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An accurate estimation of the state of health (SOH) of a lithium-ion battery pack can ensure the safety 

of the battery. Estimating the SOH based on data-driven models is the current mainstream direction. For 

different application needs, focusing on the selection of health features and models is necessary. 

Therefore, a hybrid estimation strategy for the state of health of lithium-ion battery packs based on 

multiple feature dimensions and networks is proposed in this study. The real operating data of different 

vehicles are processed. Health features are extracted based on the frequency and number of frequency 

dimensions. The nonlinear degenerate relationship between health features and capacities is learned 

through different networks. The results show that combining frequencies and the number of frequency-

based health features can significantly improve the estimation accuracy. The Long Short-Term Memory 

Network (LSTM) model is more advantageous when processing data with high feature dimensions, and 

the Gate Recurrent Unit Network (GRU) model is more advantageous when dealing with a large amount 

of data. It also shows the effectiveness of this hybrid estimation strategy. 
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1. INTRODUCTION 

 

The automotive industry has responded to the changing trend of continuous developments of new 

energy technologies and continuous consumption of traditional energy. As of 2021, China's production 

of new energy vehicles has reached 3.677 million units. Moreover, lithium-ion batteries are widely used 

because of their safety and long life[1]. As a key component of new energy vehicles, the use of high-

performance batteries is particularly important, and accurately evaluating battery performance 

parameters is even more important. Among them, the State of Charge (SOC), State of Health (SOH), 

and Remaining Useful Life (RUL) are the three popular evaluation parameters[2]. For example, the SOH 
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of a battery is 100% at the beginning. When the SOH is less than 80%, the battery must be replaced or 

recycled to ensure continued safety, which shows that accurately estimating the battery SOH is 

necessary[3]. 

The current estimation methods for the SOH are divided into the following two main approaches: 

model-based estimation methods and data-driven estimation methods[4]. Ref.[5] established the 

Thevenin battery model to analyse and verify the declining trend of LiFePO4 batteries. Ref.[6] 

established a dual-Kalman filter (Dual-EKF, DEKF) battery model for SOH estimation. However, due 

to the special chemical reaction inside the battery, establishing a model is difficult. In addition, this 

method would not applicable when studying complex conditions. The current research that is based on 

data-driven methods mainly includes the point estimation method and probability density estimation 

method. For example, Ref.[7] used a support vector machine (SVM) to estimate the battery SOH based 

on capacity. Ref.[8] established a hybrid model based on empirical mode decomposition (EMD), grey 

relation analysis (GRA), and deep recurrent neural network (RNN) for battery SOH predictions. These 

data-driven methods do not need to consider the internal mechanism of the battery, so they are the current 

mainstream research[9]. Therefore, this method will be used for research in this paper. 

When using the data-driven method to estimate the SOH, a large amount of data is needed to 

train the model. The existing data for estimating the SOH mainly come from three sources. The first is 

public data, such as the National Aeronautics and Space Administration (NASA), which is a stable 

dataset from a rigorous experimental environment[8, 10]. The second is the data obtained from the 

charge–discharge cycle experiments in the laboratory. Due to the stable environment, the data are also 

relatively stable[7, 11]. The third is the data that is obtained when the car is running. For example, 

Ref.[12] used data collected on a big data platform to estimate the SOH by deep learning with a 

feedforward neural network (FFNN). The complex external environment and driver behaviour can affect 

the battery parameters[13], and the data obtained in the laboratory are mostly from the cell[14]. 

Therefore, using the third data for this study is more meaningful. This study uses a one-year historical 

dataset of vehicles with different driving behaviours. 

One of the keys to the data-driven battery SOH estimation is selected health features. With the 

increase in battery charge and discharge times and the accumulation of shelf time, the solid electrolyte 

interface (SEI) and electrolyte inside the lithium-ion battery are degraded, and lithium ions are 

precipitated, resulting in a gradual decrease in battery capacity and a gradual increase in internal 

resistance. Therefore, the state of health of the battery can be defined in terms of capacity and internal 

resistance. Since directly calculating the capacity or internal resistance is difficult, looking for closely 

related and directly measurable battery parameters and using them as the health characteristics to 

calculate the capacity is usually necessary. The battery contains various parameters, such as current, 

voltage, and temperature. The parameters are a typical nonlinear multidimensional time-series data. 

They can be selected by IC/DV analysis or statistical methods[15, 16]. For example, Ref.[17] extracted 

health features from the voltage response under a specific current pulse test; Ref.[18] studied a state-of-

health estimator that is based on multiple health indicators and machine learning to estimate the SOH; 

and Ref.[19] proposed an ageing pattern recognition method based on open-circuit voltage matching 

analysis to analyse ageing mechanisms and extract health features. Because the charge–discharge cycle 

of electric vehicles is far less regular than that under laboratory conditions, the health characteristics 
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extracted from the above literature[15-19] may not accurately reflect the battery SOH. Ref. [20] only 

has one angle of feature extraction, and the research results are not comparable. Additionally, the 

selection of health features needs to be adjusted to achieve the optimal estimation under different 

application requirements, but there are few studies on this topic in the literature. Thus, health features 

are extracted from two dimensions in this paper. 

Another key to data-driven battery SOH estimation is the selection of models. The effectiveness 

of the model greatly depends on the quality and size of the dataset. When dealing with the dataset, back 

propagation (BP), a common neural network, has the problem of gradient disappearance and gradient 

explosion[21,22]. To address this problem, RNNs have been developed. A recurrent neural network 

takes sequence data as input, performs recursion in the evolution direction of the sequence, and connects 

all nodes in a chain. At the same time, to solve the problem of long-term dependence, the following two 

RNN variants with good effects were proposed in 1997 and 2014: long short-term memory networks 

(LSTM) and gated recurrent unit networks (GRU). Some researchers have already applied these 

algorithms to the SOH estimation and obtained good results[23]. Ref.[11,24] established LSTM to 

predict the SOH. Ref.[10] designed a variable-length short-term memory neural network (AST-LSTM-

NN) to estimate the battery SOH. Therefore, in this paper, a popular model, the recurrent neural network, 

will be used to verify and analyse the effectiveness of this strategy. The models employed in the above 

literature can effectively address these deficiencies, but most are validated under specific operating 

conditions or in a static laboratory environment rather than real vehicle data. In this study, the data 

generated during the operation of the actual vehicle are selected, which are affected by the weather, 

driving conditions, and driving behaviour of the driver. Therefore, these models are used in this paper 

to study vehicle data for SOH estimations. 

Based on the above analysis, the main research contents of this paper are as follows. First, we 

analyse the method for calculating the SOH. Second, the health features are extracted from two different 

dimensions, and the health features with a high correlation coefficient with the capacity are selected for 

subsequent model training. Finally, based on different feature selections, the state of health is estimated 

under different recurrent neural network models. The flowchart of the battery SOH estimation is shown 

in Figure 1. 
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Figure 1. Flowchart of the battery SOH estimation 

 

 

 

 

2. MAIN RESEARCH CONTENT 

2.1. Method of calculating SOH 

Due to the internal resistance of the battery changing very little when it is in use[25],  accurately 

measuring it is difficult. Therefore, studies are mostly carried out in terms of capacity[7, 8, 26]. When 

capacity is used to characterize the SOH, the battery SOC can be updated in real time by the ampere-

hour integration method to obtain the capacity[27, 28]. The formula for estimating the SOH is as follows: 

SOH =
Cc

CR
∗ 100% =

QC(i)

∆SOC(i)

CR
∗ 100% =

∫ I(t)dt
te
ts

SOC(te)−SOC(ts)

CR
∗ 100%                                               (2.1) 

where 𝐶𝑐 represents the current maximum available capacity of the battery; 𝐶𝑅 represents the 

rated capacity of the battery; 𝑄𝐶(𝑖) represents the cumulative charging capacity of the 𝑖-th charging 

segment; ∆𝑆𝑂𝐶(𝑖) represents the amount of SOC change for the 𝑖-th charging segment; 𝐼(𝑡) represents 

the current of the battery pack at moment t; 𝑆𝑂𝐶(𝑡𝑠) and 𝑆𝑂𝐶(𝑡𝑒) represent the start SOC and end SOC 

of the 𝑖-th charging segment, respectively; and 𝑡𝑠 and 𝑡𝑒 represent the start time and end time of the 

charging segment, respectively. 

 

2.2. Health Features Selection and Correlation Analysis 

The existing operating data can be directly calculated by Formula (2.1). Since the collected 

operating data of the battery are affected by the air temperature, the temperature is initially corrected[29]. 
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Since the data used in the study are nonlinear series data, the linear regression algorithm should be used 

to qualitatively characterize the decreasing trend of its capacity. This algorithm is designed to eliminate 

the capacity fluctuation and extract the label capacity value 𝐶𝐿 , which is the training metric for 

subsequent machine learning models. 

For data-driven models, the choice of input features has a large impact on the estimation results. 

Factors such as the battery operating temperature, charge–discharge current rate, and discharge 

depth[30] will affect battery ageing to a certain extent. To quantify these factors, health features will be 

extracted in this study from two dimensions. The frequency-based health feature mainly represents the 

changes in the battery operating temperature and charge–discharge rate. The number of frequency-based 

health features quantify the battery’s historical working conditions. 

 

2.2.1. Frequency-based health feature 

(1) The battery charge–discharge data obtained under laboratory conditions are developed based 

on the number of cycles, but the battery of the actual operating vehicle is not as fully charged and 

discharged as under laboratory conditions. Therefore, extracting the accumulated mileage 𝑀 as a health 

feature to characterize the SOH is necessary. 

(2) To intuitively characterize the current charge–discharge rate, the multiple discharge segments 

between the two charging segments are divided according to different discharge rates (0-0.1C, 0.1-0.5C, 

0.5-1C, >1C), and then the cumulative number of occurrences are counted and recorded as 

[𝐶(𝑖)1, 𝐶(𝑖)2, 𝐶(𝑖)3, 𝐶(𝑖)4], where 𝑖 represents the i-th charging segment. The discharge rate frequency 

is calculated according to Formula (2.2). In general, the statistical characteristic distribution of the 

discharge multiplicity frequency 𝐷𝑡𝑝 is used as a health feature of the SOH, as shown in Formula (2.3). 

𝑃(𝑖)𝑗 =
𝐶(𝑖)𝑗

∑ 𝐶(𝑖)𝑗
4
𝑗=1

, 𝑗 = 1,2,3,4                                                                                   (2.2) 

𝐷𝑡𝑝 = [𝑃1, 𝑃2, 𝑃3, 𝑃4]                                                                                     (2.3) 

(3) The maximum and minimum values of the battery temperature can reflect the thermal 

distribution inside the battery pack, and the average temperature of the battery can classify the thermal 

environment of the battery. Considering that the storage function of the battery will be different at 

different temperatures, the average temperature between the two charging segments is divided according 

to different intervals (0-10℃, 10-20℃, 20-30℃, 30-40℃, >40℃). Then, the accumulated times are 

counted and recorded as [𝑇(𝑖)1, 𝑇(𝑖)2, 𝑇(𝑖)3, 𝑇(𝑖)4, 𝑇(𝑖)5]. The ambient temperature frequency of the 

discharge segment is calculated according to Formula (2.4). In general, the statistical characteristic 

distribution of the ambient temperature frequency 𝑇𝑡𝑝 is used as a health feature of the SOH, as shown 

in Formula (2.5). 

𝑃𝑃(𝑖)𝑗 =
𝑇(𝑖)𝑗

∑ 𝑇(𝑖)𝑗
5
𝑗=1

, 𝑗 = 1,2,3,4,5                                             (2.4) 

𝑇𝑡𝑝 = [𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3, 𝑃𝑃4, 𝑃𝑃5]                                                  (2.5) 

In summary, the frequency-based health features include the accumulated mileage 𝑀 , the 

statistical characteristic distribution of the discharge multiplicity frequency 𝐷𝑡𝑝  and the statistical 

characteristic distribution of the ambient temperature frequency 𝑇𝑡𝑝. 
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2.2.2. Number of frequency-based health features 

Since the accuracy of the frequency-based health features is affected by the driving duration of 

the electric vehicle, when the charging or driving duration is not enough, the accuracy of the health 

features extracted based on the frequency will be poor. Therefore, in this study, we further propose the 

number of frequency-based health features. The difference is that the historical operating conditions of 

the battery are quantified over a length of time. 

(1) Similar to the frequency-based health feature, we extract the accumulated mileage 𝑀 as a 

health feature to characterize the SOH. 

(2) Similar to the processing of the statistical characteristic distribution of the discharge 

multiplicity frequency, the number of frequency of the discharge multiplier before the i-th charging 

segment is counted separately. Then, the frequency of the discharge multiplier of all the discharging 

segments before this charging segment is calculated according to Formula (2.6). In general, the statistical 

characteristic distribution of the discharge multiplicity number of frequencies 𝐷𝑡𝑑 is used as a health 

feature of the SOH, as shown in Formula (2.7). 

𝑆(𝑖)𝑗 = ∑ 𝐶(𝑘)𝑗
𝑖
𝑘=1 , 𝑘 = 1,2,3 ⋯ 𝑖, 𝑗 = 1,2,3,4                                    (2.6) 

𝐷𝑡𝑑 = [𝑆1, 𝑆2, 𝑆3, 𝑆4]                                                                               (2.7) 

(3) Similar to the processing of the statistical characteristic distribution of the ambient 

temperature frequency, the number of frequency of the ambient temperature before the i-th charging 

segment are counted separately. Then, the number of frequencies of the ambient temperature of all 

discharging segments before this charging segment is calculated according to Formula (2.8). In general, 

the statistical characteristic distribution of the ambient temperature number of frequencies 𝑇𝑡𝑑 is used as 

a health feature of the SOH, as shown in Formula (2.9). 

𝑆𝑆(𝑖)𝑗 = ∑ 𝑇(𝑘)𝑗
𝑖
𝑘=1 , 𝑘 = 1,2,3 ⋯ 𝑖, 𝑗 = 1,2,3,4,5                          (2.8) 

𝑇𝑡𝑑 = [𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3, 𝑆𝑆4, 𝑆𝑆5]                                                           (2.9) 

(4) The entire SOC is divided into different intervals (0-20%, 20-40%, 40-60%, 60-80%, 80-

100%), and the SOC number of frequency distribution of each charging segment is counted and recorded 

as [𝐷(𝑖)1, 𝐷(𝑖)2, 𝐷(𝑖)3, 𝐷(𝑖)4, 𝐷(𝑖)5] . The SOC number of frequency distributions before the i-th 

charging segment is counted separately. Then, the SOC number of the frequency distribution before this 

charging segment is calculated according to Formula (2.10). In general, the statistical characteristic 

distribution of the SOC number of frequencies 𝑆𝑂𝐶𝑢𝑠𝑒 is used as a health feature of the SOH, as shown 

in Formula (2.11). 

𝐷𝐷(𝑖)𝑗 = ∑ 𝐷(𝑘)𝑗
𝑖
𝑘=1 , 𝑘 = 1,2,3 ⋯ 𝑖, 𝑗 = 1,2,3,4,5                               (2.10) 

𝑆𝑂𝐶𝑢𝑠𝑒 = [𝐷𝐷1, 𝐷𝐷2, 𝐷𝐷3, 𝐷𝐷4, 𝐷𝐷5]                                                    (2.11) 

In summary, the number of frequency-based health features includes the accumulated mileage 

𝑀, the statistical characteristic distribution of the discharge multiplicity number of frequencies 𝐷𝑡𝑑, the 

statistical characteristic distribution of the ambient temperature number of frequencies 𝑇𝑡𝑑  and the 

statistical characteristic distribution of the used SOC number of frequencies 𝑆𝑂𝐶𝑢𝑠𝑒. 
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2.2.3. Correlation Analysis 

The selection of health features has a great impact on the estimation accuracy of the model. 

Common methods for correlation analysis are as follows: Pearson correlation [31], grey correlation [32], 

Spearman correlation coefficient, and maximal information coefficient (MIC). Among them, the MIC 

has a good effect on processing nonlinear data such as batteries, has less complexity and more stability 

and is more universal compared with other methods. Therefore, this study adopts this method to analyse 

the correlation between the health features and capacity 𝐶𝐿. The calculation formula of the MIC is shown 

in Formula (2.12), the correlation analysis results are shown in Table 1, with the results maintained to 

six decimal places. 

mic(𝑥; 𝑦) = max
𝑎∗𝑏<𝐵

𝐼(𝑥;𝑦)

log2 𝑚𝑖𝑛(𝑎,𝑏)
                                                                      (2.12) 

where 𝑎 and 𝑏 are the number of division lattices in 𝑥 and 𝑦, respectively. 

 

2.3. Estimation Model 

2.3.1. Backpropagation neural network (BPNN) 

The backpropagation neural network (BPNN) is composed of the input layer, hidden layer, and 

output layer neurons and the transfer function between neurons. Through the transmission of signals 

between neurons, the mapping relationship between the input parameters and output parameters is 

constructed. The standard structure is shown in Figure 2, which includes the forwarding transfer and 

error reverse transfer. There are 𝐪 input layer nodes, 𝐰 hidden layer nodes, and 𝐦 output layer nodes. 

The update of the connection weight 𝒘𝒊𝒋 between the i-th neuron in the input layer and the j-th neuron 

in the hidden layer is shown in Formula (2.13). 

𝒘𝒊𝒋 = ∆𝒘𝒊𝒋 + 𝒘𝒊𝒋(𝒕 − 𝟏), 𝒊 = 𝟏, 𝟐, … , 𝒒, 𝒋 = 𝟏, 𝟐, … , 𝒘                  (2.13) 

where 𝑤𝑖𝑗(𝑡 − 1) represents the weights after previous training and ∆𝑤𝑖𝑗 represents the weight 

correction. The formula is shown in Formula (2.14). 

∆𝑤𝑖𝑗 = −𝜂
𝜕𝐸𝑘

𝜕𝑤𝑖𝑗
                                                 (2.14) 

where 𝜂 represents the learning rate and 𝐸𝑘 represents the error between the predicted output and 

the expected output at the k-th training. 

The connection weight 𝑤𝑗𝑘 between the j-th neuron in the hidden layer and the k-th neuron in the 

output layer is the same as above. 

 

 
Figure 2. The structure of a standard BPNN 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 220823 

 

8 

 

2.3.2. Recurrent Neural Network (RNN) 

The recurrent neural network (RNN) can process long sequences of data. The structure of a 

standard RNN is shown in Figure 3. The current input state 𝑥𝑡 and the previous state variable ℎ𝑡−1 are 

inputted into A, and the state vector ℎ𝑡 is updated. Then, the next input 𝑥𝑡−1 is combined to input into 

A, and the next state vector ℎ𝑡+1 is updated. In general, the RNN is a process of combining the previous 

state with the current input and continuously training the parameter A to achieve the optimal value. 

However, this algorithm cannot take into account the previous information when the training reaches a 

later stage; thus, it cannot handle long-term series of data. 

 

 

 
 

Figure 3. The structure of a standard RNN 

 

2.3.3. Long Short-Term Memory Networks (LSTM) 

Long short-term memory (LSTM) networks are a variant of RNNs. It solves the problem of 

vanishing gradients and the inability to solve long-time series data. The specific structure is shown in 

Figure 4. The LSTM consists of an input gate, output gate, forget gate, and memory unit 𝐶𝑡. The state of 

the input gate 𝑖𝑡 is determined by the input at the current moment 𝑥𝑡 and the output of the hidden layer 

at the previous moment ℎ𝑡−1, and the memory unit to be updated is generated �̃�𝑡 at the same time. The 

formula is as follows: 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥 ⋅ 𝑥𝑡 + 𝑊𝑖ℎ ⋅ ℎ𝑡−1+𝑏𝑖)                                                       (2.15) 

�̃�𝑡 = 𝑖𝑡tanh(𝑊𝑧𝑥𝑥𝑡 + 𝑊𝑧ℎℎ𝑡−1 + 𝑏𝑧)                                        (2.16) 

where 𝑊𝑖𝑥, 𝑊𝑖ℎ, 𝑊𝑧𝑥, 𝑊𝑧ℎ represent the weight matrices, 𝑏𝑖, 𝑏𝑧 represent the bias vectors, and 𝜎 

and 𝑡𝑎𝑛ℎ represent the activation functions. 

The forget gate further determines what information needs to be saved at the last moment in the 

memory unit 𝐶𝑡, and the formula is as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥 ⋅ 𝑥𝑡 + 𝑊𝑓ℎ ⋅ ℎ𝑡−1+𝑏𝑓)                                                  (2.17) 

where 𝑓𝑡  represents the output vector of the forget gate at the current moment,  𝑊𝑓𝑥, 𝑊𝑓ℎ 

represent the weight matrices, and 𝑏𝑓 represents the bias vector. 

The output vector of the forget gate 𝑓𝑡 and the memory unit to be updated �̃�𝑡 are used to update 

the memory unit 𝐶𝑡, and the formula is as follows: 
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𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝑡𝑎𝑛ℎ(𝑊𝑧𝑥𝑥𝑡 + 𝑊𝑧ℎℎ𝑡−1 + 𝑏𝑧)                                   (2.18) 

where 𝑊𝑧𝑥 and 𝑊𝑧ℎ represent the weight matrices and 𝑏𝑧 represents the bias vector. 

The output gate determines the update of the system state by the internal state. It combines the 

output of the previously hidden layer ℎ𝑡−1 with the current state 𝑥𝑡  to obtain the output 𝑜𝑡  and then 

combines it with 𝐶𝑡 to obtain the current state output ℎ𝑡. The formula is as follows: 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑜ℎℎ𝑡−1 + 𝑏𝑜)                                                          (2.19) 

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝐶𝑡)                                                                                  (2.20) 

where 𝑊𝑜𝑥 and 𝑊𝑜ℎ represent the weight matrices and 𝑏𝑜 represents the bias vector. 

 

 
 

Figure 4. The structure of the LSTM 

 

2.3.4. Gate Recurrent Unit (GRU) 

The gated recurrent unit (GRU) is a new variant of RNNs proposed after the LSTM. It omits the 

small contributing gates and their corresponding weights in the LSTM. The GRU uses only the following 

two gates to control the output of the neural network: the reset gate and the update gate. Therefore, the 

GRU simplifies the structure and improves the training efficiency. The specific structure is shown in 

Figure 5. The reset gate 𝑟𝑡 and the update gate 𝑧𝑡 are jointly determined by the current input state 𝑥𝑡 and 

the hidden state at the previous moment ℎ𝑡−1. In addition, the candidate set of the current state ℎ̃𝑡 is 

generated at the same time, with the formula as follows: 

𝑟𝑡 = 𝜎(𝑊𝑟[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟)                                                                                (2.21) 

𝑧𝑡 = 𝜎(𝑊𝑧[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟)                                                                                (2.22) 

ℎ̃𝑡 = tanh (𝑊ℎ[𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑛)                                                                  (2.23) 

where 𝑊𝑟 and 𝑊𝑧 represent the weight matrices, 𝑏𝑟 and 𝑏𝑛 represent the bias vectors, and 𝜎 and 

𝑡𝑎𝑛ℎ represent the activation functions. 

The reset gate is used to control how much information from the previous state is written into the 

current candidate set ℎ̃𝑡, and the update gate is used to control the extent to which the state information 

of the previous moment is brought into the current state. Finally, the hidden state of the current moment 

ℎ𝑡 is calculated. The formula is as follows. 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡                                                                    (2.24) 

 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 220823 

 

10 

 

 
 

Figure 5. The structure of the GRU 

 

2.3.5 Parameter settings of the model 

In this study, the sequential model is imported to implement a linear stack of multiple network 

layers through Python. In the process of network training, the Adam optimization algorithm is applied 

to continuously update its weights. The range of the learning rate is [0.00001, 0.001]. To evaluate the 

estimation accuracy of the model under different hyperparameters, we set a fixed random number to 

ensure that the weights of the RNN model and GRU model are initialized under the same conditions. 

The dropout layer is used to reduce the complexity of the network. The mean absolute error (MAE), 

which can be used to represent the absolute error between the predicted value and the true value, is used 

as the loss function, and the formula is shown in Formula (2.25). Three schematic diagrams of the SOH 

estimation model for Li-ion battery packs are shown in Figure 6. 

𝑀𝐴𝐸 =
1

𝑁
∑ |�̂�(𝑖) − 𝐶𝐿(𝑖)|𝑁

𝑖=1                                                                 (2.25) 

where �̂�(𝑖) is the predictive value, and 𝐶𝐿(𝑖) is the true value. 

 

 
 

Figure 6. Three schematic diagrams of the SOH estimation model for Li-ion battery packs 
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3. RESULTS AND ANALYSIS 

3.1. Dataset Introduction 

The data used in this study come from the real environment of a car. It was sampled at a 20-

second interval and lasted for one year. The rated capacity is 280 Ah and includes more than 20 

parameters, such as the vehicle operating location, sampling time point, total voltage, total current, state 

of charge, cell maximum voltage, cell minimum voltage, maximum temperature, minimum temperature, 

and mileage. Moreover, these data are multi-dimensional time-series data. Due to the harsh and 

changeable external environment of the car during actual operation and the lithium-ion battery being 

easily affected by the ambient temperature[33], the data are far less stable than those collected in the 

laboratory. Therefore, some necessary pre-processing should be performed to improve the training effect 

of the model and the accuracy of the estimation[34, 35]. Different data should make different pre-

processing rules. For the data in this study, a brief description of the processing procedure is given below. 

We need to distinguish between charged and discharged fragments. Then, we clean the records with zero 

battery current and the fragments with too many missing values, as well as delete clips that are too short. 

Then, we standardize data such as time, voltage, current, temperature, SOC, mileage, and clean abnormal 

data that do not meet the normal range of the battery. 

 

3.2. Results and Analysis 

The flowchart of the SOH estimation is shown in Figure 1. It contains four steps, including data 

acquisition, feature extraction and selection, model training, and SOH estimation. A one-year historical 

dataset of vehicles with different driving behaviours is used in this study. These recorded data, such as 

voltage and current, are inputs for the frequency-based and the number of frequency-based Health 

Indicators (HI) extractions. Then, three different feature selection methods are adopted to select each 

subset. Afterwards, different machine learning algorithms are used for model training, including the 

BPNN model, RNN model, LSTM model, and GRU model. Finally, the SOH is estimated based on 

different health features and models, and the accuracy, robustness, and computational efficiency are 

evaluated to demonstrate the estimation performance of each strategy. 

The health features analysed above should be further screened using the maximal information 

coefficient. Then, we find health features that are highly correlated with the capacity to train the model. 

The results are as follows: 
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Table 1. The correlation analysis results between the frequency-based health features and 𝐶𝐿 

 

feature coefficient feature coefficient 

𝑀 0.999999 𝑃𝑃1 0.893752 

𝑃1 0.999997 𝑃𝑃2 0.999985 

𝑃2 0.997582 𝑃𝑃3 0.999985 

𝑃3 0.999892 𝑃𝑃4 0.999624 

𝑃4 0.999999 𝑃𝑃5 0.954012 

 

 

Table 2. The correlation analysis results between the number of frequency-based health features and 𝐶𝐿 

 

feature coefficient feature coefficient feature coefficient 

𝑀 0.999999 𝑆𝑆1 0.409192 𝐷𝐷1 0.995649 

𝑆1 0.823188 𝑆𝑆2 0.990492 𝐷𝐷2 0.998995 

𝑆2 0.845051 𝑆𝑆3 0.566168 𝐷𝐷3 0.999985 

𝑆3 0.369753 𝑆𝑆4 0.999985 𝐷𝐷4 0.999999 

𝑆4 0.536302 𝑆𝑆5 0.793339 𝐷𝐷5 0.999999 

 

 

By analysing the data in Table 1 and Table 2, we can see that the calculated results are in the 

range of [0,1], and the correlation coefficients of most health characteristics are higher than 0.7. 

Therefore, the follow-up SOH estimation study selects the dataset composed of health characteristics 

with an MIC higher than 0.7. 

We take 90% of the data as the training set to train the nonlinear relationship between battery 

pack capacity degradation and health features and take the last 10% of the data as the validation set and 

test set to verify the accuracy and generalization ability of the model. To objectively evaluate the 

prediction effect of each recurrent neural network model, the root mean square error (RMSE), which can 

be used to represent the difference between the predicted value and the true value, is used to calculate 

the accuracy of the estimated results. It can be used to reflect the discrete degree in the sample, with the 

formula is shown in Formula (3.1). 

RMSE = √
1

N
∑ (Ĉ(i) − CL(i))2N

i=1                                                          (3.1) 

where �̂�(𝑖) is the predictive value, and 𝐶𝐿(𝑖) is the true value. 

The algorithms currently include artificial neural networks (ANNs)[36], support vector machines 

(SVMs)[7,37], relevance vector machines (RVMs)[38], and Gaussian process regression (GPR)[39]. 

Ref.[40] performed correlation analysis on the health characteristics and established the SOH estimation 

model combined with the SVM algorithm. Ref.[39] proposed a GPR battery SOH estimation model 

based on the charging curve. However, the methods described above still have some disadvantages. First, 

these methods still depend on the sampling accuracy and calculation accuracy of experimental data; 

when the data quality is poor, these methods will perform poorly. Second, the validation data of these 

methods are usually measured in a constant current/temperature or laboratory environment. When using 

real-world data to estimate battery SOHs, their stability and practicality need to be verified. The 
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degradation of a lithium-ion battery can cover hundreds of cycles or more, and the methods proposed 

above do not reflect the long-term dependence of SOH degradation. 

Next, we will compare and analyse the estimation results from the perspective of combining 

different feature selections and different models. In this study, the real running data of a certain vehicle 

were selected to verify the proposed method, and the verification results are shown in Figures 7~9. When 

processing a large amount of data, such as batteries, the BP neural network will have obvious problems 

of slow convergence and insufficient accuracy. Table 3 shows that the SOH estimation accuracy is 

significantly reduced compared with other neural networks; thus, this model will not be used in 

subsequent research. Combining Table 3 and Figure 10, we can see that the combination-based health 

feature (frequency-based health feature and number of frequencies-based health feature) has the highest 

estimation accuracy. Compared with the frequency-based and number of frequency-based health 

features, the MAE accuracy under the LSTM model is increased by 78% and 58%, and the RMSE 

accuracy is increased by 50% and 37%, respectively. The accuracies of the GRU model and RNN model 

are similar to that of the LSTM model, because the combined features not only reflect the battery's ageing 

information and quantify the battery's historical working conditions but also add features that reflect the 

driver's behaviour. 

Table 3. Comparison of the accuracy of the SOH estimation results based on different feature selection 

and models 

 

  LSTM GRU RNN BP 

Frequency 
MAE（%） 0.023 0.018 0.042 0.054 

RMSE（%） 0.069 0.057 0.089 0.091 

Number of 

Frequencies 

MAE（%） 0.012 0.010 0.035 0.047 

RMSE（%） 0.054 0.042 0.072 0.084 

Combination 
MAE（%） 0.005 0.008 0.032 0.039 

RMSE（%） 0.034 0.037 0.047 0.059 

 

 
(A)                                                                               (B) 

 

Figure 7. (A) Comparison of the results of different models based on the frequency of health features 

(B) Comparison of the results of different models based on the number of frequencies of health 

features 
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At the same time, no matter which feature selection is used, the SOH estimation accuracy based 

on the LSTM model and the GRU model is not much different. However, both are higher than the 

estimation accuracy based on the RNN model, which shows that, as a variant of the RNN, the LSTM 

model and the GRU model have better results for estimating the SOH. As seen from Figure 11, the 

training time of the GRU model under the three healthy feature selections is reduced by 22%, 18%, and 

10% compared with the LSTM model, because the structure of the GRU model is simpler than that of 

the LSTM model. Therefore, when the amount of data processed is large, the GRU model will have 

better results. 

 
 

Figure 8. Comparison results of different models based on the combined health features 

 

 

MAE（%） RMSE（%） MAE（%） RMSE（%） MAE（%） RMSE（%）

LSTM GRU RNN

Comparison of the accuracy of SOH estimation results based on different 
feature selection and models

Frequency-based Number of Frequencies-based Combination-based
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Figure 9. Comparison of the accuracy of the SOH estimation results based on different feature selections 

and models 

 

 

 
Figure 10. Comparison of the training time based on different feature selections and models 

 

 

From the above analysis, we can see that the estimation accuracy of the LSTM model based on 

combined feature selections is slightly higher than that of the GRU model. Compared with the GRU 

model, the LSTM model has a more complex structure and a larger number of hyperparameters. 

Therefore, when the dimension of the processed data features is high, the LSTM model has an advantage 

over the GRU model. However, at the same time, there will be problems that it is difficult to ensure the 

accuracy and generalization by adjusting parameters based on manual experience. Next, we will conduct 

a separate study on the LSTM model based on combined features. The Bayesian optimization algorithm 

(BO) is added to the LSTM model, and the actual running data of three vehicles were selected for 

comparison and verification. The data of three vehicles are randomly selected to verify this method. The 

Bayesian optimization algorithm is a very popular hyperparameter optimization algorithm, which can 

reduce the attempts to select hyperparameters to obtain the maximum optimal solution. In short, it can 

improve the accuracy of the model and solve the limitations of manual parameter adjustment. By 

analyzing Figure 11 and Table 4, we can see that the MAE and RMSE accuracy of the LSTM model 

optimized by the algorithm for car A is improved respectively by 55% and 32% compared without 

optimization. Car B and Car C also have the same effect. 
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Figure 11. Comparison of the SOH estimation of three vehicles based on the combined features and 

LSTM-BO model 
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Table 4. Comparison of the SOH estimation of three vehicles based on the combined features and 

LSTM-BO model 

 

 error A B C 

LSTM model 
MAE（%） 0.011 0.015 0.012 

RMSE（%） 0.025 0.042 0.038 

LSTM-BO 

model 

MAE（%） 0.005 0.014 0.009 

RMSE（%） 0.017 0.032 0.024 

 

 

 

4. CONCLUSIONS 

In the era of big data, large amounts of data generated by the actual operation of the car provides 

many possibilities for the estimation of the SOH. Three different feature dimensions and three different 

estimation models are combined in this paper to estimate the battery state of health and analyse the 

accuracy of the estimation results. The results show that the strategy is effective and that the capacity 

decline of the car is in line with the normal mechanism of battery ageing. At the same time, the results 

show that the LSTM model and GRU model with combined features have higher accuracies. Since the 

training time of the GRU model is shorter, the GRU model is more advantageous when dealing with a 

large amount of data. Since the LSTM model has many hyperparameters, it is more advantageous when 

processing data with high feature dimensions. Finally, since the LSTM model has many 

hyperparameters, a simple hyperparameter optimization is performed. The results show that the 

estimation accuracy of the optimized model is significantly improved. 

In the future, we aim to overcome the limitations of this study, mainly by using more kinds of 

models, such as the temporal convolutional network and Gaussian process regression, to further improve 

the applicability of the proposed strategy. 
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