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The accurate state-of-charge estimation of the lithium-ion battery is one of the key technologies to 

benchmark the rapid development of new energy vehicles. Unscented Kalman filtering abandons the 

traditional way of forcing the system to linearize, selects the symmetric sampling strategy to obtain 

sampling points, and uses Unscented Transformation to deal with the nonlinear transfer of mean and 

covariance. Then calculate the statistical properties of nonlinear functions with the corresponding 

weights of each sampling point. However, the traditional unscented Kalman filtering has accumulated 

errors due to a large number of calculations, the covariance matrix is easy to diverge due to the inability 

to perform QR decomposition, and the system has deviations caused by unknown noise, resulting in low 

stability and easy divergence of the state-of-charge estimation results. Based on the second-order RC 

equivalent circuit model, a square-root adaptive unscented Kalman filtering is proposed, which replaces 

the state error covariance matrix with the square root of the state error covariance matrix. The noise 

covariance is updated in real-time to improve the tracking and convergence of state-of-charge estimation 

results. The algorithm is verified by the Hybrid Pulse Power Characterization test (HPPC) and Beijing 

Bus Dynamic Stress Test (BBDST) working conditions. The results show that square-root adaptive 

unscented Kalman filtering can improve the estimation accuracy of state-of-charge under complex 

working conditions. 

 

 

Keywords: Lithium-ion battery; Second-order RC equivalent circuit model; State of Charge; Square-

Root Adaptive Unscented Kalman Filtering 

 

1. INTRODUCTION 

 

After human society entered the industrial civilization, the development model highly depends 

on fossil energy and material resource inputs, resulting in a large amount of carbon emissions, energy 

consumption, and environmental problems, leading to global climate change and unsustainable 
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development[1]. Facing the severe situation of tight resource constraints, serious environmental 

pollution, and ecosystem degradation, vigorously developing new energy has become an irreversible 

trend[2]. In the use of fossil fuels in China, automobile fuel consumption accounts for 70% of the total 

oil consumption, which shows that the market competition for new energy vehicles will become 

increasingly fierce in the future[3]. As one of the core components of the "three electricity" of new 

energy vehicles, the lithium-ion battery industry has also ushered in a new round of development 

opportunities[4]. Judging from the competition pattern of the power battery market today, the unique 

cathode material of ternary lithium-ion battery makes the battery have a high energy density, long service 

life, and low cost, which makes it occupy the mainstream position[5]. However, under the influence of 

capital and policies, the advanced productivity of our country's power battery industry is insufficient and 

high-quality resources are scarce, resulting in the overcapacity of lithium-ion batteries[6]. Accurate state 

of charge estimation is one of the keys to improving the efficiency of power battery usage. 

At present, the common equivalent circuit models of lithium-ion batteries include Rint model, 

Thevenin model, PNGV model, GNL model, second-order RC model, etc[7]. Simple models are good 

for parameter identification, but cannot accurately describe the batteries working characteristics; higher-

order models can represent battery characteristics in more detail, but the amount of computation will 

increase significantly and it’s not practical[8]. Considering the precise modeling and model 

simplification, and comparing the influence of different orders on SOC estimation results, the accuracy 

of models above the second-order is increased inconspicuous, but the computational effort is 

significantly larger[9]. The ampere integral method estimates SOC by accumulating the charge and 

discharge. The discharge test method is to discharge the battery at a constant current to the cut-off voltage 

and multiply the current by the discharge time as the remaining capacity of the battery[10, 11]. 

According to the relationship between the open-circuit voltage and the lithium-ion concentration in the 

battery, the open-circuit voltage method indirectly fits the corresponding relationship between the open-

circuit voltage and SOC[12]. The neural network method trains the system through a large number of 

comprehensive data and then inputs the sample data into the system to obtain the estimated SOC 

value[13, 14]. Kalman filtering method makes the optimal estimation of the state of the complex dynamic 

system according to the minimum mean square error[15]. Because of the complex internal structure of 

the lithium-ion battery, the charge and discharge are often accompanied by polarization effect, current 

accumulation effect, ohmic effect, etc[16]. The battery is aging after self-discharge and repeated 

recycling, and it shows strong nonlinearity under complex working conditions, so it is difficult for the 

traditional SOC estimation algorithm of lithium-ion battery to obtain a real-time and effective state of 

charge[17, 18]. Therefore, the innovation and improvement of the algorithm for lithium-ion battery SOC 

estimation is particularly important for its long-term development and commercial application[19]. 

Aiming at the potential problem of filter divergence caused by the failure of Cholesky 

decomposition of state error covariance matrix in the original UKF algorithm, and the deviation caused 

by unknown noise in the system, considering the accuracy of characterization and computational 

complexity, the second-order RC equivalent circuit model of lithium-ion battery is established in this 

paper. The Recursive least square (RLS) method is used for online parameter identification, and the 

square-root adaptive unscented Kalman filter is used to estimate the SOC of lithium-ion battery. The 

accuracy of the algorithm is verified by the estimation results of SOC under different working conditions. 
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2. THEORETICAL ANALYSIS 

2.1. Modeling of second-order RC equivalent circuit 

Reasonable selection of lithium-ion battery model is important for accurate estimation of SOC. 

Many models that are widely used at present. The Thevenin model[20] only considers the rapid change 

of the battery polarization response; the Rint model[21] does not consider the polarization characteristics 

of the battery, so the accuracy is not ideal; the PNGV model[22] has high accuracy in simulating transient 

response, and is suitable for high current step-type and complex charging discharge conditions, but not 

for this paper. Compared with other models, the second-order RC equivalent circuit model not only fully 

considers the slow change process of the battery polarization reaction, but also has a small amount of 

calculation and high accuracy, so it is chosen in this paper. The second-order RC equivalent circuit model 

for lithium-ion batteries is shown in Figure 1, where 𝑈𝑂𝐶 stands for open-circuit voltage; 𝑈𝐿 denotes the 

terminal voltage; 𝑅0 is Ohm internal resistance, and the voltage on 𝑅0 is an ohm voltage, which 

represents the instantaneous voltage drop when the battery is charged or discharged. 𝑅𝑃 and 𝐶𝑃 denotes 

polarized resistance and capacitance. The RC loop consisting of 𝑅𝑃1 and 𝐶𝑃1 represents the 

electrochemical polarization process in which the voltage of the battery changes rapidly when the current 

changes; The RC circuit composed of 𝑅𝑃2 and 𝐶𝑃2 indicates the concentration process of slow and stable 

voltage during the internal chemical reaction of the battery. I(t) indicates the current of the loop and 

specifies that the direction of discharge is positive. 
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Figure 1. Second-Order RC equivalent circuit model 

 

 

According to the second-order RC equivalent circuit model and Kirchhoff's law, the voltage and 

current expressions of the circuit can be listed as Equation (1). Set 𝑆𝑂𝐶0is the initial value of the state, 

and the battery SOC can be obtained by the ampere-hour integration method, as shown in Equation (2). 

Where the 𝜂 Coulomb efficiency is usually taken as 1, and 𝑄𝑁 is the rated capacity of the battery. 

{

𝑈𝐿,𝑡 = 𝑈𝑂𝐶 − 𝐼𝑡𝑅0 − 𝑈𝑝1,𝑡 − 𝑈𝑝2,𝑡

𝐼𝑡 =
𝑈𝑝1,𝑡

𝑅𝑃1
+ 𝐶𝑃1

𝑑𝑈𝑝1,𝑡

𝑑𝑡
=
𝑈𝑝2,𝑡

𝑅𝑃2
+ 𝐶𝑃2

𝑑𝑈𝑝2,𝑡

𝑑𝑡

(1) 
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𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶0 −
𝜂

𝑄𝑁
∫ 𝐼𝑡

𝑡

0

𝑑𝑡 (2) 

According to the equivalent circuit model and Equation (1), 𝑥𝑘 = [𝑆𝑂𝐶𝑘 𝑈𝑃1 𝑈𝑃2]
𝑇selected as 

the state variable, 𝑖𝑘as the system input variable, 𝑦𝑘 = [𝑈𝐿,𝑘] as the output variable, after discretizing 

the SOC definition, the state space equation after discretization can be listed as Equation (3), where 𝛥𝑡 

represents the sampling time interval. 

{
 
 
 
 

 
 
 
 

𝑥𝑘+1 = [

1 0 0

0 𝑒
−

𝛥𝑡
𝑅𝑃1𝐶𝑃1 0

0 0 𝑒
−

𝛥𝑡
𝑅𝑃2𝐶𝑃2

] 𝑥𝑘 +

[
 
 
 
 
 
 −𝛥𝑡 𝑄𝑁

⁄

𝑅𝑃1 (1 − 𝑒
−

𝛥𝑡
𝑅𝑃1𝐶𝑃1)

𝑅𝑃2 (1 − 𝑒
−

𝛥𝑡
𝑅𝑃2𝐶𝑃2)

]
 
 
 
 
 
 

𝑖𝑘 +𝑤𝑘

𝑦𝑘 = 𝑈𝑜𝑐,𝑘 − 𝑅0𝑖𝑘 + [
0
−1
−1
]

𝑇

𝑥𝑘 + 𝑣𝑘

(3) 

In the Equation (3), 𝑤𝑘 is the system noise at the 𝑘 moment, and 𝑣𝑘 is the measurement error at 

the 𝑘 moment. 

 

2.2. Recursive least square online parameter identification 

Recursive least square (RLS) is a model parameter identification and data mining algorithm 

based on adaptive filtering theory, which is a learning process to solve the least square loss function 

recursively to obtain the optimal solution to the problem. It adopts the method of regularly correcting 

and updating system parameters, which can be applied to the situation that the system model and 

parameters are greatly affected by external conditions, and can accurately capture the real-time 

characteristics of the system. 

The discrete equations of the model to be identified and the corresponding difference equations 

are shown in Equation (4). 

{
 
 

 
 𝐺(𝑧) =

𝑦(𝑧)

𝑢(𝑧)
=

𝑏1𝑧
−1 + 𝑏2𝑧

−2 +⋯+ 𝑏𝑛𝑧
−𝑛

1 + 𝑎1𝑧−1 + 𝑎2𝑧−2 +⋯+ 𝑎𝑛𝑧−𝑛

𝑦(𝑘) = −∑𝑎𝑖𝑦(𝑘 − 𝑖)

𝑛

𝑖=1

+∑𝑏𝑖𝑢(𝑘 − 𝑖)

𝑛

𝑖=1

+ 𝑣(𝑘)

(4) 

Where a, b are the parameters to be estimated; 𝑦(𝑘) is the k-time observation value of the system 

output; 𝑢(𝑘) is the k-time value of the system input; and 𝑣(𝑘) is the random noise with the mean value 

of 0. 

Convert the battery model into the least-squares mathematical form, as shown in the Equation 

(5). 

𝑈𝑂𝐶 = (
𝑅𝑃1

𝑅𝑃1𝐶𝑃1𝑠 + 1
+

𝑅𝑃2
𝑅𝑃2𝐶𝑃2𝑠 + 1

+ 𝑅0) I+𝑈𝐿 (5) 

Let the time constant 𝜏1 = 𝑅𝑃1, 𝐶𝑃1𝜏2 = 𝑅𝑃2𝐶𝑃2, set 𝑎 = 𝜏1𝜏2, 𝑏 = 𝜏1 + 𝜏2, 𝑐 = 𝑅𝑃1 + 𝑅𝑃2 +

𝑅0, 𝑑 = 𝑅𝑃1𝜏2 + 𝑅𝑃2𝜏1 + 𝑅0(𝜏1 + 𝜏2), then the equation can be rewritten as shown in the Equation 

(6). 
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𝑎𝑈𝑂𝐶𝑠
2 + 𝑏𝑈𝑂𝐶𝑠 + 𝑈𝑂𝐶 = 𝑎𝑅0𝐼𝑠

2 + 𝑑𝐼𝑠 + 𝑐𝐼 + 𝑎𝑈𝐿𝑠
2 + 𝑏𝑈𝐿𝑠 + 𝑈𝐿 (6) 

Substitute 𝑠 = [𝑥(𝑘) − 𝑥(𝑘 − 1)]/𝑇𝑠2 = [𝑥(𝑘) − 2𝑥(𝑘 − 1) + 𝑥(𝑘 − 2)]/𝑇2 into Equation 

(6) and discretize it as shown in Equation (7), where T is the sampling time, set to 0.1 s. 

𝑈𝑂𝐶(𝑘) − 𝑈𝐿(𝑘) =
−𝑏𝑇 − 2𝑎

𝑇2 + 𝑏𝑇 + 𝑎
[𝑈𝐿(𝑘 − 1) − 𝑈𝑂𝐶(𝑘 − 1)] +

𝑎

𝑇2 + 𝑏𝑇 + 𝑎
[𝑈𝐿(𝑘 − 2) − 𝑈𝑂𝐶(𝑘 − 2)]

+
𝑐𝑇2 + 𝑑𝑇 + 𝑎𝑅0
𝑇2 + 𝑏𝑇 + 𝑎

𝐼(𝑘) +
−𝑑𝑇 − 2𝑎𝑅0
𝑇2 + 𝑏𝑇 + 𝑎

𝐼(𝑘 − 1) +
𝑎𝑅0

𝑇2 + 𝑏𝑇 + 𝑎
𝐼(𝑘 − 2)

(7) 

For the convenience of identification, the fractional expression in the above equation is replaced 

by the actual parameters 𝑘1~𝑘5, and the optimized expression result is shown in Equation (8). 

𝑈𝑂𝐶(𝑘) − 𝑈𝐿(𝑘) = 𝑘1[𝑈𝐿(𝑘 − 1) − 𝑈𝑂𝐶(𝑘 − 1)] + 𝑘2[𝑈𝐿(𝑘 − 2) − 𝑈𝑂𝐶(𝑘 − 2)] + 𝑘3𝐼(𝑘) + 𝑘4𝐼(𝑘 − 1) + 𝑘5𝐼(𝑘 − 2)(8) 

Substitute Equation (8) into recursive least-squares and substitute 𝜃 = [𝑘1 𝑘2 𝑘3 𝑘4 𝑘5]
𝑇 

into the algorithm as the parameter vector to be identified. Then the circuit model parameter 

𝑅0、𝑅𝑃1、𝑅𝑃2、𝐶𝑃1、𝐶𝑃2 can be deduced, and the result is as shown in Equation (9). 

{
 
 
 
 

 
 
 
 𝑅0 =

𝑘5
𝑘2

𝑅𝑃1 =
(𝜏1𝑐 + 𝜏2𝑅0 − 𝑑)

(𝜏1 − 𝜏2)
𝑅𝑃2=c − 𝑅𝑃1 − 𝑅0

𝐶𝑃1 =
𝜏1
𝑅𝑃1

𝐶𝑃2 =
𝜏2
𝑅𝑃2

(9) 

 

2.3. Square root adaptive traceless Kalman algorithm 

Compared with KF and EKF, UKF does not ignore higher-order terms when dealing with 

nonlinear problems but uses data reconstruction to infinitely approximate the true value, so it has higher 

estimation accuracy and stronger robustness. However, the UKF itself still has deficiencies. In this paper, 

the SR-AUKF is proposed to focus on solving the following two problems. 

(1) Due to system noise and calculation errors, the traditional UKF algorithm may cause the error 

covariance matrix to be negatively determined, resulting in divergent prediction results. The SR-AUKF 

algorithm uses the square root of the covariance instead of the covariance to participate in the iterative 

operation, which ensures the numerical stability of the filtering algorithm and improves the accuracy and 

reliability of the filtering result tracking.  

(2) KF and its derivative algorithms EKF, UKF, etc. are substituted for process noise and 

observation noise at fixed values, but in fact, the noise of the system is time-varying. In this paper, the 

Sage-Husa adaptive algorithm is combined with SR-UKF to propose an SR-AUKF based on online 

parameter recognition. 

The calculation process of the SR-AUKF algorithm is shown in Equation (10 − 21). 

(1) Data initialization 
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{
 
 

 
 

𝑥0̂ = 𝐸[𝑥0]

𝑆0 = 𝑐ℎ𝑜𝑙{𝐸[(𝑥0 − 𝑥0̂)(𝑥0 − 𝑥0̂)
𝑇]}

√𝑄0 = 𝑆0

√𝑅0 = 𝑐ℎ𝑜𝑙{𝐸[(𝑦0 − 𝑦0̂)(𝑦0 − 𝑦0̂)
𝑇]}

(10) 

(2) Forecast phase 

Compute the matrix constructed from sigma points: 

𝜒𝑘−1 = [𝑥̂𝑘−1 𝑥̂𝑘−1 + √𝐿 + 𝜆𝑆𝑘 𝑥̂𝑘−1 − √𝐿 + 𝜆𝑆𝑘] (11) 

After sampling the Sigma points, the set of sigma points is nonlinearly transformed by the state 

equation, and the square root of the state and variance is further predicted: 

{
 
 
 

 
 
 

𝜒𝑖,𝑘−1
∗ = 𝐴𝑘−1𝜒𝑖,𝑘−1 + 𝐵𝑘−1𝑢𝑘−1

𝑥̂𝑘|𝑘−1
𝑖 =∑𝜔𝑖

𝑚

2𝐿

𝑖=0

𝜒𝑖,𝑘|𝑘−1
∗

𝑆𝑘|𝑘−1
∗ = 𝑞𝑟 {[√𝜔𝑐

𝑖 [𝜒1:2𝑛,𝑘|𝑘−1
∗ − 𝑥̂𝑘|𝑘−1] √𝑄𝑘−1]}

𝑆𝑘|𝑘−1 = 𝑐ℎ𝑜𝑙𝑢𝑝𝑑𝑎𝑡𝑒 {𝑆𝑘|𝑘−1
∗ , [𝜒0,𝑘|𝑘−1

∗ − 𝑥̂𝑘|𝑘−1], √𝜔0
𝑐}

(12) 

(3) Update Phase 

Sigma point resampling: 

𝜒𝑘|𝑘−1 = [𝑥̂𝑘|𝑘−1 𝑥̂𝑘|𝑘−1 + √𝐿 + 𝜆𝑆𝑘|𝑘−1 𝑥̂𝑘|𝑘−1 − √𝐿 + 𝜆𝑆𝑘|𝑘−1] (13) 

The sigma point is nonlinearly transformed by the measurement equation and the residuals are 

calculated: 

{
 
 

 
 
𝑦̂𝑘
𝑘
−1
= 𝐶𝑘𝜒𝑘

𝑘
−1
+ 𝐷𝑘𝑢𝑘

𝑦̂𝑘 =∑𝜔𝑖
𝑚

2𝐿

𝑖=0

𝑦̂𝑖,𝑘|𝑘−1

𝑒𝑘 = 𝑦𝑘 − 𝑦̂𝑘

(14) 

Estimate update measurement noise statistical characteristics: 

{
 
 

 
 √𝑅∗∗ = 𝑐ℎ𝑜𝑙𝑢𝑝𝑑𝑎𝑡𝑒 {√1 − 𝑑𝑘√𝑅̂𝑘−1, |𝑒𝑘|, 𝑑𝑘}

√𝑅∗ = 𝑐ℎ𝑜𝑙𝑢𝑝𝑑𝑎𝑡𝑒{√𝑅∗∗, 𝑦̂0:2𝐿,𝑘|𝑘−1 − 𝑦̂𝑘, −𝑑𝑘𝜔𝑖
𝑐}

√𝑅̂𝑘 = 𝑑𝑖𝑎𝑔 {√𝑑𝑖𝑎𝑔 (√𝑅∗√𝑅∗
𝑇
)}

(15) 

Calculate the variance matrix of the output variable at k moment: 

{
𝑆𝑦
∗ = 𝑞𝑟 {√𝜔𝑖

𝑐(𝑦̂1:2𝑛,𝑘|𝑘−1 − 𝑦̂𝑘|𝑘−1) √𝑅𝑘}

𝑆𝑦 = 𝑐ℎ𝑜𝑙𝑢𝑝𝑑𝑎𝑡𝑒 {𝑆𝑦
∗ , (𝑦̂0,𝑘|𝑘−1 − 𝑦̂𝑘), √𝜔0

𝑐}

(16) 

Calculate the covariance between the k moment state variable and the observed variable: 

𝑃𝑥𝑦 =∑𝜔𝑖
𝑐(𝜒𝑖,𝑘|𝑘−1

∗ − 𝑥̂𝑘|𝑘−1)

2𝐿

𝑖=0

(𝑦𝑖,𝑘|𝑘−1 − 𝑦̂𝑘|𝑘−1)
𝑇 (17) 

Calculate the Kalman filter gain: 
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𝐾𝑘 =
𝑃𝑥𝑦 𝑆𝑦,𝑘

𝑇⁄

𝑆𝑦,𝑘
(18) 

Update the corrected state variable: 

𝑥̂𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐾𝑘𝑒𝑘 (19) 

Solve for the square root of the posterior state variance: 

{
𝑈 = 𝐾𝑘𝑆𝑦,𝑘

𝑆𝑘 = 𝑐ℎ𝑜𝑙𝑢𝑝𝑑𝑎𝑡𝑒{𝑆𝑘|𝑘−1, 𝑈, −1}
(20) 

Update the statistical characteristics of the estimated process noise: 

{
 
 

 
 √𝑄∗∗ = 𝑐ℎ𝑜𝑙𝑢𝑝𝑑𝑎𝑡𝑒 {√𝑄̂𝑘−1, |𝑥̂𝑘 − 𝑥̂𝑘|𝑘−1|, 𝑑𝑘}

√𝑄∗ = 𝑐ℎ𝑜𝑙𝑢𝑝𝑑𝑎𝑡𝑒{√𝑄∗∗, 𝑈, −𝑑𝑘}

√𝑄̂𝑘 = 𝑑𝑖𝑎𝑔 {√𝑑𝑖𝑎𝑔 (√𝑄∗√𝑄∗
𝑇
)}

(21) 

In this paper, RLS is used to identify the parameters of the second-order RC equivalent model 

online with the voltage and current data obtained from the experiment. Then the identified parameter 

results are substituted into the state space equation, and the battery SOC can be estimated through the 

above steps. 

 

 

 
 

Figure 2. Schematic diagram of the implementation of the SR-AUKF algorithm 

 

 

The algorithm implementation process of SR-AUKF is shown in Figure 2. The algorithm can 

solve two major problems of the traditional UKF, ensuring the matrix positive definite by transmitting 

the square root of the error covariance to make the algorithm stable, and improving the accuracy of SOC 

estimation by adding noise adaptation. 
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3. EXPERIMENTAL ANALYSIS 

3.1. Test platform construction 

To verify the accuracy of the battery model and algorithm, it is necessary to build an experimental 

platform to conduct experimental tests on the battery under different complex working conditions. The 

experimental object uses a lithium-ion aluminum shell battery with a nominal capacity of 45 Ah, and the 

entire battery test platform is shown in Figure 3. The BTS200-100-104 is used to test the battery, the 

TT-5166TH is used to provide a constant experimental temperature to the battery, and the host computer 

is used to record the experimental data in Figure 3. 

 

 

Temperature control

Lithium-ion battery 

Battery test equipment 

BTS200-100-104 
Host Computer 

Command

Data Recording

(voltage and current)

Temperature chamber TT-5166TH  

Test HPPC DSTBBDST

 
 

Figure 3. Battery test platform 

 

3.2. Online parameter identification results 

The battery parameter identification is carried out under the Hybrid Pulse Power Characterization 

(HPPC) working condition. The experimental object is a lithium-ion aluminum shell battery, the nominal 

capacity of the battery is 45 Ah, and the actual capacity is 43.4275 Ah. HPPC experiments are performed 

under a constant temperature of 27°C. The battery is discharged at a rate of 1 C, 10% SOC each time, 

starting from SOC=1 and ending at SOC=0, and parameter identification is carried out according to the 

current and voltage data obtained by the experiment. The steps of the HPPC experiment are as follows: 

(1) Lithium-ion battery is fully charged with a constant voltage of 4.2 V and a constant current 

of 1 C. 

(2) After charging, the battery was put on hold for 40 min, then discharged at a rate of 1 C for 10 

s, and then put on hold for 40 s. Finally, charge the battery at a rate of 1 C for 10 s, and then put the 

battery on hold for 160 s, which is a complete pulse test. 
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(3) Discharge the battery at a rate of 1C for 6 minutes to reduce the battery capacity by 10%. 

(4) Repeat steps (2) and (3) 10 times, and the battery open-circuit voltage 𝑈𝑂𝐶 is recorded after 

each charge until the battery capacity is zero. 

Where SOC=0.7, the pulse test voltage curve is shown in Figure 4. 
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Figure 4. HPPC test voltage curve at SOC=0.7 

 

 

The RLS algorithm is verified by the experimental data collected under HPPC working condition, 

and the dynamic changes of the internal parameters at different times are obtained. The results of 

dynamic parameter identification are shown in Figure 5. 
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Figure 5. Parameter identification results under HPPC working condition 

 

 

Based on the Thevenin model, H. W. He[23] used the off-line parameter identification method 

to obtain the maximum error of estimated voltage is 3.09%. And based on the second-order RC model, 

S. L. Liu[24] used the off-line parameter identification method to obtain the mean error of estimated 

voltage is 1.1%. However, in this paper, the maximum error of the online identification based on the 

second-order RC equivalent circuit can be controlled within 2% due to the severe chemical reactions 

inside the battery during charging and discharge, and the mean error is within 0.7%. The verification 
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results show that RLS algorithm has high online parameter identification accuracy and can obtain 

accurate model parameter values. 
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Figure 6. Parameter identification results under HPPC working condition 

 

3.3. Experimental verification under DST working condition 

To verify the accuracy of the online parameter identification results and the convergence of the 

SR-AUKF algorithm, the dynamic stress test (DST) working condition is used for verification. First, the 

battery was charged with 1 C constant current until the upper cut-off voltage of 4.2 V. After charging, 

the battery is shelved for 30 min to stabilize the battery voltage. Constant current discharge and constant 

current charge were performed at 0.5 C rate for 4 min, followed by constant current discharge at 1 C rate 

for 4 min. These three steps are cycled until the end of the discharge. The SOC values estimated by UKF 

and SR-AUKF are compared with the real values, and the obtained results and error diagrams are shown 

in Figure 7. 
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Figure 7. SOC estimation results under DST working condition 

 

In Figure 7(a), red curve represents the real value, blue curve represents the estimated value based 

on the UKF algorithm, and green curve represents the estimated value based on the SR-AUKF algorithm. 
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In Figure 7 (b), blue curve represents the estimation error of the UKF algorithm, and red curve represents 

the estimation error of the SR-AUKF algorithm. It can be seen from Figure 7 that the overall estimation 

error of the SR-AUKF algorithm is lower than that of the UKF algorithm. Due to the internal chemical 

reaction of the battery, the estimated value of the battery SOC fluctuates greatly, and errors accumulate 

in the later period, so the SOC estimation error reaches the maximum value. However, the convergence 

effect of SR-AUKF is obviously better than that of the traditional UKF algorithm, and the error can be 

controlled within 5.65%, while the maximum error of UKF is as high as 7.44%. It verifies the value of 

the improved algorithm and has significance for the SOC estimation of lithium-ion batteries. 

 

3.4. Algorithm validation under BBDST conditions 

To further verify the stability and traceability of the SR-AUKF algorithm for SOC estimation 

under complex working conditions, the SOC estimation is implemented under the Beijing Bus Dynamic 

Stress Test (BBDST) working condition. The BBDST working condition was collected from the real 

data of the Beijing bus dynamic test, including the data under various operations such as starting, 

coasting, accelerating, and rapid acceleration, which is realistic and dynamic. 
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Figure 8. SOC estimation results under DST working condition 

 

 

It can be seen from Figure 8 that in the early stage of discharge, the two algorithms quickly track 

the real value, but the convergence speed of the SR-AUKF algorithm is significantly better than that of 

the traditional UKF. When the battery is at the end of discharge, the SOC estimation error fluctuates 

greatly. The main reason is that the nonlinearity of the battery is intense at the end of discharge. Many 

SOC estimation methods have low accuracy at the end of battery estimation. The accuracy of the 

algorithm in this paper can still be kept within 3.22% at the end of the estimation, and it can converge 

rapidly. In contrast, the average error and maximum error of the SR-AUKF algorithm are superior to 

those of the traditional UKF with faster tracking and better stability. There is a significant improvement. 
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4. CONCLUSION 

Accurate estimation of the state of charge of high-power lithium-ion batteries is of great 

significance for the application and development of new energy vehicles. In this paper, the second-order 

RC equivalent model is used to characterize the dynamic characteristics of the battery, and the dynamic 

relationship of the internal parameters with time is obtained through RLS online parameter identification. 

To improve the SOC estimation accuracy, a joint estimation method of RLS and square root adaptive 

unscented Kalman is proposed. The algorithm makes full use of the residual information at multiple 

moments and configures corresponding weights for them according to the different amounts of 

information contained, and has good adaptive adjustment and correction functions. The experimental 

data under DST and BBDST are used for verification. The results show that the estimation error of the 

algorithm can be respectively controlled within 5.65% and 3.22%. Compared with the traditional 

algorithm, the estimation accuracy and stability are significantly improved. The research content of this 

paper has positive significance for the condition monitoring of lithium-ion batteries and the long-term 

development of new energy vehicles. 
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