524 0.9525 0.9337 0.0105 1.9635 0.8678 0.8679 0.8467 0.0115 2.4314 0.7947 0.7950 0.7714 0.0377 2.9319 

 Average error % 0.0035 2.3684 Average error % 0.0093 2.9711 Average error % 0.0316 3.4185 

 

 

 

4. CONCLUSIONS 

We have derived an approximate analytical expression concentration profiles and catalytic 

current of mediated bioelectrocatalysis for steady-state conditions over a wide range of parameters. A 

nonlinear time-independent differential equation has been solved using the Akbari-Ganji method. The 

effects of the saturation and reaction diffusion parameters on concentration and current are discussed. 

The numerical results from the Matlab software are used to validate these analytical results. A 

satisfactory agreement is noted. In conclusion, the analytical expressions of the mediator concentration 
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and catalytic current derived in this paper are reliable. Therefore, they can be applied to other mediated 

bioelectrocatalytic systems to compute the mediator’s catalytic constant and the Michaelis constant. 
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