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In order to accurately estimate the state of health (SOH) of lithium batteries under the condition of 

constant current charging and discharging, a multi-scale health indicator (HI) selection strategy based 

on discharge characteristics is proposed in this paper, which can estimate SOH when the battery is not 

fully charged and discharged. Firstly, the initial voltage drop in the discharge process and the time 

interval of an equal discharging voltage difference were treated as the indirect HIs of battery capacity 

estimation. Secondly, the optimal discharge voltage segment was selected using the genetic algorithm 

based on elitist model (e-GA), the selection criterion of time interval of an equal discharging voltage 

difference was determined, and its correctness was verified. Finally, a lithium battery degradation model 

was established by the long and short term memory (LSTM) neural network according to the HI selection 

strategy as mentioned above, and the experimental results were compared with those as obtained using 

other selection strategies. As suggested by the experimental results, the aforementioned HI selection 

strategy can reduce the mean absolute percentage error (MAPE) by 0.41 % on average. In addition, the 

MAPE of the prediction results fell below 2.22 % in twelve experiments conducted on four batteries at 

different allocation ratios of training set and test set. 

 

 

Keywords: Lithium-ion battery; State of health; Elitist model based GA; Health indicator; Long and 
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1. INTRODUCTION 

 

Lithium-ion battery is an advanced green energy storage battery, with high specific energy, low 

self-discharge rate, high safety, long cycle life and other advantages [1]. However, in the long-term 

operation of any battery, it is inevitable to have attenuation of energy and capacity, and abnormal 
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attenuation will lead to safety accidents [2]. Therefore, in order to ensure the reliable operation of lithium 

batteries, there must be a way to determine the health of batteries [3]. 

The SOH of a battery reflects its service life. It is usually defined as the ratio of the capacity 

released by the battery from the full charge state to the cut-off voltage at a certain rate to the nominal 

capacity. It is generally believed that the end-of-life condition is reached when the capacity of the battery 

declines to 80% of the nominal capacity [4]. Traditionally, the current method, open-circuit voltage 

method and other methods based on empirical knowledge are combined to estimate SOH of lithium 

battery, but these methods are time-consuming and have low accuracy, making it difficult to apply them 

in practice [3]. At present, there are mainly model method and data-driven method to estimate the health 

status of lithium batteries [5-11]. Among them, the model method is divided into electrochemical mode 

method and equivalent model method [12-14]. Due to the complex structure and large amounts of 

calculation, electrochemical model method is rarely applied. Equivalent model method is often 

combined with Kalman filter [15,16], particle filter and other algorithms [17,18], and the accuracy of its 

estimation is heavily dependent on the accuracy of model parameters. As a result, the model parameters 

cannot be updated in real time when battery aging and other factors occur, thus leading to the decline in 

accuracy of estimation. Data-driven method does not require in-depth understanding as to the internal 

mechanism of lithium batteries. Instead, it uses machine learning algorithm to build a model based on 

the historical data of batteries and tries to find the hidden correlation from a large number of data, so 

that it is widely used with the characteristics of high efficiency and practicality [19]. 

The data driven modeling based on machine learning has been reported in plenty of literature. 

Zhou et al [20] used genetic algorithm and Person index to select the optimal charging voltage segment 

as an indirect health factor to estimate the SOH of batteries, but did not specify the iterative method of 

genetic algorithm. Person coefficient is a linear correlation coefficient, while for neural network, the 

mapping between health factors and capacity can be nonlinear. Therefore, the discharge capacity of the 

optimal voltage segment is not always linearly related to the capacity. Liu et al [21] used the average 

voltage and temperature under the condition of constant discharge current to map the SOH of the 

batteries, the selection of its health factors was not targeted, and it was necessary to track the whole 

discharge process. Li [22] and Chen et al [23] selected the time interval of an equal discharging voltage 

difference as the input and the actual capacity of the battery as the output to build a degradation model 

of lithium batteries. The strategy of selecting HI from a single scale is insufficient to predict complex 

capacity changes, and the generalization ability is weak because the time interval of an equal discharging 

voltage difference is selected within a fixed voltage segment. Chen et al [11] used the time point of 

discharge dip as a health indicator, but it was necessary to reduce the prediction error. Jiang et al [24] 

used ELM network to build a battery degradation model, but the charging and discharging data of lithium 

batteries were time-series. Besides, the ELM network had poor memory and failed to fully learn the 

time-series characteristics of the data. 

After the advantages and disadvantages of existing methods were analyzed, a data-driven SOH 

estimation method intended for lithium batteries under the condition of constant current charging and 

discharging was proposed. Firstly, the initial discharge voltage drop and the time interval of an equal 

discharging voltage difference were selected as the indirect HIs to map the actual battery capacity at 

multiple scales. Then, the e-GA algorithm combined with correlation analysis method was used to 
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optimize the time interval of an equal discharging voltage difference which is one of the HIs, and the HI 

with the highest correlation with capacity was verified. Finally, a lithium battery degradation model was 

established by using the above selection strategy of HI to accurately estimate the SOH of batteries. 

 

 

 

2. SELECTION OF INDIRECT HI 

In order to study the health status of lithium battery, it is necessary to select an appropriate HI to 

characterize the SOH of battery. HI can be divided into direct HI and indirect HI. Direct HI is the actual 

capacity of the battery in its current state, but most of it can only be obtained in the laboratory because 

it is not easy to measure it in real working conditions, which makes it applicable as the basis to measure 

the accuracy of the prediction. Indirect HI includes terminal voltage, current, temperature, internal 

resistance and so on. The relationship model between indirect HI and battery capacity was established 

to predict the actual battery capacity according to partial discharge characteristic. 

 

2.1. Thevenin equivalent model of lithium battery 

In the analysis of lithium battery, it is always approximately regarded as the Thevenin equivalent 

model as shown in Fig.1, where Vocv is the open circuit voltage of the battery, Vd is the terminal voltage 

of the battery, R is the internal resistance of the power supply, R1 and C1 are the internal resistance and 

capacitance of the battery respectively, and I is the current in the battery. 

 

Vocv

R

R1

C1

Vd
Vc1

I

 
 

Figure 1. Thevenin equivalent model of lithium-ion battery 

 

 

According to the equivalent model shown in Fig.1, it is known that before the battery discharge 

occurs: 

docv VV                                        (1) 

Steady battery constant discharge stage: 

docv VRRIV  )( 1                               (2) 

)(SOCfVocv                                   (3) 

After discharge: 

dcocv VVV  1                                    (4) 

Where, Vc1 is generated by the polarization reaction of the polarization capacitor C1 and gradually 

declines to zero with the progress of the polarization reaction. 
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2.2. Selection of HI 

More specific and effective HI can be selected by analyzing the discharge characteristics of 

lithium batteries. With the charging and discharging of the battery, the internal resistance of the battery 

will gradually rise. It can be said that there is a strong correlation between the degradation of the battery 

and the increase of the internal resistance R. Therefore, two HIs are selected as follows:  

1) The first HI is the initial discharge voltage drop (Vdown). According to Equations (1) and (2), 

under constant discharge current, the abrupt change in terminal voltage before and after discharge can 

indicate the size of R of the battery. Therefore, Vdown is selected as the indirect HI. Take B0005 battery 

in NASA data set as an example. The terminal voltage curve during discharge was obtained as shown in 

Fig.2. Then, the terminal voltage value after 35s of discharge was obtained by using cubic spline 

interpolation to make a difference with the initial terminal voltage, and the Vdown value was obtained as 

shown in Fig.3. 
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Figure 2. Lithium battery discharge characteristic curve under different numbers of charging and 

discharging cycles 
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Figure 3. Relation between the terminal voltage drop value and the number of charge and discharge 

cycles after 35 seconds of discharge 

 

 

2) The second HI is the time interval to equal discharging voltage difference (TAB). Under the 
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condition of constant discharge current, the discharge time required for the battery terminal voltage to 

drop from a high voltage VA to a low voltage VB is arranged according to the number of cycles, and the 

resulting sequence is denoted as TAB. According to Equations (2) and (3), TAB is related to the electric 

quantity contained in an open-circuit voltage segment of the same span at each stage. When TAB is 

multiplied by the discharge current, the discharge capacity in the range is CAB. The fixed voltage drop 

range of 3.8-3.5V is selected to obtain the comparison curve between CAB and the actual capacity of 

B0005, as shown in Fig.4. It is obvious that TAB is closely related to the actual capacity of the battery. 

Among them, the actual capacity of the battery is measured using the ampere-hour method from the 

current curve in the process of discharge to the cut-off voltage in a full charge state. 
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Figure 4. Curve of CAB and battery capacity as the number of charge and discharge cycles increases 

 

 

To sum up, Vdown and TAB were treated as indirect HI to map the actual capacity of the battery 

through an analysis of the discharge characteristics of the batteries. 

 

2.3. Correlation verification 

In order to validate the HI selection strategy as mentioned above, Grey relation analysis (GRA) 

was conducted to verify the correlation between HI and actual capacity. GRA is a method used to 

measure the degree of correlation among different factors according to the degree of similarity or 

dissimilarity of developmental trend among these factors. The basic idea is to judge whether the sequence 

curves are closely related according to the similarity of their geometric shapes. The closer the curves are, 

the greater the degree of correlation between the corresponding sequences will be; otherwise, the smaller 

the degree of such correlation will be [22]. The specific process is as follows: 

1. The reference sequence y(k) and the comparison sequence x(k) are determined. The actual 

battery capacity is taken as the reference sequence, and the comparison sequence is the HI. 

2. The reference sequence and comparison sequence are standardized to eliminate the differences 

caused by the dimensional differences between data. 

3. The correlation coefficient between the reference sequence and the comparative sequence at 

each moment can be obtained using the following formula: 
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Where,   is the resolution coefficient, generally ranging from 0 to 1, and it is usually 0.5. 

4. The correlation degree r is calculated. Since r is the correlation degree value between the 

comparison sequence and the reference sequence at each moment, the correlation degree can be obtained 

by taking the average value, 


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
N
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1

)(                                      (6) 

Where, N is the length of the reference sequence. 

The correlation of the two selected HIs was calculated respectively, and the results are shown in 

Tab.1. It can be found out that the two HIs selected have a strong or very strong correlation with the 

actual capacity, indicating that the selection strategy of HI as mentioned above is reasonable, and the 

complex trend of degradation of lithium battery capacity is reflected by the multi-scale characteristics. 

 

 

Table 1. Correlation between the indirect HI and actual capacity of the lithium battery 

 

Compare sequence Relevancy (r) 

Vdown 0.539 7 

TAB（3.8-3.5 V） 0.756 5 

 

 

 

3. OPTIMIZE THE SELECTION STRATEGY OF HI 

In the selection strategy of HI, Vdown is selected according to different discharge curves, 10 to 

40s voltage drop after discharge can be used, and the difference of grey correlation is not significant. 

However, the TAB as obtained by selecting different voltage drop segments is different, and the accuracy 

of prediction results obtained by these segments often varies significantly. Therefore, the generalization 

ability of the method with fixed voltage drop segments is limited [22,23]. To solve the above problems, 

e-GA algorithm can be used to select the optimal pressure drop segment and maximize the correlation 

between TAB and battery capacity sequence. 

 

3.1. Analysis of TAB 

By analyzing the curve of Vocv and battery remaining power (SOC), as shown in Fig.5, it can be 

known that when the selected battery voltage drop interval is VA to VB, it becomes VA+IR to VB+IR 

when mapped to open circuit voltage, as 
AV̂   to 

BV̂  , where R is battery internal resistance. The 

conclusions can be drawn as follows. On the one hand, after the discharge voltage drop segment is 

mapped to the open circuit voltage, it will increase as a whole. On the other hand, with the increase of 

battery internal resistance R, the voltage will further increase after mapping. 
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Figure 5. Relation between Vocv and SOC of the lithium battery 

 

 

To sum up, in the case of specified discharge fragments VA-VB, different cycles correspond to 

different open circuit voltage fragments. Therefore, the position mapped to open circuit voltage gradually 

shifts upward with the increase of cycles. The discharge time curves under different voltage drops are 

compared as shown in Fig.6. For the voltage segment of 3.8-3.5V, the voltage moves from the steep part 

in the front of the plateau stage, making TAB decrease with the increase of cycle times, and the curve 

shows a downward trend. For the voltage segment of 3.5-3.2V, the voltage moves in the plateau stage 

and the curve is chaotic. For the voltage segment of 3.0-2.7V, the voltage moves from the steep part 

behind to the plateau stage, and the curve shows an upward trend. It is generally believed in literature 

that TAB would decrease with the increase of the number of cycles [22]. However, three trends of 

discharge time with the number of cycles were obtained through data analysis, which increases the 

comprehensiveness of the analyzed problem and provides a basis for selecting the range of the 

optimization interval. 
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Figure 6. Relation between cycle times and discharge time under different voltage drop segments (a) 

3.8-3.5V, (b) 3.5-3.2V, (c) 3.0-2.7V. 

 

3.2. Optimal voltage drop segment selection 

The selection of the optimal voltage drop segment requires comprehensive consideration, and 

3.8-3.5V is not reasonable. Therefore, in the common voltage range of battery discharge, the correlation 

degree as obtained by GRA is used as the fitness function of e-GA algorithm to obtain the discharge 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 220725 

  

8 

voltage drop fragment VA to VB corresponding to TAB with the most significant correlation with the 

actual capacity sequence of the battery. 

 

3.2.1.e-GA algorithm 

As an improved algorithm of genetic algorithm (GA), e-GA introduces elite selection as the basic 

guarantee of convergence into the optimal solution to optimization problem. If the fitness of the best 

individual of the current population is less than that of the previous generation, the best individual of the 

previous generation or multiple individuals whose fitness is greater than the fitness of the current best 

individual will be replicated, and the corresponding number of individuals in the current population with 

the worst will be randomly replaced. The flow chart of its algorithm is shown in Fig.7. 
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Figure 7. Flow chart of e-GA 

 

3.2.2. Algorithm steps 

1) Coding   

Firstly, the appropriate voltage drop VA-B and the initial voltage VA value range are selected. 

When the value of VA-B is too large, it is the same as the ampere-hour method. If the value of VA-B is too 

small, the outcome of prediction is poor. Therefore, the voltage drop ranges between 0.1V and 0.2V.  

According to the analysis of TAB, the value of VA can be selected in the entire discharge range. However, 

considering the abrupt voltage drop of initial discharge and the common voltage range, the voltage 

segment ranging from 3.75V to 3.2V is finally selected as the search range of the optimal voltage drop 

segment of B0005 battery. Then, VA-B and VA are encoded in a binary way, to generate a sequence 

starting from 0 with a certain step size within the value range of VA-B and VA respectively, and the 

sequence is encoded as binary. The smaller the step size is, the higher the accuracy is. Thus, the step size 

is 0.01V and 0.05V, respectively. 
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Finally, the codes as obtained by VA-B and VA are combined and verified. Through the method 

of VA minus VA-B, the termination voltage VB is obtained. If the value of VB exceeds 3.2V, the test is 

successful. 

2）Optimization 

According to e-GA algorithm and GRA method as fitness function, the following steps are taken 

to find the optimal voltage drop fragments VA and VB: 

1. The first-generation population is generated, and n individuals are randomly coded as the first-

generation population. The number of evolutions k is 0. 

2. Selection: The fitness of each individual and make roulette is calculated according to the 

fitness of each individual to select n individuals for n times. 

3. Crossover: There are n random matches, and the success rate of each match is the crossover 

rate. After successful pairing, the binary numbers at the same position of the two individuals are 

randomly selected for exchange. Then, the two new individuals are tested for coding. If the two new 

individuals fall short of the requirements, the crossover locations are selected again for exchange until 

the test is successful. 

4. Mutation: A position of an individual is randomly selected and the binary number of the 

position is inverted. The new individuals obtained are tested for coding, and those not meeting the 

standards need to be mutated again until the test is successful. Whether variation occurs is related to 

variation rate. At the same time, for the number of evolution k+1, the population becomes k+1 

generation. 

5. Elite strategy: The individuals with the highest fitness in the k generation population are 

replicated to replace the individuals with the lowest fitness in the k+1 generation.   

6. The fitness of the optimal individual and the average fitness of the population are recorded, 

and the number of evolution of the population k is judged. If k falls below the specified number of 

evolution, it returns to the second step and the cycle is continued until the specified number of evolution 

is reached.   

According to the above steps, the population number n was set to 20, the number of evolution 

was set to 100, and the crossover rate and mutation rate were set to 0.4 and 0.1, respectively. The 

relationship between the optimal individual fitness of the population and the evolutionary algebra is 

shown in Fig.8. 
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Figure 8. Population fitness changes during the optimization calculation of e-GA 
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According to Fig.8, the optimal individual fitness as obtained by the e-GA algorithm is 0.873 2, 

that is, the gray correlation between the optimal TAB and the actual capacity of battery B0005 for 167 

cycles, and the corresponding voltage drop range is 3.65V to 3.45V. Compared with 3.8V to 3.5V, the 

correlation increased by 0.116 7. 

 

3.4. Verify the selection strategy for HI 

In order to verify whether the optimized TAB effectively improves the accuracy of prediction, the 

TAB before and after optimization is selected to map the actual capacity of the battery in combination 

with Vdown. The selected training set is NASA B0005 battery. It can be seen from the above section that 

the voltage drop interval of B0005 battery before and after TAB optimization is 3.8 to 3.5V and 3.65 to 

3.45V respectively, Vdown takes the voltage drop after 35s discharge according to the above paragraph, 

and the test set is B0007 battery, which is similar to B0005. The prediction results of (back propagation) 

BP neural network are shown in Fig.9 and Fig.10, respectively. It can be seen from this figure that the 

optimized selection strategy produces significantly better prediction results. 
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Figure 9. Real remaining capacity and the remaining capacity as calculated before optimizing HI 

selection strategy 
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Figure 10. Real remaining capacity and the remaining capacity as calculated after optimizing HI 

selection strategy 
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4. DEGRADATION MODEL BASED ON LSTM 

4.1. Time series characteristics of LSTM 

For the SOH prediction of lithium batteries, due to the capacity regeneration and random 

interference factors in the process of battery use, there is a close relationship between the data of the last 

charge and discharge cycle and the data of the previous several cycles. Therefore, it is very important to 

understand the regularity of time sequence. The LSTM can capture these associations well. 

LSTM is an improved algorithm of recursive neural network (RNN). By introducing three 

"gates" into neurons to control the amount of information retained by the data, the problem of long-term 

dependence in data is solved. These three gates are the input gate, the forgetting gate and the output gate 

[23]. The cell structure of LSTM neuron is shown in Fig.11. 
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Figure 11. Cell structure diagram of LSTM neuron 

 

 

Fig.11 shows the sigmoid activation function, the output of which ranges from 0 to 1, where 0 

means forgetting lost data and 1 means remembering to save data, and this is where "gates" come in. 

The hyperbolic tangent (tanh) function, whose output range is -1 to 1, is a common activation function 

that can restrict data to a certain range. The three gates are generated by three functions respectively, and 

the specific formula is expressed as follows: 

The function of the forgetting gate is to determine how much historical information is discarded 

by the cellular state, 

  fttft bxhWf   ,1                                (7) 

Where, 1th is the output state of the last moment, tx  is the input state of the current moment, fW is 

the weight matrix of forgetting gate, fb  is the amount of bias of forgetting gate, and tf  is the output of 

the forgetting gate. 

The function of the input gate is to determine how much new information is stored in the cell 

state at the moment, 

  itti bxhWti   ,)( 1                              (8) 

  cttct bxhWC   ,tanhˆ
1

                             (9) 
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Where, iW  and ib  are the weight matrix and bias of the input gate respectively, cW  and cb  are the 

weight matrix and bias of cell state respectively, and 
tĈ  is a transient cellular state that extracts 

information from the current moment. 

The cell state update process is shown in Equation (10). The cell state at the last moment 1tC  

passes through the forgetting gate tf , and the transient cell state 
tĈ  passes through the input gate ti . The 

new cell state is obtained by adding the two results. 

ttttt CiCfC ˆ
1  

                                (10) 

The function of the output gate is to control how much information about the cell state affects 

the output value, 

  ottot bxhWO   ,1                              (11) 

 ttt COh tanh                                   (12) 

Where, oW  and ob  are the weight matrix and bias of the output gate respectively, tO  is output 

value of output gate, tC  is the cell state at the current time, and th  is the output of a single LSTM cell. 
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Figure 12. Schematic diagram of gate control device 

 

 

To sum up, the roles played by the three gates of LSTM can be simply shown in Fig.12. LSTM 

can selectively store information because of its gating device, which leads to a good processing effect 

for time series data. Therefore, it is very reasonable to choose LSTM neural network for the SOH 

prediction of batteries. 

 

4.2. Degradation model of lithium battery 

Based on the multi-scale HI selection strategy as proposed above and the LSTM network, which 

has the ability to remember long-term information, a lithium battery degradation model can be 

established by collecting historical battery data under the condition of constant discharge current. The 

model can extract effective information from historical data and predict the next degradation trend of 

batteries. The degradation model of lithium battery can not only estimate the SOH of the battery 

effectively, but also provide strong support for the service life prediction of the battery. The structure of 

a LSTM network is shown in Fig.13. 
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Figure 13. Schematic diagram of LSTM structure 

 

 

The NASA B0005 battery data set under the condition of constant discharge current was selected 

as the research object, and the process of establishing the degradation model of lithium battery is shown 

as follows: 

1) Data set proportion selection. Since the number of cycles in the whole life cycle of B0005 is 

167, the amount of data is small. Besides, the smaller the proportion of training sets, the greater the 

significance of degradation model. Therefore, the proportion of selected data sets is 6:4. That is to say, 

the first 100 are training sets and the last 67 are test sets. 

2) The selection of HIs. According to the HI selection strategy as mentioned above, the voltage 

drop after the initial 35s of the discharge characteristic of B0005 was extracted as HI. Meanwhile, the e-

GA algorithm was used to work out the optimal TAB in the first 100 cycles, as shown in Tab.2. 

 

 

Table 2. Search interval and result of optimal interval of B0005 battery 

 

 Discharge 

interval 

Region of 

search 

Optimal 

interval 

relevancy 

B0005 4.2-2.7V 3.75-3.2V 3.6-3.5V 0.8760 

 

 

 

Table 3. LSTM hyper-parameter selection 

 

hyper-parameter value 

Number of nodes in hidden layer 200 

Number of training 100 

Learning rate 

Activation function of full 

connection layer 

Loss function 

Back propagation algorithm 

The first 30 were 0.005, the rest were 

0.001 

tanh function 

MSE 

Adam algorithm 
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3) The standardization of network input. The HIs of the first 100 cycles were standardized and 

the mean and standard deviations were recorded. 

4) LSTM network configuration. The first 100 times of the two HIs were taken as input, and the 

corresponding actual capacity was taken as output training neural network. Tab.3 shows the hyper-

parameter configuration as determined by the number of data and other factors. 

5) The output of the prediction results. The HIs of the last 67 cycles were standardized according 

to the recorded mean value and standard deviation. Then, they were inputted into the trained neural 

network. The comparison curve between the predicted capacity and the actual capacity obtained is shown 

in Fig.14. 
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Figure 14. Prediction results of B0005 battery degradation model 

 

 

According to the prediction results shown in Fig.14, the prediction accuracy of the lithium battery 

model subsequently constructed is very high, indicating that the battery information extracted by the 

selection strategy of HI is well absorbed by the LSTM network. Notably, the selected time point for 

observing the initial discharge voltage drop is not fixed and it can be adjusted according to the battery 

data and practical conditions. 

 

 

 

5. EXPERIMENTAL SIMULATION 

5.1. NASA lithium battery data set 

NASA lithium battery data set was selected as the experimental object, and it is the commercially 

available 18650 lithium battery data set published by NASA PCoE Laboratory. The data set contains the 

charging, discharge and impedance curves of four lithium-ion batteries (B0005, B0006, B0007 and 

B0018) at room temperature. The four batteries were charged at a constant current of 1.5A until the 

battery voltage reached 4.2V, and then charging continued at a constant voltage until the charge current 

dropped to 20 mA. The discharge test was performed with a constant current of 2A until the voltage of 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 220725 

  

15 

B0005, B0006, B0007 and B0018 dropped to 2.7, 2.5, 2.2 and 2.5 V, respectively [25]. The termination 

condition of the charging-discharge cycle is a 30% reduction in capacity (2 Ah to 1.4 Ah). 

 

5.2. Comparative experiment on the selection strategies of HI 

Based on the NASA lithium battery data set, batteries B0005, B0006, B0007 and B0018 were 

selected as the experimental subjects to compare the prediction results of four batteries given the same 

proportional allocation of training set and test set and the selection strategy of HI. The three specific 

selection strategies of HI are as follows: 

1. For a single HI, the discharge time series of same voltage range TAB was taken as the HI, and 

the range of voltage drop was fixed at 3.8-3.5V. 

2. Based on strategy 1, the initial discharge pressure drop Vdown was added as another HI. 

3. Multiple HIs after optimization. The optimal voltage drop segment for TAB was found on the 

basis of strategy 2, as shown in Tab.4. 

 

Table 4. Search interval and result of optimal interval of four batteries 

 

Batteries Discharge 

interval 

Region of 

search 

Optimal 

interval 

relevancy 

B0005 4.2-2.7V 3.75-3.2V 3.6-3.5V 0.876 0 

B0006 4.2-2.5V 3.75-3.0V 3.7-3.54V 0.857 9 

B0007 4.2-2.2V 3.75-2.8V 3.75-3.56V 0.905 9 

B0018 4.2-2.5V 3.75-3.0V 3.6-3.5V 0.848 0 

 

According to the above-mentioned three selection strategies, LSTM network was used to 

construct a lithium battery degradation model.  For batteries B0005, B0006, and B0007, the first 100 

cycles are the training set and the last 67 cycles are the test set. However, the data of B0018 battery is 

only 130 cycles, so that the first 80 cycles are taken as the training set and the last 50 cycles are treated 

as the test set.  The result of prediction error is shown in Tab.5. 

 

Table 5. Comparison of the estimated errors of remaining capacity of different HI selection strategies 

 

Batteries MAPE of 

strategy 1 (%) 

MAPE of 

strategy 2 (%) 

MAPE of 

strategy 3 (%) 

B0005 0.85 0.62 0.32 

B0006 3.66 2.35 1.33 

B0007 0.95 0.64 0.48 

B0018 0.60 0.51 0.40 

 

 

The prediction results of the last 67 or 50 cycles of the four batteries under strategies 1, 2, and 3 

are shown in Fig.15, 16, 17, and 18, where the black curve indicates the actual battery capacity and the 

red denotes the predicted capacity. It can be seen that the prediction error will decrease with the increase 
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in the number and quality of HIs. The prediction accuracy of the optimized HI selection strategy, namely 

strategy 3, is higher, and the proposed method of SOH estimation has a certain generalization ability. 
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Figure 15. Prediction results of B0005 battery under three HI selection strategies (a) strategy 1, (b) 

strategy 2, (c) strategy 3 
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Figure 16. Prediction results of B0006 battery under three HI selection strategies (a) strategy 1, (b) 

strategy 2, (c) strategy 3 
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Figure 17. Prediction results of B0007 battery under three HI selection strategies (a) strategy 1, (b) 

strategy 2, (c) strategy 3 
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Figure 18. Prediction results of B0018 battery under three HI selection strategies (a) strategy 1, (b) 

strategy 2, (c) strategy 3 

 

5.3. Influence of data set proportion on the experiment 

Since different proportions of training set and test set would have a significant impact on the 

experimental results, strategy 2 and strategy 3 were selected to construct lithium battery degradation 

models given different proportions of training set and test set, so as to further explore the performance 

of the above selection strategies of HI in different proportions of data sets. The specific proportion of 

data set allocation is as follows: 

1) The proportion is about 1:1. The specific proportion of B0005, B0006 and B0007 is 87:80, 

and it is 70:60 for B0018. 

2) The proportion is about 3:2. More specifically, it is 100:67 for B0005, B0006 and B0007, and 

80:50 for B0018. 

3) The proportion is about 5:2. More specifically, it is 120:47 for B0005, B0006 and B0007, and 

100:30 for B0018. 

The obtained prediction results are shown in Tab.6. It can be seen that the error of strategy 3 is 

less significant than that of strategy 2 under different data set proportions, indicating that the excellent 

selection strategy of HI will have a positive impact on the accuracy of prediction under different 

conditions. 

 

Table 6. Estimated errors given different proportions of data set allocation 

 

MAPE 

(%） 

Strategy 3 Strategy 2 

Allocation 1 Allocation 2 Allocation 3 Allocation 1 Allocation 2 Allocation 3 

B0005 0.63 0.32 0.23 1.78 0.62 0.41 

B0006 2.22 1.33 1.01 3.27 2.35 1.77 

B0007 1.32 0.48 0.25 1.36 0.64 0.46 

B0018 0.56 0.40 0.48 0.61 0.51 0.44 

 

5.4. Comparison with other models 

By comparing the algorithms proposed by Li [22] and Chen [23], Table 7 shows the SOH 

prediction errors of different neural network models and HI selection strategies. 
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As shown in Table 7, the MAPE that is based on the LSTM model and combined with an 

optimized multi-scale HI selection strategy was smaller compared to all the other three models even if 

the neural network used by the model is better. By comparison, the HI selection strategy proposed in 

this paper introduced the initial voltage drop as a new HI, and optimized the HI TAB by searching for the 

optimal equal voltage drop interval, which is effective in improving the prediction performance of 

battery SOH. 

 

 

Table 7. Comparison of different SOH prediction models 

 

Battery Neural network Number of 

HI 

Equal voltage drop 

interval 

MAPE(%) 

B0005 LSTM 2 3.6-3.5V 0.32 

B0005 CNN-LSTM [23] 1 3.8-3.5V 0.37 

B0005 Elman [22] 1 3.7-3.5V 0.89 

B0005 BP [22] 1 3.7-3.5V 2.65 

 

 

6. CONCLUSION 

For the accurate SOH estimation under the condition of constant electric lithium battery, an 

analysis was first conducted as to the characteristics of constant discharge current of lithium battery, the 

method of taking the initial discharge voltage drop as the HI was proposed, and the e-GA algorithm was 

applied to select the optimal time interval of an equal discharge voltage difference as the HI for 

verification. Then, the proposed single HI strategy, multiple HI strategy and optimized multiple HI 

strategy were integrated with LSTM neural network to construct a degradation model respectively for 

the prediction of battery SOH. Finally, these strategies were analyzed and compared using NASA lithium 

battery experiment data, which reveals that the optimized selection strategy of multiple HI improved the 

accuracy of prediction and demonstrated a certain generalization ability. This strategy is capable to map 

battery capacity from multi-scale features, solve the problem that single scale features can reflect the 

complex trend of capacity degradation, and optimize the HI by using the historical data of each battery, 

thus improving the generalization ability. 
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