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Accurately estimating the state of charge of lithium-ion batteries is of great significance for real-time 

monitoring and safety control of batteries. To solve the problems of difficult real-time estimation and 

low estimation accuracy of lithium batteries under various operating conditions, the ternary lithium-ion 

battery is used as the research object to establish an improved partnership for a new generation of 

vehicles( PNGV) equivalent circuit model to characterize the operating characteristics of the battery and 

to study and analyze the operating characteristics of the lithium battery by comprehensive experiments 

under various operating conditions. Considering the importance of state of charge accuracy at the early 

stage of estimation for the later estimation, the initial value of estimation is firstly calibrated using the 

open-circuit voltage method, and then the adaptive fading unscented Kalman filter algorithm is used for 

estimation tracking to achieve high accuracy estimation of lithium battery state of charge in real-time. A 

simulation model is built in MATLAB/Simulink and the performance analysis is carried out with a 

variety of operating conditions. The experimental results show that the improved PNGV model can better 

estimate the state of charge of lithium batteries with fast convergence, good tracking effect, and a 

maximum error of 0.485%. Comparing the state of charge results estimated using the adaptive fading 

unscented Kalman filter (AF-UKF) algorithm with the unscented Kalman filter algorithm, the maximum 

error was reduced by 0.354% in the HPPC condition and 1.978% in the BBDST condition, improving 

the accuracy and convergence speed of the filter. 

 

 

Keywords: Lithium-ion battery; Improve PNGV model; State of charge; Adaptive Fading Unscented 

Kalman filtering algorithm; 

 

 

1. INTRODUCTION 

 

With the advancement of technology and social development, the global energy crisis and 

environmental pollution problems are becoming more and more serious, which has caused widespread 
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concern in the world[1]. As a result, countries around the world are committed to researching and 

developing new energy sources[2] to alleviate the energy crisis and environmental pollution 

problems[3]. Lithium batteries have been widely used and developed in the field of new energy[4]  

because of their high energy density, low discharge rate, long life, high output power, and green 

environmental protection[5]. The State of Charge (SOC) of lithium batteries is an indicator describing 

the remaining power of the battery[6] and is one of the most important parameters in the process of 

battery use[7]. Accurate SOC estimation is a key factor limiting the rapid development of new energy 

vehicles[8]. 

The common methods for estimating the SOC of lithium batteries are divided into two 

categories[9]: one is the direct measurement for estimation, including the ampere-time integration 

method[10] and the open-circuit voltage method[11]; the other is the intelligent estimation method based 

on the battery model, including the neural network method and the Kalman filter algorithm[12]. Among 

them, the open-circuit voltage method battery rebound characteristics require the battery to sit for a long 

time to get the accurate open-circuit voltage[13], which can not meet the real-time SOC estimation[14]; 

the ampere-time integration method meets the real-time problem, but the initial value of SOC is difficult 

to determine[15], as well as the error increases with the accumulation of time, making it difficult to 

achieve accurate SOC estimation[16]; the neural network method relies on the accuracy of training 

data[17], which requires a large amount of data and calculation. The algorithm is complex and difficult 

to use online[18]; the Kalman filter algorithm, although it can obtain accurate values even when the 

initial value of SOC is inaccurate and the computation is small, is suitable for online estimation of 

SOC[19], but it needs to rely on an accurate battery model[20]. At present, the mainstream method for 

estimating the SOC of lithium batteries is the Kalman filter algorithm[21, 22]. To improve the accuracy 

of the traditional Kalman filter algorithm for estimating SOC, many scholars have conducted a lot of 

research to optimize the Kalman filter algorithm[23]. 

This research is aim to accurately describe the operating state of ternary lithium batteries[22], 

consider the accuracy of characterization and computational complexity, develop an improved PNGV 

equivalent circuit model for lithium batteries[24], use the Adaptive Fading Unscented Kalman Filter 

(AF-UKF) algorithm to estimate the SOC of lithium batteries[25], and compare the estimation effect of 

the Unscented Kalman Filter (UKF) algorithm[26]. 

 

 

 

2. BATTERY STATE-SPACE MODEL 

2.1 Equivalent circuit model 

The battery model can visually characterize the relationship between the external characteristics 

of the battery (voltage, current, temperature, etc.) and the internal state quantities (SOC, resistance, 

electric potential, etc.), and establish mathematical expressions for the relationship, thus enabling the 

internal state quantities to be calculated indirectly based on the external characteristics of the battery[27]. 

Among the many equivalent circuit models, the Thevenin model[28] only considers the rapid changes 

in polarization response of the battery. The Rint model[29] does not consider the polarization 
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characteristics of battery, so its accuracy is not ideal. The second-order RC[29] equivalent circuit model 

considers the slow change process of the battery polarization reaction, has a small amount of calculation 

and high accuracy, but it is more suitable for online parameter identification. The PNGV model takes 

into account the influence of the battery state and operating conditions on the model parameters, and can 

more accurately describe the characteristics of the battery[30]. The improved PNGV model add a parallel 

RC link in the PNGV model, and the two RC links correspond to the two poles in the impedance 

spectrum of lithium batteries, which more accurately describes the polarization phenomenon of lithium 

batteries. It has higher accuracy and practicality than other models, so it is chosen in this paper. 

 

 
 

Figure 1. Lithium-ion battery improved PNGV equivalent circuit model 

 

 

The improved PNGV model is shown in Figure 1, E is the ideal voltage source, representing the 

open-circuit voltage of the battery; capacitance Cb describes the change in open-circuit voltage generated 

by the accumulation of current; E and Cb together represent the change in open circuit voltage UOC; R0 

is the ohmic internal resistance of the battery; Rp1 and Rp2 are the two polarized internal resistances of 

the battery; Cp1 and Cp2 are the two polarized capacitors of the battery, composed of RC and series links 

together simulates the polarization characteristics of the battery; I is the current of the battery loop; UL 

is the terminal voltage of the battery. Under constant temperature experimental conditions and neglecting 

the effect of current, the component parameters of the model are a function of the SOC of the battery. 

The relationship between the battery terminal voltage and current is established based on the circuit 

model, as shown in equation (1). 

𝑈𝐿 = 𝑈𝑂𝐶 − 𝑅0𝐼𝐿 − 𝐼𝑝1𝑅𝑝1 − 𝐼𝑝2𝑅𝑝2 (1) 

Using the knowledge of modern control theory, the equivalent circuit model can be discretized 

and the mathematical model established is shown in equations (2) and (3). Equation (2) for the k moment 

and k+1 moment battery SOC value Sk and polarization voltage Upl, Up2 recurrence relationship, equation 

(3) for the k moment battery terminal voltage Uk and current ik and SOC value Sk relationship. 

(

𝑆𝑘+1

𝑈𝑘+1
𝑝1

𝑈𝑘+1
𝑝2

) = (

1 0 0
0 𝑒𝑥𝑝( − 𝛥𝑡/𝜏1) 0
0 0 𝑒𝑥𝑝( − 𝛥𝑡/𝜏2)

)(

𝑆𝑘

𝑈𝑘
𝑝1

𝑈𝑘
𝑝2

) +

(

 
 

−
𝛥𝑡

𝑄
𝑅𝑝1(1 − 𝑒𝑥𝑝( − 𝛥𝑡/𝜏1))

𝑅𝑝2(1 − 𝑒𝑥𝑝( − 𝛥𝑡/𝜏2)))

 
 
𝑖𝑘 (2) 

𝑈𝑘 = 𝑈𝑂𝐶𝑉(𝑆𝑘) − 𝑖𝑘𝑅0 − 𝑈𝑘
𝑝1
− 𝑈𝑘

𝑝2 (3) 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 220836 

  

4 

Here 𝛥𝑡 is the sampling time interval, 𝜏1 and 𝜏2 are the time constants for each of the two RC 

parallel links, 𝜏1 = 𝑅𝑝1𝐶𝑝1, 𝜏2 = 𝑅𝑝2𝐶𝑝2 and Q is the battery capacity. 

 

2.2 Parameter identification 

This paper selected a 4.2V/72Ah ternary lithium battery as the object of study. To obtain the 

voltage and current data required for the model parameter identification, HPPC tests were conducted on 

the ternary lithium battery to analyze the working process of the battery under specific temperature 

conditions to obtain the required parameters. The pulse test was carried out at an interval of 0.1 for SOC 

and the parameters were identified according to the experimental voltage curve. The pulse test voltage 

curve at SOC=0.7 is shown in Fig. 2. 

 

  
(a) Pulse test current curve (b) Pulse test voltage curve 

 

Figure 2. Pulse test current and voltage curve at SOC = 0.7 

 

 

Analysis of Figure 2 (b) shows that the vertical drop in voltage at the moment of discharge is due 

to the transient voltage drop caused by the presence of the battery ohmic internal resistance R0, I is the 

discharge current, from which the battery ohmic internal resistance can be obtained as shown in equation 

(4). 

𝑅0 =
|𝑈𝐴 − 𝑈𝐵|

𝐼
(4) 

The identification process and results for Cb are shown in equations (5) and (6). 

𝛥𝑄𝑈𝑂𝐶𝑉 =
1

2
𝐶𝑏[(𝑈𝑂𝐶𝑉 + 𝛥𝑈𝑂𝐶𝑉)

2 − 𝑈2𝑂𝐶𝑉] (5) 

𝐶𝑏 =
𝛥𝑄

𝛥𝑈𝑂𝐶𝑉
(6) 

According to the conservation of energy, equation (5) is simplified to obtain equation (6), where 

is the discharge power, obtained from experimental data, and is the voltage difference caused by the 

integration of the discharge current across the polarization capacitor, i.e.,𝑈𝐴 − 𝑈𝐸. 

The identification of the polarization resistor and polarization capacitor is relatively complex. At 

the end of the discharge, the voltage at the battery terminal rises slowly, which is the process of 
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discharging the polarization capacitor to the polarization resistor, and the mathematical expression for 

the zero-input response of the dual RC parallel link is shown in equation (7). 

𝑈𝑃 = 𝑈𝑃1 +𝑈𝑃2 = 𝑈1exp (−
𝑡

𝜏1
) + 𝑈2exp (−

𝑡

𝜏2
) (7) 

In equation (7), 𝑈𝑃 is the sum of the series voltages, 𝑈1 and 𝑈2 are the initial polarization voltages 

respectively, 𝜏1 and 𝜏2 are obtained by curve fitting the target equation (7) using the experimental data. 

When discharging, the voltage at the battery terminal slowly drops, which is the process of 

charging the polarization capacitor by the discharge current, and the mathematical expression for the 

zero-state response of its RC parallel circuit is shown in equation (8). 

𝑈𝐿 = 𝑈𝐵 −
1

𝐶𝑏
∫𝐼𝑑𝑡 − 𝐼𝑅𝑃1(1 − 𝑒𝑥𝑝( − 𝑡/𝜏1)) − 𝐼𝑅𝑃2(1 − 𝑒𝑥𝑝( − 𝑡/𝜏2)) (8) 

By substituting 𝜏1 and 𝜏2 into equation (8) and curve fitting Rp1 and Rp2 as parameters to be 

determined, the polarization resistance parameters are obtained, and then the polarization capacitance 

Cp1 and Cp2 can be obtained from the time constant calculation equation 𝜏1 = 𝑅𝑝1𝐶𝑝1 and 𝜏1 = 𝑅𝑝2𝐶𝑝2. 

 

 

 

3. ADAPTIVE FADING UNSCENTED KALMAN FILTER ALGORITHM 

The UKF algorithm is essentially a high-precision transformation of a non-linear model through 

a linear interpolation method. Its disadvantages are that the covariance update is prone to negative 

definite matrices when the degree of non-linearity is strong and that the system noise is more pronounced 

due to the influence of the initial values. The unknown statistical properties of the noise in the data 

acquisition process can lead to a reduction in the estimation accuracy of the Kalman filter method, and 

can even cause divergence, resulting in unstable filtering results generating large errors. Therefore, a 

time-varying fading factor is introduced to attenuate the influence of past data on the current filter value, 

improve the robustness and accuracy of the filter, adaptively adjust the process noise and measurement 

noise covariance, improve the accuracy and convergence speed of the filter, and form an adaptive fading 

unscented Kalman filtering algorithm. 

 

3.1 Introduction to the UKF algorithm 

Following Kalman's recursive formula, an estimate of the state at the current moment is derived 

from the new data and the estimate of the previous state, with the aid of the system's state transfer 

equation. The discrete state-space equation for a non-linear system of lithium batteries is shown in 

equation (9). 

{
𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘) + 𝑤𝑘
𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘) + 𝑣𝑘

(9) 

In Equation (9), 𝑓 is the nonlinear state equation; 𝑔 is the nonlinear observation equation; 𝑤𝑘, 𝑣𝑘 

are the Gaussian white noise of the random variable x and the observation variable 𝑦, whose variance 

matrices are 𝑄𝑤 and 𝑅𝑣, respectively, and whose expressions are shown in Equation (10). 
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{
𝑄𝑤 = 𝐸[𝑤𝑘𝑤𝑘

𝑇]

𝑅𝑣 = 𝐸[𝑣𝑘𝑣𝑘
𝑇]

(10) 

The initialization 𝑋0 = (𝑆𝑂𝐶0, 0,0) is set to the initial value of the state variable with the 

expression for the variance estimate 𝑃0 shown in equation (11). 

𝑃0 = (

𝑃𝑆𝑂𝐶0 0 0

0 𝑃𝑆0 0

0 0 𝑃𝑃0

) (11) 

The dimension of the state variable L=3 according to the statistic 𝑥𝑘−1 of the state variable and 

its covariance 𝑃𝑘−1
𝑥 ; the steps of the algorithm for estimating the lithium battery SOC based on the 

unscented Kalman filter of the UT transform are as follows. 

(1) Calculating sampling points 

Using the Sigma point symmetric sampling strategy, the set of Sigma points for point 𝑥 is 

obtained, along with its corresponding weighted values 𝑤𝑖
𝑚 for the mean and variance, as shown in 

equation (12). 

{
 
 
 
 

 
 
 
 

𝑋0 = 𝑥𝑘−1

𝑋𝑖 = 𝑥𝑘−1 + (√(𝐿 + 𝑟)𝑃𝑘−1
𝑥 ) , 𝑖 = 1,2, … , 𝐿

𝑤0
𝑚 =

𝑟

𝐿 + 𝑟

𝑤0
𝑐 =

𝑟

𝐿 + 𝑟
+ (1 − 𝛼2 + 𝛽)

𝑤0
𝑚 = 𝑤0

𝑐 =
1

2(𝐿 + 𝑟)
, 𝑖 = 1,2, … , 𝐿

(12) 

In Equation (12), 𝛼 and 𝛽 are constants; the adaptive adjustment factor, 𝑟 = 𝛼2(𝐿 + 𝜀) − 𝐿, 

serves to adjust the higher-order matrix and reduce the prediction error; 0 ≤ 𝛼 ≤ 1 is used to set the 

distance of these point sets to the mean point; 𝜀 is the second scale adjustment factor, usually set to 0; 

𝛽 ≥ 0 is applied to incorporate the random variable 𝑥, which is optimal for a Gaussian prior distribution, 

𝛽=2; and (√(𝐿 + 𝑟)𝑃𝑘−1
𝑥 )𝑖 denotes the 𝑖th column of the square root matrix of the weighted covariance 

matrix. 

(2) Time Updates 

The state update is calculated according to the state equation to obtain equation (13). 

𝑋𝑘|𝑘−1 = 𝑓(𝑋𝑘−1, 𝑖𝑘) + 𝑞𝑘 (13) 

Calculate the predicted state values as shown in equation (14). 

𝑥𝑘
− =∑(𝑤𝑖

𝑚𝑋𝑖,𝑘|𝑘−1)

2𝐿

𝑖=0

(14) 

The covariance of the calculated state prediction values is shown in equation (15). 

𝑝𝑘
𝑥− =∑𝑤𝑖

𝑐(𝑋𝑖,𝑘|𝑘−1 − 𝑥𝑘
−)

2𝐿

𝑖=0

(𝑋𝑖,𝑘|𝑘−1 − 𝑥𝑘
−)′ + 𝑄𝑘 (15) 

Calculating the measurement update from the equation of state gives equation (16). 

𝑌𝑘|𝑘−1 = 𝑔(𝑋𝑘|𝑘−1, 𝑖𝑘) + 𝑟𝑘 (16) 

Calculate the predicted measurements as shown in equation (17). 
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𝑦𝑘
− =∑(𝑤𝑖

𝑚𝑌𝑖,𝑘|𝑘−1)

2𝐿

𝑖=0

(17) 

The covariance of the calculated measurement estimate 𝑦𝑘
− is shown in equation (18). 

𝑝𝑘
𝑦−
=∑𝑤𝑖

𝑐(𝑌𝑖,𝑘|𝑘−1 − 𝑦𝑘
−)

2𝐿

𝑖=0

(𝑌𝑖,𝑘|𝑘−1 − 𝑦𝑘
−)′ + 𝑅𝑘 (18) 

The covariance between 𝑋𝑘|𝑘−1 and 𝑌𝑘|𝑘−1 is calculated as shown in equation (19). 

𝑝𝑘
𝑥𝑦
=∑𝑤𝑖

𝑐(𝑋𝑖,𝑘|𝑘−1 − 𝑥𝑘
−)

2𝐿

𝑖=0

(𝑌𝑖,𝑘|𝑘−1 − 𝑦𝑘
−) (19) 

(3) Measurement updates 

Calculate the Kalman gain matrix as shown in equation (20). 

𝐾𝑘 = 𝑃𝑘
𝑥𝑦
(𝑃𝑘

𝑦−
)−1 (20) 

Updating the state gives equation (21). 

𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘(𝑦𝑘 − 𝑦𝑘

−) (21) 

Updating the error covariance yields equation (22). 

𝑃𝑘
𝑥 = 𝑃𝑘

(𝑥−) − 𝐾𝑘 (𝑃𝑘
(𝑦−)

)𝐾𝑘
𝑇 (22) 

 

3.2 AF-UKF algorithm 

In order to effectively improve the accuracy of battery SOC estimation when the degree of non-

linearity is strong, reduce the influence of initial values and system noise on the filtering results, and 

improve the stability of algorithm filtering. Based on the traditional UKF algorithm, an fading factor and 

an adaptive adjustment factor are introduced to form an adaptive unscented Kalman filter with an fading 

memory effect. As the system noise also affects the filtering results, the introduction of the adaptive 

adjustment factor adjusts the associated covariance matrix, which can change its role in the filtering 

process to a certain extent. 

 

3.2.1 Fading factor 

A fading factor is introduced on top of the UKF algorithm to form an unscented Kalman filter 

with a fading memory effect. The main difference between this algorithm and the traditional UKF 

algorithm is the addition of the fading factor S to equation (15), allowing equation (15) to be converted 

to equation (23). 

𝑝𝑘
𝑥− = 𝑆∑𝑤𝑖

𝑐(𝑋𝑖,𝑘|𝑘−1 − 𝑥𝑘
−)

2𝐿

𝑖=0

(𝑋𝑖,𝑘|𝑘−1 − 𝑥𝑘
−)′ + 𝑄𝑘𝑧 (23) 

The selection of the fading factor S has a significant impact on the filtering results. The filtering 

accuracy decreases as S increases and sometimes even causes filtering divergence. Therefore, to 

effectively improve the filtering effect and system stability, it is also necessary to introduce an adaptive 

adjustment factor. 
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3.2.2 Adaptive adjustment factor 

The traditional UKF algorithm is heavily influenced by the initial values and, in addition, system 

noise can also affect the filtering results. Therefore, to reduce these effects, adaptive adjustment of the 

associated covariance matrix can modify its role in the filtering process to some extent. Define 𝑒𝑟𝑘 =

𝑦𝑘 − 𝑦𝑘
− and construct the adaptive factor 𝛼𝑘(0 ≤ 𝛼𝑘 ≤ 1) as shown in equation (24). 

𝛼𝑘 = {

1, 𝑡𝑟(𝑒𝑟𝑘𝑒𝑟𝑘
𝑇) ≤ 𝑡𝑟(𝑝𝑦

−)

𝑡𝑟(𝑝𝑦
−)

𝑡𝑟(𝑒𝑟𝑘𝑒𝑟𝑘
𝑇)
, 𝑡𝑟(𝑒𝑟𝑘𝑒𝑟𝑘

𝑇) > 𝑡𝑟(𝑝𝑦
−)

(24) 

The covariance matrix equation (18), (19) and (22) are modified to obtain equation (25). 

{
 
 
 

 
 
 𝑝𝑘

𝑦−
=
1

𝛼𝑘
∑𝑤𝑖

𝑐(𝑌𝑖,𝑘|𝑘−1 − 𝑦𝑘
−)

2𝐿

𝑖=0

(𝑌𝑖,𝑘|𝑘−1 − 𝑦𝑘
−)′ + 𝑅𝑘

𝑝𝑘
𝑥𝑦
=
1

𝛼𝑘
∑𝑤𝑖

𝑐(𝑋𝑖,𝑘|𝑘−1 − 𝑥𝑘
−)

2𝐿

𝑖=0

(𝑌𝑖,𝑘|𝑘−1 − 𝑦𝑘
−)

𝑃𝑘
𝑥 =

1

𝛼𝑘
𝑃𝑘
(𝑥−) − 𝐾𝑘 (𝑃𝑘

(𝑦−)
)𝐾𝑘

𝑇

(25) 

When there is an error in the initial value of the UKF algorithm or an abnormal disturbance in 

the system, the adaptive factor 𝛼𝑘 < 1, when the model prediction information makes a small 

contribution to the final filtered solution; when the prediction information is abnormal, 𝑡𝑟(𝑒𝑟𝑘𝑒𝑟𝑘
𝑇) will 

be large, when the adaptive factor 𝛼𝑘 is close to 0, and the prediction does not work at all. 

 

 

 

4. ANALYSIS OF EXPERIMENTAL RESULTS 

4.1 Test platform construction 

In order to verify the accuracy of the battery model and algorithm, an experimental platform is 

to be set up to experimentally test the battery under different complex operating conditions. A lithium-

ion aluminum-cased battery with a nominal capacity of 72Ah is used as the experimental object, and the 

entire battery test platform is shown in Figure 3. BTS200-100-104 is used to test the battery, TT-5166TH 

is used to provide a constant experience temperature to the battery, and the host computer is used to 

record the experimental data. 
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Temperature control

Lithium-ion battery 

Battery test equipment 

BTS200-100-104 
Host Computer 

Command

Data Recording

(voltage and current)

Temperature chamber TT-5166TH  

Test HPPC DSTBBDST

 
 

Figure 3. The entire battery test platform 

 

4.2. Parameter identification results 

For the parameter identification of the equivalent model, the lithium-ion battery was subjected 

to a pulse discharge test based on the theoretical basis of parameter identification in the previous section. 

The ohmic internal resistance R0, capacitance Cb, polarization internal resistance Rp1 and Rp2, 

polarization capacitance Cp1 and Cp2 and open-circuit voltage Uoc for the different SOC stages were 

calculated as shown in Table 1. 

 

 

Table 1. Model parameters under different SOC states 

 
SOC R0/Ω RP1/Ω CP1/F RP2/Ω CP2/F Cb/F UOC/V 

1 0.001152402 0.000484852 29309.13824 3.21689E-05 28863.44728 109967.9 4.1865 

0.9 0.001172078 0.000538397 26230.28136 4.2934E-05 15173.65135 127839.0542 4.0504 

0.8 0.001172078 0.000636351 26030.4755 4.71782E-05 16469.47697 221130.0215 3.9341 

0.7 0.001183321 0.000609087 24073.34356 3.62726E-05 21862.8414 97720.49467 3.8306 

0.6 0.001213536 0.000602201 23454.46934 3.8479E-05 18457.53059 80643.12667 3.731 

0.5 0.001247967 0.000400249 31880.11385 3.32089E-05 23397.39068 154095.1465 3.6492 

0.4 0.001264129 0.000404044 33600.06611 2.77279E-05 31010.08063 164951.85 3.6142 

0.3 0.001297971 0.000504571 33534.35233 3.80466E-05 18936.25663 157766.2826 3.5859 

0.2 0.001331587 0.000541348 27599.58755 4.97219E-05 12593.51462 126633.0254 3.5292 

0.1 0.001494167 0.000736401 15103.50035 0.000145762 2276.208296 103207.8859 3.4495 
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The battery is basically in a stable state after each discharge and the voltage at this point is the 

Open Circuit Voltage (OCV) value corresponding to the current SOC. As can be seen from Table 1, the 

internal parameters of the improved PNGV model fluctuate within a certain range as the SOC changes, 

and if a more accurate simulation is required, the relationship between each parameter and the SOC 

needs to be obtained. 

According to the values of R0, Rp1, Rp2, Cp1, Cp2, Cb and Uoc model parameters derived from Table 

1, the curve was fitted with the corresponding SOC values respectively, and the fitting order was set to 

5th order to obtain the relationship curve between each model parameter and SOC, and the curve 

expression is shown in equation (26). 

𝑓(𝑥) = 𝑝1𝑥
5 + 𝑝2𝑥

4 + 𝑝3𝑥
3 + 𝑝4𝑥

2 + 𝑝5𝑥
1 + 𝑝6 (26) 

In Equation (26), x is the SOC and ( )f x  is the parameter curve to be fitted, the results are shown 

in Table 2. 

 

Table 2. Curve fitting results for each parameter 

 
 R0/Ω RP1/Ω CP1/F RP2/Ω CP2/F Cb/F UOC/V 

p1 0.0465 -1.4644E7 9.7594E-6 -0.01184 -2.3178E6 -1.4016E7 4.41795 

p2 0.1717 3.7061E7 0.00125 0.03504 6.3963E6 3.3897E7 -15.01241 

p3 0.2391 -3.314E7 -0.0041 -0.04035 -6.2486E6 -2.8358E7 19.25601 

p4 0.1432 1.2201E7 0.0043 0.02266 2.4718E6 9.4182E6 -10.68227 

p5 0.0429 -1.4904E6 -0.0017 -0.00614 -287751.7832 -970421.2416 2.96627 

p6 0.0448 116405.206 3.596E-4 6.98809E-4 11664.2656 128258.5783 3.23984 

 

 

After the model parameters were obtained, the accuracy of the model parameters was verified. 

The determined parameters were placed into the modified PNGV model with the same current input as 

the HPPC test experiment, the model output voltage response data was compared to the actual voltage 

data and the model estimation error was calculated. The voltage comparisons and error distributions are 

shown in Figure 4. 

 

 

  
(a) Output voltage comparison curve (b) Error distribution curve 

 

Figure 4. Output voltage comparison and error distribution curves 
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Based on the improved 2RC-PNGV, Y Y Liu[31] obtained that the maximum error in the output 

voltage is 0.11 V, and based on the PNGV model, W Li[32] obtained that the maximum error in the 

output voltage is 0.0922 V. From Figure 4 (b), it can be seen that the maximum error in the output voltage 

of the improved PNGV model is 0.0482V, indicating that the improved PNGV model has a good tracking 

effect and can represent the terminal voltage of the battery in operation. 

 

4.3 HPPC working condition experiments 

To verify the feasibility of the AF-UKF algorithm for Li-ion battery SOC estimation, a Li-ion 

battery SOC estimation model is constructed. The estimation accuracy of the model, the convergence of 

the estimation process, and the traceability to real data are investigated under a variety of experimental 

conditions. 

Considering that batteries are often discharged intermittently in actual use, the model was further 

simulated and analyzed under HPPC experimental conditions, and the results were obtained by 

comparing the AF-UKF algorithm with the UKF algorithm as shown in Figure 5. 

 

 

 
(a) AF-UKF vs. UKF SOC estimation curves  

 

 

 
(b) Estimation error variation curve  

 

Figure 5. Comparison of SOC estimation results under HPPC condition 

 

In Figure 5(a), the theoretically calculated value and estimated values of the battery SOC using 

AF-UKF and UKF are shown respectively. Between 10,000 and 15,000s, the estimation error of UKF 

fluctuates considerably compared to AF-UKF, while AF-UKF is flatter around the theoretical estimate 

and the estimate is closer to the theoretical estimate, because AF-UKF has a stronger adaptive capability 

to changes in the noise model through real-time updating of the noise covariance and has better 

estimation performance. From Figure 5(b), it can be seen that the SOC estimation error of UKF is 

1.384% and that of AF-UKF is 1.03%, a reduction of 0.354%, demonstrating better convergence and 

tracking of SOC estimation using AF-UKF. 

 

4.4 BBDST working condition experiments 

To further validate the response of the estimation algorithm to the Li-ion battery state of charge 

under more complex application conditions, the model is simulated and validated with experimental data 
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from the BBDST operating conditions. The UKF algorithm, under the same operating conditions, is also 

simulated and analyzed simultaneously to compare and highlight the advantages and disadvantages of 

the AF-UKF algorithm. The experimentally obtained voltage and current data were imported into the 

MATLAB workbench to analyze the estimated models. The results of comparing the battery SOC values 

with the theoretical values using UKF and AF-UKF, respectively, and the estimation errors are shown 

in Figure 6. 

 

 

 

 
(a) AF-UKF vs. UKF SOC estimation curves 

 

 

 

 
(b) Estimation error variation curve  

 

Figure 6. Comparison of SOC estimation results under BBDST condition 

 

The convergence, as well as the tracking effect of the AF-UKF algorithm, can be seen in Fig. 

6(a) to be comparable to UKF, but AF-UKF has higher accuracy. As can be seen from Figure 6(b), the 

maximum SOC estimation error is 5.936% for UKF and 3.958% for AF-UKF, which demonstrates the 

better convergence and tracking of SOC estimation using AF-UKF under BBDST conditions. 

 

5. CONCLUSION 

Accurate SOC estimation of Li-ion electrons is the focus and difficulty of Li-ion battery state 

monitoring. This paper characterizes the state and output characteristics of Li-ion batteries based on the 

improved PNGV model, conducts HPPC experiments for parameter identification, and determines the 

relationship between circuit model parameters and Li-ion battery charge state changes at different 

discharge stages. The Simulink model is built on MATLAB and simulated with experimental data under 

various operating conditions. The results show that the established estimation model can better estimate 

the SOC of Li-ion battery with a maximum estimation error of 0.482%, and the errors of AF-UKF under 

HPPC and BBDST operating conditions are 1.03% and 0.01% respectively, which are reduced by 

0.354% and 0.0012% compared with the errors of UKF under HPPC and BBDST operating conditions 

respectively, verifying that the adaptive fading unscented Kalman has high accuracy in SOC estimation 

for Li-ion batteries. 
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