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In order to address issues affecting the estimation accuracy of the state of charge (SOC) in the state of 

health (SOH) of lithium-ion batteries throughout their whole life cycle, this paper proposed a method to 

estimate the SOC of lithium-ion batteries based on the Interacting Multiple Model (IMM). By 

establishing multiple battery models with different degrees of aging in the parallel filtering process of 

IMM, the likelihood function was used to calculate the model probability of a single model. Moreover, 

the state estimates of multiple single models were then fused and output, solving the poor SOC 

estimation accuracy due to battery aging. The method was subsequently verified on multiple sets of 

randomly aging battery data via experimentation, for which the findings indicated that the proposed 

method was able to accurately track battery SOC and perform real-time estimation of battery capacity. 
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1. INTRODUCTION 

 

As a carrier for the storage and transformation of electrical energy, lithium-ion batteries can be 

converted into energy with extremely high efficiency without pollutant emissions, which are currently 

being widely applied in electric vehicles [1,2]. Accurate estimation of the state of lithium-ion batteries 

serves as the basis for ensuring the normal operation of lithium-ion batteries. However, as the number 

of battery cycles increases, the degree of aging also increases, and the internal parameters undergo 

nonlinear changes,which leads to the difficulty of SOC estimation in Battery Life Cycle. Therefore, 

developing a method that is able to accurately estimate the SOC during the entire life cycle of a lithium-

ion battery is necessary. 
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Currently, numerous methods for studying the SOC estimation of lithium-ion batteries exist, 

which can be generally divided into open-loop-based methods, data-driven methods, and model-based 

methods [3]. 

Open loop methods include ampere-hour integration and open circuit voltage [4-7]. Specifically, 

ampere-hour integration is simple to apply and encompasses few calculations. Moreover, it can 

guarantee accuracy when used within a short period of time. However, in this method, the initial value 

of the SOC must be calibrated, where errors can accumulate. The number of errors is relatively large 

under high temperature conditions and severe current fluctuations. Therefore, when used alone, the 

estimation accuracy of this method may not be guaranteed [8]. Meanwhile, the open circuit voltage 

method involves measuring the open circuit voltage of the battery, which then calculates the remaining 

power of the battery through the relationship of OCV-SOC. The calculation is simple to compute, 

however, the open circuit voltage of the battery needs to be measured offline, which is not suitable for 

an actual battery management system [9]. 

The data-driven method is equivalent to a black box model and does not require factoring in the 

relationship between various parameters or an accurate battery model – it only requires a large amount 

of data for learning to complete battery SOC estimation [10,11]. Guo et al.[12] employed a GA-BP 

neural network to train battery data to estimate SOC. Liu et al.[13] combined a BP neural network 

algorithm with a genetic algorithm, which was able to estimate the SOC value of the battery in real-time, 

thereby improving the estimation accuracy of the SOC. In addition, Zhang et al.[14] proposed a sparse 

learning machine method based on the traditional least square support vector machine (LS-SVM) 

formula for the estimation of SOC. Venkatesan et al.[15] adopted six machine learning algorithms (ANN, 

SVM, LR, GPR, EBa and EBo) to estimate the SOC of lithium-ion battery systems in electric vehicles, 

where ANN and GPR were found to be best. However, the above algorithm was took into account a large 

amount of experimental data, had a long computational time and required enough storage space in order 

to attain success. Batteries may not meet the above requirements in actuality, thus restricting data-driven 

methods’ wide application in battery SOC estimation [16]. 

Model-based methods include the electrochemical model and equivalent circuit model. The 

electrochemical model constructs the model by studying the chemical reaction mechanism of the battery, 

which is too complicated and confers high computational costs; thus, it is difficult to be applied 

practically [17,18]. The equivalent circuit model involves constructing basic circuit devices so as to 

simulate the resistance and capacitance characteristics of the battery. Here, the parameters of the device 

in the model have actual physical meanings, reflecting the chemical reactions at different stages within 

the battery. Through the device parameters in the model, the SOC and load, as well as the relationship 

between voltage and load current, can establish the equation of state, which finally estimates the SOC 

of the battery through a filter. This method is simple and practical and has clear physical meaning, high 

accuracy, low complexity, and low cost, which has been widely applied [19]. 

Xia et al.[20] used electrochemical impedance spectroscopy in order to demonstrate that as the 

health and aging level of lithium-ion batteries increases, the series resistance value in the equivalent 

circuit model increases, capacitance value of the CPE (Constant Phase Element) component decreases, 

and model parameters undergo large changes. Chen et al.[21] verified the linear relationship between 

the ohmic internal resistance of the battery and capacity attenuation, in which a battery SOH estimation 
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method was proposed that was based on the relationship between ohmic internal resistance and capacity 

attenuation. Xiong et al.[22] put forward that the battery model parameter set possesses time-varying 

characteristics, that is, when the battery ages, the equivalent circuit model parameters change in a wide 

range. Xia et al.[23] proposed that the zero-crossing frequency of the battery impedance phase can reflect 

the aging state of the battery. Specifically, as the battery ages, its impedance will change significantly. 

The above studies pointed out that as the battery ages, the battery model parameters will change greatly. 

Fang et al.[24] established a second-order equivalent circuit model of a lithium-ion battery, adopted the 

forgetting factor recursive least square algorithm (FFRLS) in completing online parameter identification, 

and used the double extended Kalman filter algorithm (DEKF) to achieve the SOC of estimates. 

Westerhoff et al.[25] estimated the SOC by establishing the relationship between each component and 

SOC in sn equivalent circuit model of a lithium-ion battery. Guo et al.[26] and Huang et al.[27] used the 

second-order equivalent circuit as the battery model, and used the extended Kalman filter (EKF) 

algorithm and improved extended Kalman filter algorithm to estimate the SOC, respectively. Wang et 

al.[28] established a second-order equivalent model of lithium-ion batteries and proposed a method for 

estimating the SOC of lithium-ion batteries based on a weighted adaptive recursive least square method 

and extended Kalman filter. Zhao et al.[29] established the second-order equivalent circuit model of the 

battery through the HPPC method, and then estimated the SOC of the battery through the strong tracking 

Kalman filter algorithm. The above studies, however, did not consider the impact of battery aging on 

equivalent circuit parameters when estimating the SOC. When the battery ages, the parameters of the 

equivalent circuit model will change greatly, resulting in a decrease in the robustness of the SOC 

estimation method and affecting the estimated accuracy of the SOC. In order to address battery aging’s 

impact on the accuracy of SOC estimation, Lee et al.[30] used a multilayer neural network model in 

order to model the SOH neural network, using a multilayer neural network or long and short-term 

memory to estimate the SOC. Although the SOC of the battery can be accurately estimated under 

different aging states, a large amount of training data is required. Moreover, the algorithm is complicated, 

has high calculation costs, and is not suitable for practical applications. Kim et al.[31] established an 

adaptive hybrid battery model that combines the enhanced SOC estimation Coulomb counting algorithm 

as well as the equivalent circuit model. Here, the variable-length sliding window least squares (VSWLS) 

online parameter identification algorithm was used to estimate the battery model. In terms of electrical 

parameters, an adaptive discrete-time sliding-mode observer (ADSMO) was used to estimate the battery 

SOC and SOH, however, it is complicated to model and has low accuracy. Li et al.[32] used a dual 

adaptive extended Kalman filter to estimate the SOC and SOH of the battery. Although the influence of 

aging on the accuracy of SOC estimation was considered, a single model was adopted, the estimation 

accuracy of SOC was low, the algorithm was complicated, and the amount of calculation was large, 

which is not suitable for practical applications. Xia et al.[33] and Xia et al.[34] used the interactive multi-

model-based extended Kalman filter algorithm and the interactive multi-model-based Cubature Kalman 

filter algorithm to estimate the SOC of the battery, respectively. The experimental results show that, 

compared with the traditional extended Kalman filter algorithm and Cubature Kalman filter algorithm, 

the algorithm based on interactive multi-model has higher estimation accuracy in estimating SOC. 

In order to address issues of SOC estimation in the whole life cycle of lithium-ion batteries, this 

paper proposes an SOC estimation algorithm based on the Interacting Multiple Model (IMM) [35]. First, 
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through the FFRLS algorithm, multiple equivalent circuit models of the lithium-ion battery under 

different aging states are obtained to form a battery multi-model simulation system. Each equivalent 

circuit model is described by a strong tracking Kalman filter (STKF), in which all Kalman filters work 

independently and in parallel. The state of the lithium-ion battery is then estimated according to the input 

information, and the probability of each equivalent circuit model is calculated. Through the weighted 

fusion of information, the estimated values of SOC and SOH in the current state of the battery can be 

calculated while simultaneously calculating the estimated values of the state variables of the battery 

simulation system at the current time. The model probability as well as the estimated value of the state 

variable at the current moment are subsequently fed back to the input terminal, and the input information 

is then interactively updated by the Markov chain. As the battery runs cyclically, the proposed IMM 

algorithm is shown to accurately estimate the SOC value throughout the battery's full life cycle. The 

innovations of the proposed algorithm for the life cycle SOC estimation of lithium-ion batteries are: 

1) In IMM, the Markov transition probability matrix controls the conversion and information 

interaction between the aging models. The difference between the measured and estimated values of 

each aging model is the residual, and the probability of the current battery matching each model can be 

then calculated based on the residual. The probability is called the model probability, and then the state 

estimation value and corresponding model probability are weighted and fused to output to remedy the 

decline in SOC estimation accuracy due to battery aging. 

2) IMM integrates the output of each filter in order to estimate battery SOC and accurately 

estimates the maximum usable capacity of the battery, which is able to perform accurate tracking of the 

battery SOC as well as real-time estimation of battery capacity. 

3) Compared with EKF and UKF, STKF produces smaller approximation errors when dealing 

with nonlinear systems, improves the robustness of the model, and has a strong ability to track slow and 

sudden changes, which makes it very suitable for combination with IMM as the filtering algorithm for 

battery SOC estimation. 

The overall structure of the article is organized as follows: 

The second-order RC equivalent circuit model is established in Section 2, after which the method 

of parameter identification used in the model is introduced. The third section specifically elaborates the 

SOC estimation algorithm of IMM in the battery life cycle. The fourth section outlines experiments that 

verified the advantages of the proposed algorithm in the SOC estimation accuracy and estimation speed 

during the battery life cycle. The fifth section summarizes the main conclusions of this article. 

 

 

2. BATTERY EQUIVALENT CIRCUIT MODEL AND PARAMETER IDENTIFICATION
 

2.1 Establishment of an equivalent circuit model 

Investigating the external characteristics of the battery during operation by modeling the battery, 

which also serves as the basis in estimating battery SOC and SOH. Battery models can be divided into 

equivalent circuit models, data-driven models and electrochemical models [36,37]. Numerous 

considerations are taken into account in electrochemical modeling. The complexity of the model is high, 

which is difficult to realize in engineering. Generally, it is only used as a means of battery performance 
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analysis. In terms of data-driven modeling, a large amount of experimental data is required, the number 

of calculations is large, and the network parameter selection and accuracy of training samples are 

extremely dependent. In addition, the training method has a significant influence on the error. The 

equivalent circuit model is able to systematically reflect the working characteristics of the battery with 

low complexity, low difficulty, easy calculation, and feasible application in engineering. Currently, 

commonly used equivalent circuit models of lithium-ion batteries include the Rint model, Thevenin 

model, PNGV model, Randles model and RC model [38].The Rint model is the simplest equivalent 

circuit model, which is composed of an ohmic internal resistance R0 and constant voltage source Uoc in 

series. It is difficult to accurately describe the nonlinear output characteristics of lithium-ion batteries 

with low accuracy [39]. The Thevenin model is based on the Rint model and has a RC loop connected 

in series that is used to simulate the polarization of the battery; however, the accuracy of the first-order 

RC circuit is poor, hence, the second-order equivalent circuit model is usually used [40]. Shrivastava et 

al.[41] introduced a second-order RC model composed of two sets of RCs as well as a resistor in series, 

which also considered the influence of concentration polarization. Accordingly, the simulation accuracy 

was found to be higher, while the characteristics were shown to be closer to those of a real battery. 

Newman et al.[42] put forward that calculating the second-order equivalent circuit model is moderate, 

the model accuracy is high, and it is closer to the real battery characteristics. Considering the accuracy 

and computational complexity of the battery model, this paper adopted the second-order RC equivalent 

circuit model as the battery model, which is depicted below. 

 

1R 2R
0R

1C 2C
tV

1V 2V

OCVV

LI

 
 

Figure 1. Second Order RC equivalent circuit diagram. 

 

 

As shown in Fig. 1, 0R  stands for the internal ohmic resistance of the battery,  OCVV  is the open-

circuit voltage of the battery, 1C , 2C  are the capacitor which are representation of the polarization effects,

1R , 2R  are the resistance which are representation of the polarization effects, tV  is the battery terminal 

voltage, and LI  is the charging current or discharging current. 

According to the second-order RC equivalent circuit model of the battery, the terminal voltage 

of the battery is: 

OCVLt VVVRIV  210                          (1)
 

LI   is negative when the battery is discharging and positive when charging. The voltages across 

capacitors  1C  and 2C  are: 
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SOC calculation formula is: 

)()(SOC(0)SOC tdtI
Q

o

L

r






                     (4) 

SOC(0)  is the initial state of SOC, then    is the Coulombic efficiency and rQ  is the rated 

capacity of the battery. 

The open circuit voltage OCVV  of the battery is basically equal to the electromotive force of the 

battery, and it has a functional relationship with the battery SOC, It could be expressed as: 

)(SOCfVOCV                             (5) 

In this paper, a constant current discharge method is used to perform the 10th-order data with 

SOC, and the equation is as follows: 

SOCaSOCaSOCaSOCaSOCa

SOCaSOCaSOCaSOCaSOCaaVocv

10

2

9

3

8

4

7

5

6

6

5

7

4

8

3

9

2

10

10





            

(6) 

The SOC-OCVV curve is fitted according to the above formula (6), as shown in Fig. 2. As battery 

operating conditions change, there are some changes about the trend of the OCV-SOC of the battery. 

Accordingly, the coefficients in equation (6) need to be updated to further modify the parameters of the 

equivalent circuit. 

 

 
 

Figure 2. VOCV-SOC fitting curve. 

 

 

Discretize (1), (2), (3)and (4) to obtain the battery state equation and measurement equation as 

follows: 
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where, )(, kkOCV SOCfV  . 

The control variable is 
kLI ,
 , the observation variable is 

kZ  , and the state variable is 

 kkkk VVSOCX ,2,1
.
 

The system state equation and measurement equation of the battery model are: 

 

1 1 1 1 1 1 1 1 1( , )
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            (9) 

where 
1

j

kX 
 is the state variable of the system, 

k  is the control variable of the system, f  and 

h   are nonlinear functions,
kZ   represents the observation variable of the system,

kv  and j

kw   are the 

measurement noise and process noise of the system, respectively, both of which conform to Gaussian 

distribution. Additionally, the variance is kR and kQ , respectively. 

By comparing (7) ,(8) and (9), each coefficient can be determined: 
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2.2 Parameter identification 

Parameter identification methods of the lithium-ion battery equivalent circuit model are divided 

into offline identification and online identification [43]. Lithium-ion batteries have very obvious 

nonlinear characteristics during the charge and discharge processes. Moreover, parameters in the second-

order equivalent circuit model vary with the number of cycles, charge and discharge current, temperature, 

SOC and SOH, which adopt fixed model parameters. Accordingly, in order to estimate the SOC of the 

battery, the errors will continue to increase [44]. Therefore, the offline method cannot be used to identify 

the parameters of the model. In order to be able to track and correct the model parameters in real time, 

this paper adopted the Recursive Least Squares Method based on the forgetting factor to identify the 

model parameters online[45]. The recursive least squares algorithm does not require storage of all 

monitoring data; rather, it can be estimated online. Adding the forgetting factor may result in the 

reduction of the influence of old data on the result, which is relatively stable in correcting parameter 

estimation and encompasses a small amount of calculation, thus improving the identification result with 

better accuracy and in real-time [46-48]. Therefore, this paper used FFRLS to identify the battery model 

parameter 0 1 2 1 2, , , ,R R R C C . 

 ])1()1()[1()()1( ）（kkkykKkK T 


              (10)     
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1)]1()()1()[1()()1(  KkPkKkPkK T               (11)        

1
( 1) [ ( 1) ( 1)] ( )TP k I K k k P k


                       (12) 

In the above formulae, ( )K k  represents the gain matrix, ( )y k  represents the output k-th 

observation matrix, ( )P k  represents the covariance matrix of the k-th calculation, ( )k   represents the 

observation vector, I represents the identity matrix, and ( )k represents the parameter matrix that needs 

to be identified in the model. is the forgetting factor, for which its value range is generally [0.95,1] 

[49], which is  =0.984 in the paper. 

According to the second-order RC equivalent circuit shown in Fig. 1, the input of the battery 

multi-model simulation system was the terminal current 
kLI ,

; the output 
ktV ,
 was the difference between 

the open-circuit voltage )(kVOCV
 and the load voltage ( )mV k  (where m = 1, 2). )(kVOCV

was gained from 

equation (6) above. 

According to Laplace transform and Kirchhoff's voltage law, the formula for the complex 

frequency domain of the battery open circuit voltage was: 

1 2
0

1 1 2 2
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1 1

OCV L m
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V I k R V k

R C S R C S
   

                  (13) 

Where, 1 1 1RC  , 2 2 2R C  ; 1 , 2  were the polarization time constant and concentration time 

constant respectively. 
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where T  represented the sampling period, T =1 second. 

Combine the above formulas (16) and (17) : 
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By sorting out (19): 
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The parameters of the battery second-order equivalent circuit model can be expressed by the 

following formula (21): 

ˆ( ) ( ) ( )T

mV k k k                             (21) 

where, 1 2 3 4 5[     ]k k k k k  ,  ( ) [ ( 1)  ( 2)  ( )  ( 1)]T

m m L Lk V k V k I k I k     .  

According to the above formulas (19)-(21), various parameters of the battery model can be 

obtained. 

In order to verify the performance of the FFRLS identification circuit model parameters proposed 

in this paper, experiments were performed under BBDST (Beijing bus dynamic stress test) conditions 

for verification purposes. First, the current in working conditions was used as the excitation, and the 

estimated value of the terminal voltage output by the model and actual value of the terminal voltage 

output by the battery were then selected as the comparison value. Fig. 3 shows the results of the 

parameter identification, and the experiment lasted for 3000s. According to Fig.3, at the beginning and 

end of the experiment, the error of the terminal voltage was noted to be large, the change in the middle 

process was relatively stable, and the error was small. The maximum error reached 38.5mV, which was 
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only 1.2% of the rated voltage. During the whole experiment, the root mean square error and average 

absolute error of the terminal voltage were 21.9mV and 20.5mV, respectively. 

 

 

 

Figure 3. BBDST experiment: (a) BBDST current curve; (b) comparison curve between model output 

terminal voltage and battery output terminal voltage; (c) error curve of voltage at both ends. 

 

The BBDST experiment demonstrated that FFRLS was able to accurately predict the model 

parameters, and the error was small, which did not appear to increase over time. Therefore, parameter 

identification based on FFRLS has better robustness and can make the battery run stably in different 

working environments. By identifying the parameters of the battery model under different aging states, 

the second-order equivalent circuit model of the battery under the corresponding state can be obtained. 

 

 

 

3. SOC ESTIMATION ALGORITHM BASED ON INTERACTIVE MULTIPLE MODELS 

The interactive multi-model estimation theory uses a set of filters that are independent and work 

in parallel. Each filter represents a different aging model of the battery that estimates battery state from 

system inputs and measured variables in order to obtain the estimated SOC and SOH output by the model. 

They are then weighted and fused with the estimated state value as well as the corresponding model 

probability so as to obtain an accurate estimation of battery SOC and SOH. The  information interactions 

and conversion between the equivalent circuit models are determined by a Markov transition probability 

matrix (TPM) [50]. The difference between the actual and estimated values of the aging model is the 

residual, and the probability of the current battery matching the model is calculated based on the residual. 

This probability is called the model probability [51,52]. 

Fig. 4 below represents the flow chart of the interactive multi-model (IMM) algorithm. IMM 

assumed that the battery has j  battery aging models to form a set { STKF1,STKF2,STKF3, ,STKFj }… . 

Each filter represented an aging model, and each aging model is able to estimate the SOC value of the 
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target according to the input and measurement information of the system in order to obtain an estimated 

SOC value. At the same time, an observation equation coefficient matrix j

kc   and residual j

kr   were 

generated. Then, according to j

kc  and j

kr , the matching probability of the actual state of the battery with 

each circuit model was determined, thus providing an estimate of SOC and SOH. 

 

 

Initial battery state 

variables

Aging model 3

STKF3

Aging model j

STKFj

Aging model 2

STKF2
...

Input state 

variables of 

each model

Model 

residuals and 

observation 

coefficients
Estimated values of state 

variables of each model at the 

current moment

Input information 

interaction

Battery terminal 

voltage measurement 

value

Aging model 1

STKF1

Model 

probability 

calculation

Weighted fusion of 

output information

Estimated value of state variable at 

current moment

SOC,Maximum usable 

capacity

SOC,SOH
 

 

Figure 4. IMM algorithm flow chart. 

 

The system state equation and measurement equation of the j-th aging model are: 

1 1 1 1( , )

( , )

j j j j

k k k k k

j j

k k k k k

X f X w

Z h X v

   
   


  

                     (22) 

Each model possessed a separate filter to represent its state. IMM controls the transformation and 

information exchange between various models through a Markov TPM. The TPM composed of the j 

aging model in the battery multi-model simulation system can be expressed as: 

={ }ij

l l                                 (23) 

{ ( ) | ( 1) }, , {1,2,... }ij

j iP m k m m k m i j l                     (24) 

1

1, 0 1
m

ij

ij

j

 


                           (25) 

Among them, the main diagonal element of    is the model probability, and the non-main 

diagonal element is the mixed probability. 
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The IMM algorithm is mainly divided into four parts: input interaction, parallel filtering, model 

probability calculation and fusion output [53]. 

 

3.1 Input interaction. 

The ordinary Kalman Filter algorithm directly uses the filtering result of the previous moment as 

the input value of the current moment, but the IMM algorithm interacts the filtering results of the 

previous moment, and then uses the interactive result as the input value of the aging model at the current 

moment. The TPM guided the input information of each model to interact according to the rules in 

equations (26) and (27), and also determined the transformation between models. 

State estimate update: 

0

1| 1 1| 1 1| 1

1

ˆ ˆ
l

j i ij

k k k k k k

i

X X      




                       

(26) 

Covariance update: 

  0 0 0

1| 1 1| 1 1| 1 1| 1 1| 1 1| 1 1| 1

1

ˆ ˆ ˆ ˆ
l T

j ij i i j i j

k k k k k k k k k k k k k k

i

P P X X X X             



    
  

       (27) 

0

1| 1

j

k kP  
is the updated covariance, 0

1| 1
ˆ j

k kX   is the updated state estimate, and 1| 1

ij

k k   is the mixed 

probability of other models transferring to model STKFi . The formula can be expressed as: 

1| 1 1

1

1

/ij ij i

k k k j

r
ij i

j k

i

c

c

  

 

  





 







                          (28) 

where 1

i

k   is the model probability of model STKFi  at time 1k  .
jc  represents the predicted 

probability of the model STKFj. 

 

3.2 Parallel filtering 

Each strong tracking Kalman filter(STKF) in the IMM worked in parallel and independently. 

Each STKF represented an aging model and estimated the state of the battery based on system 

measurements and input variables. When the battery aging situation is altered, its model parameters 

changes accordingly, which can be directly reflected in the battery terminal voltage. Therefore, achieving 

accurate estimation of battery SOC may accurately estimate the battery terminal voltage. Compared with 

EKF and UFK, STKF produces smaller approximation errors when dealing with nonlinear systems and 

introduces a time-varying fading factor in order to force the residuals to be orthogonal, thereby 

improving the robustness of the model. The ability to track slow changes and sudden changes has been 

demonstrated to be extremely strong [54,55]. Therefore, STKF can be quite suitable for use as a filtering 

algorithm in battery SOC estimation. 

Tailor expansion was performed according to the functions 1 1 1( , )j j

k k kf X    and ( , )j j

k k kh X   in 

the STKFj model given by equation (22), where the first and zeroth order terms were kept in order to 
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obtain: 

1 1

1 1

1 1 1
ˆ1 1 1 1 1 1 1 1

1

ˆ 1 1

ˆ( , )ˆ ˆ( , ) ( , )+ | ( )

ˆ( , )ˆ ˆ( , ) ( , ) | ( )

j j
k k

j j
k k

j j
j j j j j jk k k

k k k k k k k kj X X
k

j j
j j j j j jk k k

k k k k k k k kj X X
k

f X
f X f X X X

X

h X
h X h X X X

X

 

 

  
       



 

  
   




 
    

       

(29) 

Simplifying the above expression: 

ˆ

ˆ( , )
| j j

k k

j j
j k k k

k j X X
k

f X
A

X 

 



,

1 1
ˆ

ˆ( , )
| j j

k k

j j
j k k k

k j X X
k

h X
C

X  

 


                

(30) 

Then, equation (22) can be expressed as: 

1 1 1 1 1 1
ˆ ˆ( , )

ˆ ˆ( , )

     
     


    

j j j j j j j j

k k k k k k k k k

j j j j j j

k k k k k k k k k

X A X f X A X w

Z C X h X C X v
                (31) 

For the nonlinear system corresponding to equation (22), the designed strong tracking Kalman 

filter is: 

1
ˆ ˆj j j j

k k k kX X L r                              (32) 

in: 

ˆ( , )j j j

k k k k kr Z h X                            (33) 

In this paper, j

kr  referred to the terminal voltage residual of the battery under the j  model, from 

which the model parameter information of the battery can be extracted to determine the state information 

of the battery. If the output of one of the aging models exactly matched the output of the actual system, 

a residual with a zero-mean value was generated. If incorrect, the battery system operated in this aging 

state so as to determine the estimated SOC. If the output of one of the aging models was unable to 

completely match the output of the actual system, a non-zero residual error was generated. The residual 

value j

kr  and observation matrix j

kC  can determine the matching probability of the model as well as the 

actual situation of the current battery, after which it can ascertain the estimated value of SOC. Following 

determination of the SOC value of each model, IMM adopted a method based on model probability in 

order to estimate SOC and battery capacity. The estimation of SOC and battery capacity is introduced in 

the following section. 

STKF achieved strong tracking characteristics by determining the gain matrix 
j

kL  online, which 

required 
j

kL  to satisfy equation (34): 

ˆ ˆ[( )][( ) ] min

[ ( ) ] 0

j j j j T

k k k k

j j T

k k

E X X X X

E r r

   




                   (34) 

Equation (34) indicated that when the difference between the actual value and the estimated state 

value was large, 
j

kL  needed to be determined online. This ensured that the residuals were orthogonal, 

and can achieve error-free tracking of the system. If the difference between the actual value and the state 

estimated value was small, then STKF degenerated to EKF. In this way,  the amount of calculation of 

STKF was also more moderate. 

Equation (35) was the error covariance matrix: 

1 1 1 1

j j j j j j

k k k k k kP A P A Q                              (35) 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 220665 

  

14 

j

k  was the fading factor, and 1j

k  . 

The fading factor was solved: 

, 1

1, 1

j j

k kj

k j

k

e e

e



 



＞
                            (36) 

Where = ( ) / ( )j j j

k k ke tr N tr M , j

kN  and j

kM  were defined as: 

0, 1

1 1 1

( )

( ) ( )

j j j j j j T

k k k k k k

j j j j j T j T

k k k k k k

N E R C Q C

M C A P A C

 

  

   




                  (37) 

In the above formula, the calculation formula of the residual covariance matrix 
0,

j

kE  was: 

1 1

0, 0, 1

( ) ( 1)

( )
( 1)

1

j j T

j j j j T
k k k k

r r k

E E r r
k







 


  




                 (38) 

  was the forgetting factor,   was the weakening factor, and 1  . 

Thus, the Kalman gain matrix was: 

 
1( ) [ ( ) ] j j j T j j j T

k k k k k k kL P C C P C R                    (39) 

The error covariance update matrix was: 

1( )j j

k k k kP I L C P                           (40) 

where I  was the identity matrix. 

 

3.3 Model probability calculation 

The estimation of SOC and SOH was determined by the model probability j

k  . The model 

probability j

k   was updated according to the likelihood function method, in which the likelihood 

function of the model STKFj  is: 

  -11
( )

2

1/2
/22

T
j j j

k k kr r S

j

k
n j

k

e

S



 

                             

 (41) 

in: 

| 1( )

ˆ( , )

j j j j T j

k k k k k k

j j j

k k k k k

S C P C Q

r Z h X


  


  
                           (42) 

Then, the model probability of the updated model STKFj  is: 

1

j

k jj

k r
j

k j

j

c

c









                                 (43) 

The value of the probability j

k  of each model represented its matching degree with the current 

calculation model. The probability of each model interacted with the estimated value of the model in 

order to obtain the final estimate of SOC and battery capacity. 

Combining equation (28) and equation (43), model probability j

k  was shown to determine the 
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estimation result of SOC and battery capacity, while mixing probability 1| 1

ij

k k    determined the mixing 

of input information, thereby affecting residual j

kr  . Meanwhile, j

k   and 1| 1

ij

k k     were determined by 

TPM. Since the TPM only carries a small amount of model history information in order to carry out 

rapid model response conversion. This can result in the reduction of delays in SOC and SOH estimation. 

 

3.4 Fusion output 

Weighted merging of the model probabilities with the estimates for each filter to obtain: 

The estimated state of the system is： 

| |

1

ˆ ˆ 



j

i i

k k k k k

i

X X                            (44) 

The state estimate variance of the fusion is: 
 

| | | | | |

1

ˆ ˆ ˆ ˆ[ ( )( ) ]


   
j

i i i i T

k k k k k k k k k k k k k

i

P P X X X X                 (45) 

The battery capacity after fusion is: 

NOW

1

j
i

i k

i

Q Q 


                          (46) 

That is, the battery SOH after fusion is: 

NOW

NEW

100%
Q

SOH
Q

                         (47) 

NOWQ  is the maximum usable capacity of the new battery. 

The IMM algorithm cycle illustrates that the SOC estimation algorithm for the full life cycle of 

lithium-ion battery based on interactive multi-model was based on the current situation of the battery as 

well as the matching of each circuit in the battery multi-model simulation system, resulting in the final 

estimation of the state of the battery. Since the algorithm considered the historical information of the 

model at the current filtering time, it also mixed previous estimation information at the beginning of 

each cycle, avoiding defects pertaining to the complexity of the optimal estimation method that 

exponentially increased with time, which was deemed to be a positive change. This serves as a main 

difference in regard to interactive multi-model estimation compared to that of other estimation methods 

[56]. 

The proposed algorithm can be summarized according to the following. All models were first 

initialized, for which the initialization parameters included TPM
ij  , the probability matrix  i

k   and 

covariance matrix j

kP  of the model, the coefficient A, B, C of the nonlinear equation and the parameters 

of the battery multi-model simulation system. Then, the inputted initial values of the state variables were 

used to obtain the weighted and fused SOC and SOH estimations through the IMM algorithm. Finally, 

the information at the current moment was fed back to the input terminal for state estimation at the next 

moment. 
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4. EXPERIMENTAL RESEARCH 

The experimental object was Cylindrical Lithium-ion Cell model LR18650EH. Table Ⅰ below 

shows the specific parameters of the battery. The experimental equipment was a battery cycle charger 

with the model LBT5V30A produced by Arbin. It can work normally in the range of -30A~30A and -

5V~5V, the battery cycle charger and the experimental battery are shown in Fig. 5. 

  

          
 

Figure 5. The battery cycle charger and battery. 

 

 

Table I. Specific parameters of LR18650EH  cell 

 

No. Item Specificaiton 

1 

2 

3 

4 

5 

6 

 

Weight 

 Rated Capacity 

Rated Voltage 

Voltage limit 

Maximum Charge Current 

Operating Temperature 

40±2.0g 

1600mAh 

3.2V  

2.0V~3.65V 

1.0 C 

-20℃~ 60℃ 

 

In order to verify the effectiveness of the proposed method for estimating the SOC for the entire 

life cycle of lithium-ion batteries, LR18650EH batteries with different degrees of aging were selected as 

the research object, regardless of the impact of temperature on the battery. In doing so, by using 1C 

current to charge and discharge the battery in cycles, batteries with different aging states can be obtained. 

Considering that the battery model parameters change slowly during the charging and 

discharging experiments, the parameters were identified once every 50 cycles for a total of 50 times. The 

parameter identification method was previously outlined in section 2.2. Different model parameters 

represent different aging states of the battery. Therefore, models of different aging states in the full life 

cycle of the battery can be obtained. Considering the complexity of the Algorithm and the estimation 

precision of SOC, the experiment took 4 aging models, which are SOH = 100% circuit model, SOH = 

70% circuit model, SOH = 40% circuit model, SOH = 10% circuit model, I. E. j = 4 in Fig. 4. 

This study conducted two sets of experiments to verify the effectiveness of the IMM-STKF 
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algorithm: (a) experiments under HPPC conditions; and (b) experiments under DST conditions. In these 

experiments, the STKE algorithm proposed in the literature [29] was introduced for comparison, after 

which the SOC estimation effect of the two algorithms was observed. 

 

4.1. Verifying the experimental results under HPPC working conditions 

In this study, a battery with a rated capacity of 1600mAh was attenuated to 1450mAh for 6200s 

using Hybrid Pulse Power Characteristic (HPPC) experiments to verify the effectiveness of the algorithm. 

The current and voltage data obtained by the lithium-ion battery HPPC experiment are shown in 

Fig. 6. The battery was discharged with a current of 1C for 60 seconds, which was then rested for 61 

seconds. A total of 50 cycles were performed. The parameters identified in this process were used as the 

model parameters. Fig. 7 depicts the voltage error curve, in which the identified voltage root mean square 

error (Root mean square error, RMSE) was found to be 2.45 mV, and the mean absolute error (MAE) 

was 2.1813 mV. The FFRLS algorithm was shown to have a very high parameter identification accuracy. 

Fig. 8 illustrates the SOC estimation results based on IMM-STKF and ordinary STKF, while Fig. 9 

shows the SOC estimation error curve. The RMSE of STKF and IMM-STKF were observed to be 1.05% 

and 0.25%, respectively, while the MAE of STKF and IMM-STKF were 0.82% and 0.20%, respectively. 

Table Ⅱ show that the IMM-STKF algorithm proposed in this paper had higher estimation accuracy than 

the STKF algorithm proposed in the literature [29]. Fig .10 represents the capacity estimation curve, 

where the initial error was shown to be 150mAh. When the charge and discharge current was 0, the 

capacity was unable to be corrected. With the associated iteration, the maximum usable capacity was 

better estimated. The corresponding SOH value was obtained through the definition of SOH, as shown 

in Fig. 11. As shown in Figs. 8, 9 and 11, when the battery just began to discharge, the estimation 

accuracy of SOC and SOH were found to be low, and the estimation accuracy of them rose over time. 

Therefore, the estimation algorithm based on IMM-STKF was able to perform SOC estimation in the 

battery life cycle. 

2

1

( )
n

i i

i

p a

RMSE
n








                           (48)  

1

| |
n

i i

i

a p

MSE
n








                             (49) 

In the above formula: a=actual target; p=predicted target. 
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Figure 6. HPPC experiment: (a) current curve; (b) voltage curve. 

 

 
 

Figure 7. The voltage error curve of the HPPC experiment. 

 

 
 

Figure 8. SOC estimation result of HPPC experiment. 
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Figure 9. SOC estimation error of HPPC experiment. 

 

 
 

Figure 10. Estimation of the maximum usable capacity of the HPPC experiment. 

 

 
 

Figure 11. SOH estimation result of HPPC experiment. 
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4.2. Verifying experimental results under DST conditions 

In order to further verify the effectiveness of the algorithm, a 16000s dynamic stress test (DST) 

experiment was performed on a battery with a rated capacity of 1600mAh attenuated to 1400mAh. 

The current and voltage data obtained by the DST experiment of lithium-ion batteries are shown 

in Fig. 12, for which the parameters identified in this process were used as the model parameters. The 

voltage error curve is shown in Fig. 13, where the RMSE of the actual voltage and the identification 

voltage was 3.02mV, while the MAE was 2.61mV. The FFRLS algorithm was demonstrated to have a 

high parameter identification accuracy for the DST operating condition experiments of the battery. The 

SOC estimation results based on IMM-STKF and ordinary STKF are shown in Fig. 14, for which the 

SOC estimation error is shown in Fig. 15. The RMSE of STKF and IMM-STKF were noted to be 1.11% 

and 0.23%, respectively, while the MAE of STKF and IMM-STKF were 0.96% and 0.19%, respectively. 

Table Ⅱ show that the IMM-STKF algorithm proposed in this paper had higher estimation accuracy than 

the STKF algorithm proposed in the literature [29]. Fig. 16 depicts the capacity estimation curve, where 

initial error was recorded to be 200mAh. When the charge and discharge current was 0, the capacity was 

unable to be corrected. With the battery was charged and discharged, the maximum usable capacity was 

estimated. The corresponding SOH value was obtained through the definition of SOH, as shown in Fig. 

17. Figs. 13, 14 and 17, show that when the battery just began to discharge, the estimation accuracy of 

SOC and SOH were low, and the estimation accuracy of them rose over time. Therefore, the estimation 

algorithm based on IMM-STKF can carry out SOC estimation in the battery life cycle. 

 

 
 

Figure 12. DST experiment: (a) current curve; (b) voltage curve. 
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Figure 13. Voltage error curve of DST experiment. 

 

 
 

Figure 14. SOC estimation result of DST experiment. 

 

 
 

Figure 15. SOC estimation error of DST experiment. 
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Figure 16. Estimation of the maximum usable capacity of the DST experiment. 

 

 

 
 

Figure 17. SOH estimation result of DST experiment. 

 

 

Table Ⅱ. Errors of SOC estimation results 

 

Algorithm           HPPC                        DST 

MAE   RMSE              MAE  RMSE 

STKF(%)       0.82      1.05                0.96      1.11 

IMM-STKF(%)    0.20      0.25                0.19      0.23 
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5. CONCLUSION 

In order to address difficulties in accurately estimating the SOC during the entire life cycle of 

lithium-ion batteries, this paper proposed an interactive multi-model-based SOC estimation algorithm 

for lithium-ion batteries, and the accurate estimation of SOC in the whole life cycle of the battery was 

realized by combining with STKF. The proposed algorithm introduced an IMM-compliant TPM in order 

to enable the real-time interaction of input information for each aging model. In addition, the output 

terminal inputted the updated probability information of each aging model to the input terminal of the 

filter according to the TPM, thus improving the accuracy of SOC estimation. In terms of the STKF and 

IMM-STKF algorithms, both were shown to be able to estimate SOC, however, their estimation accuracy 

differed. Specifically, the IMM-STKF algorithm was shown to possess a higher estimation accuracy. 

During the HPPC experiment, according to the STKF algorithm, the MAE of the SOC was estimated to 

be 0.82%, while the RMSE was 1.05%. Moreover, based on the IMM-STKF algorithm, the MAE of the 

SOC was estimated to be 0.20%, while the RMSE was 0.25%. In the DST experiment, in light of the 

STKF algorithm, the SOC MAE was estimated to be 0.96%, while the RMSE was 1.11%. Finally, in 

terms of the IMM-STKF algorithm, the SOC MAE was estimated to be 0.19%, while the RMSE was 

0.23%. The corresponding findings of this study clearly shows that the IMM-STKF algorithm can better 

estimate the SOC of the battery under different working conditions. In addition, the IMM-STKF 

algorithm can estimate the SOH of the battery while estimating the SOC, thus attaining SOC estimation 

of the whole life cycle of the lithium-ion battery. Therefore, the IMM-STKF algorithm can accurately 

estimate the SOC during the full life cycle of the battery. 
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