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The enzyme combines with an electroinactive substrate to produce an electroactive product that is 

oxidised or reduced rapidly at the electrode/film interface in this method. This model is built on nonlinear 

reaction-diffusion equations containing a nonlinear factor related to the enzyme reaction's Michaelis-

Menten kinetics. In this paper, the Taylor’s series method with the ancient Chinese algorithm (Ying 

Buzu Shu algorithm) is applied to derive an analytical solution for the nonlinear problems in 

amperometric biosensors. Finally, simple and closed-form analytical expressions for the steady-state 

concentration profiles and their related current response in enzyme immobilized into a planar film onto 

an electrode are derived. The analytical concentration profiles are compared with the simulation and 

gave a satisfactory agreement.   

 

 

Keywords: Michaelis–Menten kinetics; Amperometric biosensor; Nonlinear reaction-diffusion 

equations; Taylor’s series method; Ying Buzu Shu algorithm  

 

 

1. INTRODUCTION 

 

Biosensors are self-contained analytical devices that turn biological responses into quantifiable 

and processable signals, which is also a self-contained integrated device that incorporates a biological 

recognition element with a physical transducer. The biosensor can be classified into electrochemical, 

optical, thermal, and piezoelectric based on the transducer. Moreover, Electrochemical biosensors are of 

three types called amperometric biosensors, potentiometric biosensors and conductometric biosensors. 

The current produced during the oxidation or reduction of an electroactive product or reactant is 

measured using an amperometric biosensor. The potential of the biosensor electrode with a reference 
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electrode is calculated using a potentiometric biosensor. Finally, the conductance change caused by a 

biological reaction is measured using conductometric biosensors. 

Electrochemical biosensors have been the most extensively studied due to their low detection 

limit, specificity, ease of manufacture, and operation. The electrochemical oxidation (or reduction) of 

the substrate catalysed by enzymes to produce catalytic currents is known as bioelectrocatalysis. The 

current response of mediated amperometric biosensors is based on this principle, and numerous research 

articles have been published on this topic. By using redox chemicals as electron transfer mediators, 

enzymes on electrodes catalyzed electrolytic oxidations or reductions of substrates. The importance of 

bioelectrocatalysis extends beyond biosensor applications. It's also used to design energy devices like 

bioreactors [1] and biofuel cells [2]. For environmental, clinical, and industrial reasons, these are reliable, 

inexpensive, and very sensitive. As a result, mathematical modelling of the situation is quite beneficial. 

 Using Danckwert's formula, Rajendran and Rahamathunissa [3] calculate the analytical solution 

of steady-state current for amperometric polymer electrodes in first- and zero-order kinetics. Eswari and 

Rajendran [4] measured the steady-state concentration and current at the microdisk and microcylinder 

electrodes for an amperometric biosensor. The homotopy perturbation method was utilized by Rajendran 

and Anitha [5] to solve the nonlinear mass balance equation in the amperometric biosensor. 

Although there is considerable overlap between biosensors and enzymatic electrodes for fuel cell 

applications, Bartlett et al. [6] provide a thorough examination of the problem. Britz et al. [7] show how 

to simulate chronoamperometry on an electrode with a thin enzyme layer using algorithms. The 

mathematical model [8] was recently constructed based on substrate enzymatic conversion and substrate 

diffusion. Meena et al. [9] investigated the mathematical model of the amperometric and potentiometric 

biosensor in non-steady-state situations using the homotopy perturbation method. The numerical and 

analytical models of amperometric and potentiometric enzyme electrodes and reactors was developed 

by Morf and colleagues [10,11]. With a focus on the influence of catalytic activity and biosensor shape, 

Aseris et al. [12] examined the operation of a biosensor by changing input parameters.The substrate and 

inhibitor of an amperometric biosensor response model was developed by Achi et al. [13]. The non-

linear reaction-diffusion equations in a mono-enzymatic biosensor were solved by Kirthiga and 

Rajendran [14] using the homotopy analysis method.  

However, there are no defined criteria for constructing electrochemical biosensors, biofuel cells, 

or bioreactors that use immobilized enzymes. Using Taylor’s series with the Chinese algorithm called 

Ying Buzu Shu algorithm, we have derived approximate analytical expressions of concentrations and 

current density, which can be used to describe and evaluate the performance of energy devices. The 

numerical results correspond well with the new simple and closed-form of our approximate analytical 

expression for steady-state substrate and product concentrations. 

 

 

 

2. MATHEMATICAL FORMULATION OF THE PROBLEM  

The chemical reactions that occur in the layer are as follows: 

𝐸 + 𝑆 ↔ 𝐸𝑆 → 𝐸 + 𝑃 (1) 

where E is the enzyme, S is the substrate, ES is an enzyme substrate complex and P is the product.  
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Figure 1. Schematic diagram for an amperometric biosensor 

 

 

For a steady-state mono-enzymatic biosensor, the mass balance equations to describe the 

diffusion of the substrate S and product P are shown below [14]: 

𝐷𝑆

𝑑2[𝑆](𝑥)

𝑑𝑥2
− 𝑉𝑚

[𝑆](𝑥)

𝐾𝑚 + [𝑆](𝑥)
= 0 (2) 

𝐷𝑃

𝑑2[𝑃](𝑥)

𝑑𝑥2
+ 𝑉𝑚

[𝑆](𝑥)

𝐾𝑚 + [𝑆](𝑥)
= 0 (3) 

where 𝐷𝑆 and 𝐷𝑃 denote the diffusion coefficients, 𝑉𝑚 is the maximum enzymatic reaction rate 

and 𝐾𝑚 is the Michaelis–Menten constant. The boundary conditions for the above equations are as 

follows: 

At 𝑥 = 0,
𝑑[𝑆]

𝑑𝑥
= 0; [𝑃] = 0 (4) 

At 𝑥 = 𝑑, [𝑆] = 𝑆0; [𝑃] = 0 (5) 

Current density J [14], which occurs at the electrode due to reduction or oxidation of P, is given 

as follows:  

𝐽 = 𝑛𝑒𝐹𝐷𝑃 (
𝑑[𝑃]

𝑑𝑥
)

𝑥=0
 (6) 

The dimensionless forms of the above equations (2-6) becomes as follows: 

𝑑2𝑢(𝜒)

𝑑𝜒2
−

𝜇𝑢(𝜒)

𝜅 + 𝑢(𝜒)
= 0 (7) 

𝛾
𝑑2𝑣(𝜒)

𝑑𝜒2
+

𝜇𝑢(𝜒)

𝜅 + 𝑢(𝜒)
= 0 (8) 

where, 

𝑢(𝜒) =
𝑆(𝑥)

𝑆0
, 𝑣(𝜒) =

𝑃(𝑥)

𝑆0
, 𝜒 =

𝑥

𝑑
, 𝜇 =

𝑉𝑚𝑑2

𝐷𝑠𝑆0
, 𝜅 =

𝐾𝑚

𝑆0
, 𝛾 =

𝐷𝑝

𝐷𝑠
 

(9) 

The respective boundary conditions are 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 22074 

  

4 

At 𝜒 = 0,
𝑑𝑢

𝑑𝜒
= 0, 𝑣 = 0 (10) 

At 𝜒 = 1, 𝑢 = 1, 𝑣 = 0 (11) 

The dimensionless current is reduced to 

𝜓 =
𝐽𝑑

𝑛𝑒𝐹𝐷𝑝𝑆0
=

𝑑𝑣(𝜒)

𝑑𝜒
|

𝜒=0

 
(12) 

 

 

3. ANALYTICAL EXPRESSION OF THE CONCENTRATIONS USING TAYLOR’S SERIES  

WITH YING BUZU SHU ALGORITHM 

The approximate methods such as  homotopy perturbation method [22,23], variational iteration 

method [24], Akbari Ganji’s method [25,26], Pade approximant method [27], Taylor’s series method 

[28,29] are available to solve the nonlinear [30-32] differential equations. It was also mentioned that 

approximate analytical solutions, rather than numerical solutions, are more instructive regarding the 

controlling system's properties. As a result, we provide extremely reliable and accurate approximate 

analytical solutions in this section based on a new Taylor’s series method. The approximate analytical 

solutions for the concentration of the substrate and product using the Taylor’s series method are as 

follows [Appendix A-B]: 

𝑢(𝜒) ≈ 𝑢(0) {1 + 𝜇 [
1

𝜅 + 𝑢(0)

𝜒2

2!
+

𝜇𝜅

(𝜅 + 𝑢(0))3

𝜒4

4!
+

𝜇2𝜅(𝜅 − 6𝑢(0))

(𝜅 + 𝑢(0))5

𝜒6

6!
]} (13) 

𝑣(𝜒) ≈
1

𝛾
[𝑢(0) + (1 − 𝑢(0))𝜒 − 𝑢(𝜒)]    (14) 

The dimensionless current is given by 

𝜓 ≈
1

𝛾
[1 − 𝑢(0)] (15) 

The unknown parameter 𝑢(0) can be obtained by using the Ying Buzu Shu algorithm, which is 

given below with a basic idea of these algorithm. 

 

3.1 Basic Idea of Ying Buzu Shu algorithm  

Ref. [15] gives a brief overview of the Ying Buzu Shu algorithm, which is currently and 

frequently used to solve nonlinear oscillators [16,17] and fractal vibration systems [18,19]. Consider the 

second-order nonlinear differential equation of the form 

𝑢′′(𝜒) + 𝑓(𝑢(𝜒)) = 0 (16) 

The boundary conditions for the above equation are 

𝑢′(0) = 𝛼 = 0 (17) 

𝑢(1) = 𝛽 = 1 (18) 

From the above result , 𝑢(0) can be obtained using Ying algorithm [15] which is given in the 

next section. Now, consider two initial guesses 

𝑢1(0) = 𝑎1 and 𝑢2(0) = 𝑎2 (19) 
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where 𝑎1 and 𝑎2 are taken as initial guess values which is less than one. By using the analytical 

expression of 𝑢(𝜒) which is obtained from Taylor’s series method and the initial guess 𝑢1(0) and  𝑢2(0), 

we can obtain the terminal values at 𝜒 = 1. 

𝑢1(1) = 𝛽1 (20) 

𝑢2(1) = 𝛽2 (21) 

According to the Ying Buzu Shu algorithm [15,20-22], the initial estimated value can be 

expressed as 

𝑢(0)𝑒𝑠𝑡 = 𝑎3 =
𝑢1(0)(𝑢(1) − 𝑢2(1)) − 𝑢2(0)(𝑢(1) − 𝑢1(1))

(𝑢(1) − 𝑢2(1)) − (𝑢(1) − 𝑢1(1))

=
𝑎1(𝛽 − 𝛽2) − 𝑎2(𝛽 − 𝛽1)

(𝛽 − 𝛽2) − (𝛽 − 𝛽1)
 

(22) 

Using the above result, the terminal value 𝑢3(1) can be obtained and verified, such that 

|𝑢(1) − 𝑢3(1))| ≤ 𝜀, where 𝜀 is the smallest number. Suppose |𝑢(1) − 𝑢3(1))| > 𝜀, we can take the 

next iteration in the algorithm for improving the accuracy of the solution.  

 

3.2. Solution of nonlinear equation using Ying Buzu Shu algorithm 

The values of 𝑢(0) in the equation (13) can be obtained using Chinese algorithm. By taking one 

of the experimental value of parameters 𝜇 = 5 and 𝜅 = 5 the equation (13) can be written as follows: 

𝑢(𝜒) ≈ 𝑢(0) {1 + 5 [
1

5 + 𝑢(0)

𝜒2

2!
+

25

(5 + 𝑢(0))3

𝜒4

4!
+

125(5 − 6𝑢(0))

(5 + 𝑢(0))5

𝜒6

6!
]} (23) 

Let us consider the two initial guesses 𝑢(0) in the above Eq. (23) are as follows: 

𝑢1(0) = 0.6 and 𝑢2(0) = 0.7 (24) 

Using the above initial guesses, the Eq. (24) leads to  

𝑢1(1) = 0.8858 and 𝑢2(1) = 1.0268 (25) 

But one of the given boundary condition is 𝑢(1) = 1. In the Eq. (25), 𝑢1(1) < 1 and 𝑢2(1) > 1 

at 𝜒 = 1. Therefore we can apply the following Ying Buzu Shu algorithm [15] from the Eq. (22), to 

estimate the 𝑢3(0). 

𝑢3(0) =
𝑢1(0)(𝑢(1) − 𝑢2(1)) − 𝑢2(0)(𝑢(1) − 𝑢1(1))

(𝑢(1) − 𝑢2(1)) − (𝑢(1) − 𝑢1(1))
= 0.68099 (26) 

This yields 𝑢3(1) = 1.0001 from Eq. (23). Therefore, we can consider 𝑢(0) = 0.68099.  Hence 

Eq. (13) becomes as follows: 

𝑢(𝜒) ≈ 0.68099 + 0.29968𝜒2 + 0.01934𝜒4 − 0.9131 × 10−4𝜒6 (27) 

Using Eq. (27), the dimensionless concentration of product for the same values of parameters is 

as follows: 

𝑣(𝜒) ≈
1

𝛾
(0.319𝜒 − 0.2997𝜒2 − 0.0193𝜒4 − 0.91315 × 10−4𝜒6) (28) 

The dimensionless current for the corresponding values of parameters is as follows: 

𝜓 ≈
0.31901

𝛾
 (29) 

For various values of parameters, 𝜇 and 𝜅, the values of 𝑢(0) obtained using the Ying Buzu Shu 

algorithm are given in Table. 1 and Table. 2. 
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Table 1. Estimation the value of 𝑢(0) using Ying Buzu Shu algorithm for different values of 𝜇 when  

𝜅 = 5. 

 

𝜇 
Initial guesses of 𝑢(0) 𝑢(0)𝑒𝑠𝑡 

Eq. (22) 

Taylor’s 
series 𝑢(1) 

Eq. (13) 

Boundary 
condition 

𝑢(1) (Eq.(11)) 

Error %  
of 𝑢(1) 

𝑢1(0) = 𝑎1 𝑢2(0) = 𝑎2 
0.1 0.96 1.00 0.9918 1.0000  1.0000 0.00 

1 0.90 0.95 0.9213 1.0000 1.0000 0.00 

5 0.65 0.70 0.6810 1.0001 1.0000 0.01 

10 0.45 0.50 0.4904 1.0001 1.0000 0.01 
 

 

Table 2. Estimation the value of 𝑢(0) using Ying Buzu Shu algorithm for different values of 𝜅 when  

𝜇 = 10. 

 

𝜅 
Initial guesses of 𝑢(0) 𝑢(0)𝑒𝑠𝑡 

Eq. (22) 

Taylor’s 
series 𝑢(1) 

Eq. (13) 

Boundary 
condition 

𝑢(1) (Eq.(11)) 

Error %  
of 𝑢(1) 

𝑢1(0) = 𝑎1 𝑢2(0) = 𝑎2 
0.1 5 × 10−4 6 × 10−4 5.67 × 10−4 1.0004 1.0000 0.04 

1 0.1 0.13 0.1147 1.0031 1.0000 0.31 

5 0.45 0.5 0.4904 1.0001 1.0000 0.01 

10 0.6 0.67 0.6650 1.0000 1.0000 0.00 
 

4. DISCUSSIONS 

For the given experimental parameter values, equations (13-15) constitute a new and simple 

analytical formulation of concentration substrate, product, and current by using the new approach to 

Taylor’s series method and Ying Buzu Shu algorithm with a definite number of terms. Thus, for all given 

values of the ratio of the diffusion coefficients and enzyme reaction rate parameters, the analytical 

expressions of concentrations and current can be determined using this technique. 

 

4.1 Validation of analytical results with numerical results 

Direct comparison with numerical simulations validates the accuracy of the analytical 

expressions of concentrations. For this purpose, we generated the numerical results using the MATLAB 

“bvp4c” (refer to Appendix C) function for the same values for the parameters. Table- 3 demonstrates 

the comparison of concentrations by this method with the simulation for the experimental values of 

parameters. The relative error between simulation and analytical data for the substrate and product 

concentration is 1.05 % and 1.19 %, respectively. The approximate results would be highly accurate if 

more iterations were used. 
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Table 3. Comparison of analytical concentration of substrate and product with simulations results for 

some fixed  experimental values of parameters 𝜇 = 10, 𝜅 = 5 and 𝛾 = 1. 
 

𝜒 

Concentration of substrate 
𝑢(𝜒) 

Error % 

Concentration of product 
𝑣(𝜒) 

Error % 

Numerical 
Eq. (13) 

This work 
Numerical 

Eq. (14) 
This work 

0 0.4996 0.4904 1.84 0.0000 0.0000 0.00 

0.25 0.5276 0.5185 1.72 0.1017 0.0992 2.46 

0.50 0.6149 0.6059 1.46 0.1416 0.1393 1.62 

0.75 0.7630 0.7614 0.21 0.1133 0.1112 1.85 

1 1 1.0001 0.01 0.0000 0.0000 0.00 

Average Error % 1.05 Average Error % 1.19 

 

 
 

Figure 2. Comparison of analytical expression of substrate  𝑢(𝜒) (Eq.13) with simulation result. (a) For 

different values of enzyme reaction rate 𝜇, when 𝜅 = 5. (b) For different values of  saturation 

parameter 𝜅, when 𝜇 = 10. 
 

4.1 Dependence concentration of substrate and product on enzyme reaction rate (𝜇) and  

Michaelis–Menten constant (𝜅). 

The concentrations of substrate, product, and current density are influenced by a dimensionless 

parameter called the enzyme reaction rate 𝜇(= 𝑉𝑚𝑑2 𝐷𝑠𝑆0⁄ ), as well as the Michaelis–Menten constant 

𝜅(= 𝐾𝑚 𝑆0⁄ ), and the ratio of diffusion coefficients 𝛾(= 𝐷𝑝 𝐷𝑠⁄  ). The rate of enzyme reaction 𝑉𝑚 𝑆0⁄  

and the diffusion through the enzyme layer (𝑑2 /𝐷𝑆) determine the dimensionless reaction diffusion 

parameter 𝜇. If the reaction-diffusion value is 𝜇 < 1, the energy devices are dominated by enzyme 

kinetics. The response is under diffusion control when the reaction-diffusion parameter, 𝜇 is greater than 

unity (𝜇 >1), as shown at high catalytic activity 𝑉𝑚 and increased membrane thickness 𝑑, or at low initial 

substrate concentrations 𝑆0 or diffusion coefficient 𝐷𝑠. 
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The concentration of substrate profiles is shown in Fig.2(a) for different values of enzyme 

reaction rate, 𝜇. From Fig.2(a) it is noted that the concentration of substrate 𝑢(𝜒) is uniform  when the 

dimensionless enzyme reaction rate 𝜇 ≤ 0.1. Also the concentration of substrate 𝑢(𝜒) at the electrode 

surface decreases when enzyme reaction rate increases. 

The effect of different values of   Michaelis–Menten constant   for substrate concentration profile 

is shown in Fig. 2(b). It is observed that  decrease in Michaelis–Menten constant, 𝜅 leads to decrease in 

concentration of substrate. 

 

 

 
 

Figure 3. Comparison of analytical expression of 𝑣(𝜒) (Eq.14) with simulation result (a). for different 

values of 𝜇, when 𝜅 = 5 and 𝛾 = 1. (b). for different values of  𝜅, when 𝜇 = 10 and 𝛾 = 1 (c). 

for different values of 𝛾, when  𝜇 = 5 and 𝜅 = 5.  

 

 

Figures 3(a-c) illustrate the behavior of the concentration of product for different values of 𝜇, 𝜅 

and  𝛾. The numerical results show that the effect of increasing values of 𝜇  or decreasing the value of 𝜅 

and 𝛾 results in a increasing the product concentration. Also the product concentration increase slowly 

and reaches the maximum at 𝜒 =  0.5 and then decrease to zero value at 𝜒 = 1. 
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4.2. Impact of the parameters on steady-state current 

 
 

Figure 4. Effect of the dimensionless current,   (Eq.15) on the parameters (a)   and   when ,5

(b)   and  when .10  

 

 

Equation (15) is the new simple, closed- form of current for all values of parameter. But the 

current is also depend upon the other parameters enzyme reaction rate, 𝜇 and Michaelis–Menten 

constant, 𝜅. At low concentrations of the substrate 𝑆0 the enzyme reaction rate, 𝜇 and Michaelis–Menten 

constant, 𝜅  𝑖ncreases, which leads to the current fluctuation. That is the steady-state current gains its 

maximum when there is an increase in the enzyme reaction rate, 𝜇 and decrease in the dimensionless 

Michaelis–Menten constant, 𝜅 from the Figs.4(a-b).  Also from these figures  it is determined that the 

current flow is decreases gradually when  ratio of diffusion coefficient  𝛾 increases. 

 

 

6. CONCLUSIONS 

This paper gives a detailed theoretical analysis of amperometric biosensors. The system of non-

linear equations in the amperometric biosensor is solved using Taylor's series method with Ying Buzu 

Shu ancient Chinese algorithm. The solution procedure of this novel method is simple and easy to follow. 

The substrate, product, and current concentrations were approximated using this method for the first 

time.  The resultant approximation expressions of the concentration were highly accurate compared to 

reliable numerical results. 
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Appendix A: Relationship between 𝑢(𝜒) and 𝑣(𝜒) 

Adding equations (7) and (8) we get,  

𝑑2𝑢(𝜒)

𝑑𝜒2
+

1

𝛾

𝑑2𝑣(𝜒)

𝑑𝜒2
= 0 (A1) 

On integrating the above equation, we get the following results: 

𝑣(𝜒) = −
1

𝛾
𝑢(𝜒) + 𝐶1𝜒 + 𝐶2 (A2) 

Using the boundary conditions (9 and 10), the unknown constants 𝐶1and 𝐶2can be obtained as follows: 

𝐶1 =
1

𝛾
(1 − 𝑢(0)) (A3) 

𝐶2 =
1

𝛾
(𝑢(0)) (A3) 

Therefore,  

𝑣(𝜒) =
1

𝛾
(𝑢(0) + (1 − 𝑢(0))𝜒 − 𝑢(𝜒)) (A4) 

Appendix B: Analytical solution of nonlinear equation Eq. (7) using Taylor’s series method. 

Consider the Taylor's series solution at χ = 0 for the Eq. (7) as follows: 

𝑢(𝜒) = 𝑢(0) + 𝑢′(0)
𝜒

1!
+ 𝑢′′(0)

𝜒2

2!
+ 𝑢(3)(0)

𝜒3

3!
+ 𝑢(4)(0)

𝜒4

4!
+. . . . . . .. (B1) 

And using the boundary condition (Eq. 9), and successive derivative of Eq. (7), we get the following 

results. 

𝑢′(0) = 0 (B2) 

𝑢′′(0) =
𝜇𝑢(0)

𝜅 + 𝑢(0)
 (B3) 

𝑢(3)(0) = 0 (B4) 

𝑢(4)(0) =
𝜇2𝜅𝑢(0)

(𝜅 + 𝑢(0))3
 (B5) 

𝑢(5)(0) = 0 (B6) 

𝑢(6)(0) =
𝜇3𝜅𝑢(0)(𝜅 − 6𝑢(0))

(𝜅 + 𝑢(0))5
 (B7) 
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Therefore, Eq. (B1) becomes, 

𝑢(𝜒) ≈ 𝑢(0) {1 + 𝜇 [
1

𝜅 + 𝑢(0)

𝜒2

2!
+

𝜇𝜅

(𝜅 + 𝑢(0))3

𝜒4

4!
+

𝜇2𝜅(𝜅 − 6𝑢(0))

(𝜅 + 𝑢(0))5

𝜒6

6!
]} (B8) 

From Eq. (A5), 𝑣(𝜒) can be expressed as follows: 

𝑣(𝜒) ≈
1

𝛾
[𝑢(0) + (1 + 𝑢(0))𝜒 − 𝑢(𝜒)] (B9) 

Appendix C: Matlab program for the nonlinear equations (7) and (8). 

function chinese_num 

m = 0; 

x = [0:0.1:1]; 

t=linspace(0,1); 

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 

u1 = sol(:,:,1); 

u2 = sol(:,:,2); 

figure 

plot(x,u1(end,:)) 

title('u1(x,t)') 

xlabel('Distance x') 

ylabel('u1(x,2)') 

%------------------------------------------------------------------ 

figure 

plot(x,u2(end,:)) 

title('u2(x,t)') 

xlabel('Distance x') 

ylabel('u2(x,2)') 

% -------------------------------------------------------------- 

function [c,f,s] = pdex4pde(x,t,u,DuDx) 

c = [1;1];  

f = [1;1].*DuDx;  

mu=5; 

k=5; 

r=5; 

F1 =-mu*(u(1))/((u(1)+k)); 

F2 =(mu/r)*(u(1))/((u(1)+k)); 

s=[F1;F2]; 

% -------------------------------------------------------------- 

function u0 = pdex4ic(x) 

%create  initial conditions 

u0 = [1;1];  
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% -------------------------------------------------------------- 

function[pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t) 

%create  boundary conditions 

pl = [0;ul(2)];  

ql = [1;0];  

pr = [ur(1)-1;ur(2)];  

qr = [0;0];   
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