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State of charge (SOC) is an important state quantity for the normal operation of lithium batteries in 

electric vehicle. At present, SOC estimation research mainly focuses on single cell, and few papers study 

the SOC of each cell in the battery pack, which gives the capacity estimation of the battery, and SOH 

estimation, as well as battery equalization bring technical difficulties and even safety issues. However, 

it is difficult to conduct the SOC estimation of multiple cells in a battery pack due to the inconsistency, 

which leads to very complex modeling and algorithms. Aiming at the above problems, this paper 

proposes a low computational multi-cell SOC estimation method. First, for the series battery pack, the 

capacity, ohmic resistance and voltage are selected as the inconsistency factors considered in this study, 

and a battery pack difference model based on the equivalent circuit model (ECM) is established. Then, 

the model parameters were identified online using recursive least squares with forgetting factors 

(FFRLS). On this basis, a dual adaptive extended Kalman filter (Dual-AEKF) algorithm is constructed 

to estimate the SOC of all cells in the series battery pack. Finally, three representative dynamic working 

conditions are used to verify the SOC estimation accuracy of the proposed method and the robustness of 

the algorithm. The verification results show that the proposed method can significantly reduce the 

estimation time on the premise of ensuring the accuracy of cell SOC estimation and the robustness of 

the algorithm. 
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1. INTRODUCTION 

 

At the same time that electric vehicles are booming, accidents of battery packs catching fire 

frequently occur. In order to suppress or even eradicate the occurrence of this phenomenon, it is 
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necessary to monitor the operating status of each cell in the battery pack. Then, SOC is the most 

important state quantity of the battery system [1,2], therefore, it is necessary to estimate the SOC of the 

cells in the battery pack. 

Commonly used SOC estimation methods mainly include the following: (1) Ampere-hour 

integration method[3]; (2) Open circuit voltage (OCV) method[4]; (3) machine learning method[5]; (4) 

Kalman filter (KF) algorithm[6]. The first two are traditional estimation methods, among which the 

ampere-hour integration method is widely used in electric vehicle SOC estimation, but the error of 

current measurement is inevitable, and the accumulated error caused by this makes the SOC estimation 

value increasingly inaccurate, so this method is often used in conjunction with the OCV method to 

eliminate accumulated errors. The OCV method is based on the relationship between the OCV and SOC 

to obtain the current SOC by looking up the table. The disadvantage is that it requires the battery to stand 

for a long time to obtain a relatively accurate OCV. Therefore, in practical applications, it is often used 

for initial correction when the BMS is turned on. or battery end-of-charge correction.  

Machine learning method mainly include feed-forward neural network (FNN) [7-10], recurrent 

neural network (RNN) [11-13], support vector machine (SVM) [14], Gaussian process regression (GPR) 

[15,16]. There are many types of FNN, including back propagation neural networks (BPNN), extreme 

machine learning, and deep feedforward neural networks. Ref [7] proposes the improved BPNN, and 

used the OCV, battery charge and discharge current and internal resistance as input to train the model. 

In general, no matter what machine learning algorithms are, they are all based on data-driven methods, 

and various optimization algorithms can never eradicate the shortcomings of the model's strict 

requirements on data quality and quantity. Therefore, there are still great difficulties in the practical 

application of SOC estimation methods based on machine learning. 

The SOC estimation method based on KF can avoid the above problems. It uses the measured 

values such as voltage and current to correct the real-time estimated value, and expects to obtain the 

optimal estimation result [6]. Since the battery is a highly nonlinear system, and the traditional KF 

method is not suitable for dealing with nonlinear systems, so the extended Kalman filter (EKF) algorithm 

is introduced to obtain better estimation results [17,18]; In addition, a better SOC estimation algorithm 

can be obtained by combining two EKF filters. For example, the Dual EKF proposed in Ref [19] that 

uses two independent EKF to estimate the SOC and battery parameters respectively, which improves the 

computational efficiency; EKF linearizes nonlinear systems through a first-order Taylor series 

expansion, which usually leads to higher-order loss errors, while cubature Kalman filter (CKF) [20-22] 

and unscented Kalman filter (UKF) [23-25] can solve this problem very well. UKF uses unscented 

transformation for prior state estimation, CKF uses spherical radial volume rule to calculate the posterior 

mean and variance of nonlinear Bayesian filters. This algorithm has better prediction accuracy for 

nonlinear systems. Ref [20] proposes an improved SOC estimation method based on CKF, and the 

verification results show that it has better estimation robustness than the EKF. Ref [23] uses the UKF 

method to calculate the SOC of lithium-ion batteries in real time, and combines three commonly used 

ECM to verified that the proposed method has good estimation accuracy and robustness. In addition, the 

traditional KF algorithm cannot automatically correct the process noise and measurement noise, so 

various adaptive noise correction methods emerge [26-30]. The method of noise adaptive update can 

improve the accuracy of battery SOC estimation and improve the robustness of the algorithm, but at the 
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same time increase the computational burden. The KF family of algorithm has shown good performance 

in battery SOC estimation. Although the EKF is slightly less accurate, the calculation is relatively simple, 

so it is more suitable for practical application. 

The majority of SOC estimation studies are based on single cell, there are few studies on the 

estimation of battery pack SOC or multi-cell SOC within a battery pack, especially the battery SOC 

estimation considering the inconsistency of battery cells. It has more practical engineering application 

value, but it is more difficult. In Ref [18], a series battery pack model is established based on the second-

order RC ECM, and the improved EKF is used to estimate its SOC, in order to reduce the calculation 

amount, the impedance parameters of all cells considered equal, this method cannot characterize the 

difference between the cells, and in some cases, the obtained pack SOC is only a vague value. As an 

improvement, the series pack model was established in Ref [31], the SOC and internal resistance of the 

specific cell, the remaining cell difference SOC and internal resistance, and the capacity of all battery 

cells were calculated on a three-level time scale, the error of the entire SOC estimation is within 5%. 

However, this method can only obtain relatively accurate cell SOC in a short time, as the number of 

battery cycles increases, the errors continue to accumulate and eventually cannot meet the accuracy 

requirements. The method of ‘representative cell’ proposed in Ref [32], and the SOC of each 

representative cell is estimated based on the recursive least squares- AEKF algorithm. The results show 

that the method can estimate SOC accurately and with low complexity. The disadvantage of this method 

is that the selection of representative cells in the battery aging process may increase the SOC estimation 

error of the battery pack, and the monitoring and management of 'non-representative cells' are lacking. 

Ref [33-35] believe that the SOC estimation of the battery pack is subject to the maximum and minimum 

voltage (or maximum and minimum SOC) cells during the charging and discharging process. Ref [33] 

established the battery pack empirical model of the first overcharged cell and the first over-discharged 

cell, and used the unscented particle filter (UPF) algorithm to estimate the SOC of the battery pack. In 

Ref [34], all cells’ SOC of battery pack is obtained on two time scales, where the highest and lowest 

SOC estimations are performed at each sampling interval and used for battery pack SOC estimation, 

while the SOC estimation of rest cells is mainly used for the cell balance control. In Ref [35], a central 

difference KF SOC estimation method based on the Thevenin ECM was proposed. The Thevenin model 

was established for the two cells with the lowest and highest voltage and independent model parameters 

were identified. The SOC estimation accuracy can be controlled within ±2%. Obviously, the SOC 

estimation method that only considers two battery cells cannot well characterize the SOC of other cells, 

and it is not convenient for the battery management system (BMS) to monitor the cells in real time. Ref 

[36], a lumped-parameter ECM of the battery pack is proposed, and the battery pack model with multiple 

cells connected in series is simplified into an improved Thevenin model by mathematical methods, and 

the SOC is estimated by using the AEKF. Because this simplification ultimately involves only one ECM, 

the cells’ SOC cannot be obtained, which may cause overcharge or discharge. To sum up, the current 

research basically aims at estimating the SOC of the battery pack, and lacks the monitoring of the SOC 

of the cells inside the battery pack. 

Accurate battery pack model and cell SOC estimation can monitor the operating state of the 

battery cells inside the battery pack, provide technical support for the capacity estimation of the battery 

cell and the battery pack, the calculation of SOH, and the balance control of the battery, and ensure the 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 220827 

  

4 

battery pack is safe to use. In order to achieve these goals, inconsistency factors such as battery cell 

voltage, capacity, and impedance must be considered. However, there are currently insufficient studies 

considering inconsistent. In this paper, a low computational multi-cell SOC estimation method for series-

connected battery pack is proposed to solve the problem of oversimplification of inconsistency or 

complicated calculation in current battery pack SOC estimation research. In order to reflect the 

inconsistency of the battery cells and achieve the purpose of simplifying the calculation, a battery pack 

difference model based on the ECM is established, and the model parameters are identified online by 

FFRLS.  

The framework of this paper is as follows: Section 2 summarizes the battery inconsistency and 

identifies the inconsistency factors that this paper focuses on. Section 3 established a simplified series 

battery pack difference model for the considered inconsistency factors and conducted online parameter 

identification. Section 4, proposing a Dual-AEKF algorithm based on the previously established model 

and parameter identification results. In Section 5, the proposed method is experimentally verified using 

DST, HPPC and the bus equivalent working conditions. The last section gives the research conclusions. 

 

 

 

2. BATTERY INCONSISTENCY 

Battery inconsistency is inevitable, which first comes from differences in manufacturing process, 

precision, and materials[37]. During the battery production process, it is impossible to ensure that the 

material, coating uniformity and electrode thickness are completely consistent[38,39], which leads to 

inconsistencies in voltage[40], initial capacity, impedance, and heat generation[41]. In the process of 

cell usage, the differences in the internal resistance of the connecting sheets of the series battery packs 

and the different heat dissipation conditions caused by the location of the cells in the battery pack will 

aggravate the inconsistency. 

The battery inconsistencies mainly include: voltage inconsistency, impedance inconsistency, 

capacity inconsistency and decay rate inconsistency[40], heat generation inconsistency[42]. (called 

internal inconsistency); External inconsistencies include different cell positions within the pack and 

differences in the internal resistance of the connecting sheets[43]. First of all, the voltage inconsistency 

is the most intuitive. The lowest voltage cell directly limits the discharge capacity of the series-connected 

battery pack. The voltage inconsistency of the battery pack without a balanced system will increase as 

the battery aging. Secondly, the inconsistency of battery capacity causes different discharge rates of cells 

in parallel battery packs, and different depths of discharge for cells in series battery packs. Battery 

impedance parameters, internal resistance of connecting sheets, and battery heat generation and heat 

transfer (location factor, cooling effect), these factors together cause different capacity decay rates and 

different power decay rates of cells[41], and further aggravate the inconsistency of battery capacity and 

battery heat production and heat exchange. 

Battery inconsistency is inevitable and increases gradually during battery service. In order to 

obtain accurate cells’ SOC, prevent overcharge and overdischarge of the battery pack, and ensure the 

safe operation of the battery pack, battery inconsistency must be considered. The inconsistency of the 
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capacity, ohmic resistance and voltage of the battery cells directly affects the accuracy of SOC 

estimation, so it is regarded as the focus of this paper. 

 

 

 

3. BATTERY PACK DIFFERENCE MODEL AND PARAMETER IDENTIFICATION 

In order to accurately estimate the multi-cell SOC in the battery pack, first, it is necessary to 

establish a battery pack model that reflects the inconsistency of each cell. At present, the commonly used 

battery models are: electrochemical model, machine learning model and ECM [2,6]. The electrochemical 

model has many parameters and is too complicated[44], and the machine learning model requires a large 

amount of data to train the model[16]. In contrast, ECM has the advantages of simple model and easy 

parameter identification, so this paper takes ECM as the basic unit of battery pack modeling. 

 

3.1 Equivalent circuit model 

ECM use circuit elements such as resistors, capacitors, and constant voltage sources to describe 

battery external characteristics. It has been widely used in SOC estimation. The commonly used ECM 

include Rint model, Thevenin model, PNGV model and second-order RC ECM. Ref [45] compared the 

estimation accuracy and stability of SOC under different ECM, and pointed out that the second-order 

RC ECM has better accuracy and moderate computational complexity. Therefore, this paper adopts the 

second-order RC ECM shown in Fig 1 as the basis for battery pack modeling. 
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tI
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Figure 1. Second-order RC ECM 

 

𝑈𝑂𝐶 is the OCV of the battery, 𝑅0 is the ohmic internal resistance, 𝑈𝑡 represents the terminal 

voltage of the battery, 𝐼𝑡is the continuous time working current, 𝑈1 represents the activation polarization 

voltage (on the 𝑅1𝐶1 loop) , 𝑅1 is the activation polarization resistance, 𝐶1is the activation polarization 

capacitance, 𝑈2represents the concentration polarization voltage, 𝑅2is the concentration polarization 

resistance, 𝐶2is the concentration polarization capacitance. The circuit equation of this model can be 

obtained from Kirchhoff's law as: 
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𝐼
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𝑈
•

2 =
𝐼
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𝑈𝑡 = 𝑈oc − 𝑈1 − 𝑈2 − 𝐼𝑡𝑅0

                                                   (1) 

where 𝑈
•

1 represents the first derivative of 𝑈1. Discretize the state space equation of the second-

order RC ECM shown in equation (2), and obtain its discrete time iteration equation as:  

   

{
 
 

 
 𝑈1,𝑘 = 𝑒

−𝑇

𝜏1𝑈1,𝑘−1 + (1 − 𝑒
−𝑇

𝜏1 )𝑅1𝐼𝑘−1

𝑈2,𝑘 = 𝑒
−𝑇

𝜏2𝑈2,𝑘−1 + (1 − 𝑒
−𝑇

𝜏2 )𝑅2𝐼𝑘−1
𝑈𝑡,𝑘 = 𝑈𝑜𝑐,𝑘 − 𝑈1,𝑘 − 𝐼𝑘𝑅0

                                (2) 

𝑈1,𝑘 and 𝑈2,𝑘 represent the activation polarization voltage and concentration polarization voltage 

at time k, respectively, 𝑈𝑡,𝑘 is the battery terminal voltage at time k, 𝑈𝑜𝑐,𝑘 is the OCV of the battery at 

time k, 𝐼𝑘−1 is the current at time k-1, 𝜏1 = 𝑅1𝐶1; 𝜏2 = 𝑅2𝐶2 , T is the sampling time interval. 

 

3.2 Battery pack difference model considering inconsistency 

The series battery pack model based on the second-order RC ECM is shown in Figure 2, which 

contains N battery cells in total, and each battery cell is equivalent to a second-order RC ECM., but the 

model has many parameters and a huge amount of computation. 

In this paper, all the cells of the series battery pack are divided into the selected cell (X) and the 

remaining cells (1, 2,...N-1), where the selected cell is the cell with the largest SOC, and their 

corresponding ECM unit is shown in Figure 3. The polarization voltage differences of the remaining 

cells are ignored. In order to reduce the voltage estimation errors of the remaining cells, the calculated 

value of the polarization voltage of the selected cell at each sampling time are used to compensate the 

voltage estimate values of the remaining cells (Details are in section 4.3). Under the premise of ensuring 

the accuracy of the selected cell, the model accuracy errors of the remaining cells are reduced.  
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Figure 2. Model of series battery pack based on second-order RC ECM 
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Figure 3. Simplified battery pack difference model 

 

3.3 Parameter identification 

Recursive least squares (RLS) has the advantages of easy implementation and fast convergence, 

FFRLS is introduced in this paper to avoid data saturation and reduce the influence of old data on the 

identification results[46]. This method is used to online identify the parameters of the battery pack model 

established in the previous section. The FFRLS derivation process is as follows:  

𝑧𝑘 = 𝛷𝑘𝜃𝑘                                         (3) 

𝑧𝑘denote the observation matrix, 𝛷𝑘 denote the input and output sequence matrix, and 𝜃𝑘denote 

the parameter matrix need to be identified. 

By continuously updating 𝑧𝑘  and 𝛷𝑘 , the parameters to be identified at each moment can be 

identified by the following formula (4). 

{

𝐾𝑘 = 𝑃𝑘−1𝛷𝑘
𝑇[𝛷𝑘𝑃𝑘−1𝛷𝑘

𝑇 + 𝜆]−1

𝜃𝑘 = 𝜃𝑘−1 + 𝐾𝑘[𝑧𝑘 − 𝛷𝑘𝜃𝑘−1]

𝑃(𝑘) =
1

𝜆
𝑃𝑘−1(𝐸 − 𝐾𝑘𝛷𝑘)

                               (4) 

where𝐾𝑘 and 𝑃𝑘represent the gain matrix and covariance matrix at time k respectively. E is the 

identity matrix. 𝜆 is the forgetting factor, usually between 0.95 and 1.  

In order to use FFRLS to identify the parameters of the second-order RC RCM, the equation (1) 

was discretized, and its Laplace equation is: 

𝑈𝑂𝐶(𝑠) − 𝑈𝑡(𝑠) = 𝐼(𝑠)(𝑅0 +
𝑅1

1+𝜏1𝑠
+

𝑅2

1+𝜏2𝑠
)                          (5) 

Let 𝑠 =
2

𝑇

1−𝑧−1

1+𝑧−1
，the discretized transfer function is available as equation (6). 

𝐺(𝑧−1) =
𝑎3+𝑎4𝑧

−1+𝑎5𝑧
−2

1−𝑎1𝑧−1−𝑎2𝑧−2
                                  (6) 

𝑎1、𝑎2、𝑎3、𝑎4、𝑎5 are the corresponding constant coefficients, that is, the parameters need 

to be identified. 

According to Equation (6) and further calculation, a new expression of the transfer function will 

obtain, comparing its relationship with Equation (6), the relationship between the parameter values of 

the second-order RC ECM and the parameters to be identified can be obtained as follows: 
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{
  
 

  
 𝑅0 =

𝑎3−𝑎4+𝑎5

1+𝑎1−𝑎2
;

𝑅2 =
𝑇⋅

𝑎3−𝑎5
1−𝑎1−𝑎2

−
𝑎3−𝑎4+𝑎5
1+𝑎1−𝑎2

⋅𝑙1−
𝑎3+𝑎4+𝑎5
1−𝑎1−𝑎2

⋅𝑙2

𝑡1−𝑡2
;

𝑅1 =
𝑎3+𝑎4+𝑎5

1−𝑎1−𝑎2
−
𝑎3−𝑎4+𝑎5

1+𝑎1−𝑎2
− 𝑅2;

𝐶1 =
𝑙1

𝑅1
;   𝐶2 =

𝑙2

𝑅2

                           (7) 

 

 

Among them: 

𝑙1 =

𝑇(1 + 𝑎2)
1 − 𝑎1 − 𝑎2

−√
𝑇2(1 + 𝑎2)

2

(1 − 𝑎1 − 𝑎2)2
−
𝑇2(1 + 𝑎1 − 𝑎2)
1 − 𝑎1 − 𝑎2

2
 

𝑙2 =

𝑇(1 + 𝑎2)
1 − 𝑎1 − 𝑎2

+√
𝑇2(1 + 𝑎2)2

(1 − 𝑎1 − 𝑎2)2
−
𝑇2(1 + 𝑎1 − 𝑎2)
1 − 𝑎1 − 𝑎2

2
 

So far, the parameters of each cell of the battery pack model can be obtained by substituting the 

identified coefficients 𝑎1、𝑎2、𝑎3、𝑎4、𝑎5 and back into equation (7). 

 

 

 

4. BATTERY PACK MULTI-CELL SOC ESTIMATION 

4.1 Adaptive extended Kalman Filter algorithm 

In the process of SOC estimation using EKF[31], it satisfies the following basic relationship: 

{
𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘) + 𝑤𝑘
𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘

                                   (8) 

Among them𝑣𝑘 ∼ (0, 𝑅𝑘), 𝑤𝑘 ∼ (0, 𝑄𝑘) , where 𝑅𝑘  and 𝑄𝑘 represent the measurement noise 

covariance and process noise covariance respectively, the variables 𝑥𝑘+1and 𝑧𝑘represent the state value 

to be estimated and the measurement value respectively, 𝑢𝑘is the system input (in this paper is 𝐼𝑘). 

The battery SOC estimation process based on EKF is the process of correcting the estimated 

value with the measured value. The specific steps are shown in Table 1: 

 

Table 1. KF algorithm flow: 

 

KF algorithm  

Prior estimation：                     𝑥̂𝑘
− = 𝐹𝑥̂𝑘−1

−  

Prior estimation covariance：𝑃𝑘
− = 𝐹𝑃𝑘−1𝐹

𝑇 + 𝑄𝑘−1 

Measurement equation：         𝑧𝑘 = 𝐻𝑥𝑘 + 𝑅𝑘−1  

Revised estimate：                     𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐾𝑘(𝑧𝑘 −𝐻𝑥̂𝑘

−)  

Update Kalman Gain：            𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅𝑘−1)
−1 

Update the posterior  

Estimated covariance：            𝑃𝑘 = (𝐸 − 𝐾𝑘𝐻)𝑃𝑘
− 
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𝑥̂𝑘
−and𝑥̂𝑘are the state prior estimation value and state estimation value at time k respectively, F 

is the system matrix, 𝑃𝑘
− and 𝑃𝑘  are the prior estimation covariance and the posterior estimation 

covariance at time k respectively, 𝑧̂𝑘 is the estimated value of the quantity measurement at time k, in this 

paper that is the estimated value of the battery terminal voltage, 𝐾𝑘 is the Kalman gain at time k, H is 

the state transition matrix, and E is the identity matrix. 

In this paper, the Sage-husa adaptive filter is used to update the process noise and measurement 

noise in the EKF estimation process, so as to form a Dual-AEKF structure. The simplified form in [47] 

is used: 

{
𝑄𝑘+1 = (1 − 𝑑𝑘)𝑄𝑘 + 𝑑𝑘(𝐾𝑘+1𝜀𝑘𝜀𝑘

𝑇𝐾𝑘+1
𝑇 − 𝑃𝑘

+ + 𝑃𝑘
−)

𝑅𝑘+1 = (1 − 𝑑𝑘)𝑅𝑘 + 𝑑𝑘𝜀𝑘𝜀𝑘
𝑇                        (9) 

Among them, 𝑑𝑘 = (1 − 𝜌)/(1 − 𝜌
𝑘),𝜌 is the forgetting factor, generally𝜌 ∈ [0.95  0.99], in 

this paper, take 0.95, 𝜀𝑘 = 𝑧𝑘 − 𝑧̂𝑘. 𝑧𝑘 is the voltage measurement. 

This paper will adopt a dual AEKF structure, in which the first AEKF will be used to calculate 

the SOC of the selected cell, while the second AEKF will be used to estimate the SOC of the remaining 

cells, and the parameters of the first AEKF will be sent to the second AEKF to simplify calculation. The 

establishment process of the key equation of AEKF is given below. 

 

4.2 Selected cell SOC estimation based on AEKF-1  

The SOC calculation formula used in this paper is given according to the ampere-hour integration 

method[3]: 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶0 −
𝜂

𝜂𝑇𝑄𝑛
∫ 𝐼𝑑𝑡
𝑡

𝑡0
                                 (10) 

𝑆𝑂𝐶0 is the initial value of SOC, t is continuous time, 𝜂𝑇is the temperature correction coefficient 

of the capacity, 𝜂is the coulombic efficiency, 𝑄𝑛is the available capacity of the battery under standard 

temperature conditions. 

Let 𝑄𝑁 = 𝜂𝑇 ⋅ 𝑄𝑛, and discretize the above formula to get equation (11): 

𝑆𝑂𝐶𝑘 = 𝑆𝑂𝐶𝑘−1 −
𝜂𝑇

𝑄𝑁
𝐼𝑘−1                                   (11) 

In the formula, 𝑆𝑂𝐶𝑘 represents the battery SOC value at time k. SOC, 𝑈1,𝑘 and 𝑈2,𝑘are selected 

as state variables, and the calculation method of and has been given by formula (2), and the calculation 

formula of the state variables of the selected cell is given: 

{
 
 

 
 𝑆𝑂𝐶𝑘 = 𝑆𝑂𝐶𝑘−1 −

𝜂𝑇

𝑄𝑁
𝐼𝑘−1 + 𝑤1,𝑘−1

𝑈1,𝑘 = 𝑒
−𝑇

𝜏1𝑈1,𝑘−1 + 𝑅1(1 − 𝑒
−𝑇

𝜏1 )𝐼𝑘−1 + 𝑤2,𝑘−1

𝑈2,𝑘 = 𝑒
−𝑇

𝜏2𝑈2,𝑘−1 + 𝑅2(1 − 𝑒
−𝑇

𝜏2 )𝐼𝑘−1 + 𝑤3,𝑘−1

                                (12) 

And write the measurement equation according to the second-order RC ECM: 

𝑈𝑡,𝑘,𝑥 = 𝑈𝑜𝑐,𝑥(𝑆𝑂𝐶𝑘) − 𝑈1,𝑘 − 𝑈2,𝑘 − 𝑅0𝐼𝑘 + 𝑣𝑘   (13) 

𝑈𝑡,𝑘,𝑥is the estimated value of the terminal voltage of the selected cell at time k, 𝑈𝑜𝑐,𝑥(𝑆𝑂𝐶𝑘) is 

the OCV of the battery obtained by looking up the table according to the estimated SOC value of the 

selected cell at time k. 

Write equations (12) and (13) in matrix form, the state equation and measurement equation are: 
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[

𝑆𝑂𝐶𝑘
 𝑈1,𝑘
 𝑈2,𝑘

] = [

1 0 0

0 𝑒
−𝑇

𝜏1 0

0 0 𝑒
−𝑇

𝜏2

] × [

𝑆𝑂𝐶𝑘−1
 𝑈1,𝑘−1
 𝑈2,𝑘−1

] + 𝐼𝑘−1 ×  

[
 
 
 
      

−𝜂𝑇

𝑄𝑁

(1 − 𝑒
−𝑇

𝜏1 )𝑅1

(1 − 𝑒
−𝑇

𝜏2 )𝑅2]
 
 
 
 

+ 𝑤𝑘−1            (14)             

[𝑈𝑡,𝑘,𝑥] = [𝑈𝑜𝑐,𝑥(𝑆𝑂𝐶𝑘) 𝑈1,𝑘  𝑈2,𝑘] [
SOC𝑘
 −1
 −1

] −  [𝑅0][𝐼𝑘] + [𝑣𝑘]                         (15) 

 

4.3 Estimation of the remaining cells’ SOC based on AEKF-2 

The remaining cells in this paper refer to all battery cells in pack except the selected cell. It can 

be seen from equation (14) that the state equation of the second-order RC ECM is generally calculated 

as a three-dimensional matrix. The calculation of the polarization impedance voltage in the state equation 

is to pave the way for the application in the measurement equation to obtain the estimated value of the 

battery terminal voltage. In this paper, the calculation of the polarization voltage of the remaining cells 

is omitted, and the SOC state equation of the remaining cells are simplified as follows: 

𝑆𝑂𝐶𝑘,𝑖 = 𝑆𝑂𝐶𝑘−1,𝑖 −
𝜂𝑇

𝑄𝑁,𝑖
⋅ 𝐼𝑘−1 + 𝑤𝑘,𝑖                                 (16)  

Where 𝑆𝑂𝐶𝑘,𝑖 represents the SOC of the i-th battery cell at time k, 𝑄𝑁,𝑖represents the capacity of 

the i-th battery cell; and 𝑤𝑘,𝑖represents the system noise distribution of the i-th battery cell at time k, 

i=1,2,3… N-1.  

Based on the second-order RC ECM, the measurement equations of the remaining cells are 

written, such as equations (17) : 

𝑈𝑡,𝑘,𝑖 = 𝑈𝑂𝐶,𝑘,𝑖 − (𝑈1,𝑘,𝑖 + 𝑈2,𝑘,𝑖) − 𝐼𝑘𝑅0,𝑖 + 𝑣𝑘,𝑖                          (17)  

𝑈𝑡,𝑘,𝑖 represents the terminal voltage of the i-th battery cell at time k.𝑈𝑂𝐶,𝑘,𝑖is the OCV of the 

remaining cells at time k, 𝑅0,𝑖 represent the ohmic internal resistance of the i-th battery cell, 

𝑈1,𝑘,𝑖 and 𝑈2,𝑘,𝑖 represent the activation polarization voltage and concentration polarization voltage of 

the i-th remaining cell at time k respectively, 𝑣𝑘,𝑖 represents the measurement noise distribution of the i-

th battery cell at time k.  

Substitute 𝑈1,𝑘,𝑖 and 𝑈2,𝑘,𝑖 with 𝑈1,𝑘 and 𝑈2,𝑘,that have been calculated by the equation of state 

of the selected cell, so that the state and measurement equations of the remaining cells can be obtained 

as: 

𝑆𝑂𝐶𝑘,𝑖 = 𝑆𝑂𝐶𝑘−1,𝑖 −
𝜂𝛥𝑡

𝑄𝑁,𝑖
⋅ 𝐼𝑘−1 + 𝑤𝑘,𝑖                           (18)   

 𝑈𝑡,𝑘,𝑖 = 𝑈𝑂𝐶,𝑘,𝑖 − (𝑈1,𝑘 + 𝑈2,𝑘) − 𝐼𝑘𝑅0,𝑖 + 𝑣𝑘,𝑖                      (19)                      

This simplified method discards the difference in polarization voltage between the remaining 

cells with selected cell, thereby reducing the three-dimensional calculation of the equation of state to 

one-dimensional, at the cost of some loss of estimation accuracy, but greatly reducing the calculation 

the complexity. 

The estimation process of the SOC of all cells in the entire battery pack is as Fig 4: 
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Figure 4. Dual-EKF battery pack multi-cell SOC estimation framework 

 

 

 

5. EXPERIMENTAL VERIFICATION 

5.1 Experiment introduction 

The battery used in this paper is the IMP06160230 ternary lithium-ion soft pack battery, with a 

nominal capacity of 29Ah. 5 aged batteries were subjected to capacity calibration, OCV test. Their 

capacities are 27.758Ah, 27.806 Ah, 28.082 Ah, 27.680 Ah, 27.480 Ah respectively. The five battery 

cells are connected in series to form a battery pack for dynamic stress test (DST), hybrid pulse power 

characteristic (HPPC) and an equivalent working condition (EWC) test, EWC based on actual operating 

data of certain pure electric bus. Among them, DST and HPPC can verify the accuracy and algorithm 

robustness of the proposed SOC estimation method under severe battery discharge conditions, because 

they simulate battery step discharge, pulse discharge, and short-term high-current discharge (3C 

discharge) conditions. In addition, in order to be closer to the actual operating conditions of the battery, 

we collected the operating current of the battery pack of a pure electric bus for a week and established 

an equivalent working condition. The equivalent process of the current and duration of the EWC is as 

follow: take 30A as an interval, divide the battery pack discharge current of the pure electric bus by 

frequency, select the median of the current interval, and then allocate the current duration according to 

the frequency of current, and finally proportionally reduce the discharge current of the battery pack in 

this experiment, as shown in Table 2. 
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Table 2. Current and duration of EWC 

 

Discharge current（A） duration（S） 

3.3 86 

9.6 60 

3.3 86 

28.8 36 

3.3 86 

35.4 36 

3.3  86 

54.6  12 

3.3  86 

58.5  60 

3.3  86 

48.3  12 

3.3  86 

41.7  24 

3.3  86 

22.5  48 

3.3  86 

16.2  48 

3.3  90 

 

The OCV test adopts the discharge-standby method. The OCV-SOC fitting curves of all cells are 

basically the same, and the OCV-SOC relationship of the selected cell shown in the following figure: 

 

 

 

 

Figure 5. OCV-SOC fitting curve of selected cell 

 

5.2 Verification of dynamic conditions 

The selected cell is cell4 in the Figure 6,7,8, and the other cells are cell1, cell2, cell3, and cell5. 

Figure 6,7,8 shows the estimation results under DST, HPPC, and EWC conditions, respectively. In 

Figures 6,7,8, (a) and (b) are the SOC estimation results and the error relative to the SOC reference value 

respectively, they are obtained by the proposed method in this paper (TPM). While (c) and (d) are based 
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on the method proposed in this paper, but the adaptive filtering method is not used (called: TPM-NA). 

While (e) and (f) are based on the model in Figure 2, each cell is configured with an independent second-

order RC model, the model parameters of each cell are obtained through the parameter identification 

results. Dual-AEKF algorithm was used to estimate SOC(called: GM) 

By comparing the estimation results obtained by TPM and TPM-NA in the three figures, it can 

be found that the estimation results of the former are better, and the maximum estimation errors of the 

five cells are significantly reduced. This shows that the Sage-husa adaptive filtering method has a good 

effect on noise correction. 

 

 
Figure 6. SOC estimation results and errors of cells under DST. (a) SOC estimation results based on 

TPM; (b) SOC estimation errors based on TPM; (c) SOC estimation results based on TPM-NA; 

(d) SOC estimation errors based on TPM-NA; (e) SOC estimation results based on GM; (f) SOC 

estimation errors based on GM.  
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Figure 7. SOC estimation results and errors of cells under HPPC. (a) SOC estimation results based on 

TPM; (b) SOC estimation errors based on TPM; (c) SOC estimation results based on TPM-NA; 

(d) SOC estimation errors based on TPM-NA; (e) SOC estimation results based on GM; (f) SOC 

estimation errors based on GM.  

 

In (f) of the Figure 6,7,8, the error difference between cell1, cell4, and cell5 is small, which 

indicates that the inconsistency of the three batteries is small. In fact, the voltage, impedance 

identification data and capacity of the three batteries are really little different. When the polarization 

impedance parameters of cell4 are used for the rest of the cells, as shown in (b) of Figure 6,7,8, the SOC 

estimation errors of cell1, cell4, and cell5 are still relatively small. As the battery aging, this difference 

will not change greatly, because the polarization impedance does not contribute much to the SOC 
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estimation error[48], and the ohmic internal resistance of the battery mainly affects the SOC estimation 

accuracy. Therefore, based on TPM, a reliable SOC estimation result can be obtained, and the 

inconsistency information of the cells (inconsistency degree of battery capacity and voltage) can be 

obtained from the estimation result. 

In a series battery pack, the large error of the single cell may cause inconsistency misjudgment, 

thus affecting the safe use of the battery, so we should pay more attention to the maximum absolute error 

of SOC estimation result. In table 3, the maximum SOC estimation errors of the three methods under 

different working conditions are listed, and the corresponding battery numbers are also given. TPM-

based SOC estimation absolute error values under all conditions are below 1.8%. At the same time, the 

maximum absolute error based on the TPM-NA reaches 3.44%, GM-based SOC absolute error values 

under all conditions are below 1.13%. The error based on TPM is slightly larger than that based on GM, 

which is totally acceptable. 

Table 4 shows the comparison results of RMSE. In general, the value based on GM is the 

smallest, while the value based on TPM-NA is the largest, which meet our expectation. 

The research goal of this paper is to reduce the amount of calculation under the premise of better 

accuracy. The above verification shows that the method proposed in this paper can obtain better 

estimation results. It has been explained in Section 4.2 that TPM reduces the three-dimensional equation 

of state of the remaining cells to one dimension, thereby reducing the computational burden of the second 

AEKF. In order to quantify the reduced computational complexity, this paper uses the computer running 

time to compare the computational complexity of TPM and GM.  

 

Table 3. Maximum SOC estimation error under three working conditions 

 

Dynamic working conditions 

Max error DST HPPC EWC 

TPM 1.18%(cell3) -1.76%(cell1) 1.73%(cell3) 

TPM-NA 3.14%(cell3) -2.53%(cell1) 3.44%(cell3) 

GM 0.76%(cell3) -1.13%(cell4) 0.95%(cell3) 

 

Table 4. RMSE error under different working conditions 

 

Cell 

Error Cell1 Cell2 Cell3 Cell4 Cell5 

DST 

TPM 0.0101 0.0024 0.0013 0.0072 0.0082 

TPM-NA 0.0132 0.0040 0.0033 0.0092 0.0112 

GM 0.0053 0.0007 0.0023 0.0072 0.0072 

HPPC 

TPM 0.0071 0.0042 0.0073 0.0022 0.0064 

TPM-NA 0.0084 0.0044 0.0083 0.0023 0.0068 

GM 0.0003 0.0035 0.0065 0.0022 0.0051 

EWC 

TPM 0.0020 0.0080 0.0110 0.0031 0.0011 

TPM-NA 0.0024 0.0112 0.0132 0.0074 0.0036 

GM 0.0039 0.0077 0.0094 0.0031 0.0003 
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The results are shown in Table 5. Under the same CPU and memory occupancy rate on the same 

computer, run the program three times, and fill in the table with the average of the program running time. 

Under DST, HPPC and EWC, TPM saves time by 48.3%, 35.5%, and 40.6% respectively. Therefore, 

TPM can reduce the computational complexity under the premise of ensuring a certain accuracy. 

 

 
Figure 8. SOC estimation results and errors of cells under EWC. (a) SOC estimation results based on 

TPM; (b) SOC estimation errors based on TPM; (c) SOC estimation results based on TPM-NA; 

(d) SOC estimation errors based on TPM-NA; (e) SOC estimation results based on GM; (f) SOC 

estimation errors based on GM.  
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It has been explained in Section 4.2 that the efficient method in this paper reduces the three-

dimensional equation of state of the remaining cells to one dimension, thereby reducing the 

computational burden of the second AEKF. In order to quantify the reduced computational complexity, 

this paper uses the computer running time to compare the computational complexity of the efficient 

method and the general method. The results are shown in Table 6. Under the same CPU and memory 

occupancy rate on the same computer, run the program three times, and fill in the table with the average 

of the program running time. Under DST, HPPC and EWC, TPM saves time by 48.3%, 35.5%, and 

40.6% respectively. Therefore, TPM can reduce the computational complexity under the premise of 

ensuring a certain accuracy. 

 

Table 5. Comparison of the algorithm running time of TPM and GM under various conditions 

 

Dynamic working conditions 

Method DST HPPC EWC 

TPM 2.9s 3.1 s 3.2 s 

GM 4.3s 4.2 s 4.5 s 

In order to verify the robustness of the algorithm, the initial SOCs of cell1, cell2, cell3, cell4, and 

cell5 are set to 90%, 80%, 70%, 60%, and 50% respectively, and the cell SOC is estimated under DST 

conditions, as shown in Figure 9(a), (b), around 1000 seconds, the SOC estimation errors of all cells 

recover to a small value, indicating that the algorithm has better robustness. 

 

(a) (b)  
Figure 9. Verification of algorithm accuracy and robustness under DST conditions. (a) SOC estimation 

results with different initial errors of individual cells; (b) SOC estimation error changing with 

different initial errors  

 

6. CONCLUSION 

This paper starts with the analysis of battery cell differences, summarizes the battery 

inconsistency that affects the accuracy of battery pack’s cell SOC estimation, and determines the factors 

considered in this paper: voltage, ohmic resistance and capacity inconsistency. Then, the battery pack 

difference model is established based on the ECM, the selected cell corresponds to the second-order RC 

ECM, and the other cell models are simplified to an ECM that only includes ohmic internal resistance, 
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and the polarization voltage of the selected cell is used to compensate the estimated values of the terminal 

voltage of the remaining cells to reduce the error and reduce the computational complexity. Additionally, 

Dual-AEKF were used to estimate the SOC of the selected cell and the remaining cells respectively. 

Based on the above methods, DST, HPPC and EWC are used for experimental verification. The results 

show that, compared with the GM, the calculation time of TPM is significantly reduced under different 

dynamic conditions. In addition, the SOC estimation error of all cells is within 1.8%. Compared with 

TPM-NA, TPM can reduce the SOC estimation error and RMSE. The experimental verification also 

shows that TPM has better robustness. Under different SOC initial errors, the estimation results can 

converge quickly. However, this paper does not consider the high and low temperature conditions, which 

will be used as the content of future research. 

 In general, TPM can estimate the SOC of all cells in the battery pack with a small computational 

burden under the premise of ensuring the estimation accuracy of all battery cells. The results show that 

the estimation accuracy and robustness are good. 
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