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State-of-charge of lithium-ion batteries is one significant state parameter for battery management system 

monitoring. To accurately estimate the state-of-charge in real time, a novel BCRLS-BP-EKF method is 

proposed innovatively. Based on FFRLS algorithm, bias compensation is added to better capture the 

real-time operating characteristics of the system. To modify the model error of EKF algorithm, BP neural 

network is introduced, which has powerful nonlinear mapping and self-learning ability. The estimation 

error of EKF can be corrected by its learning and training relevant parameters that affect the estimation 

value of filtering. The data of different complex working conditions are used to verify the feasibility and 

rationality of the proposed algorithm by building a second-order RC equivalent circuit model. The results 

show that the root mean square error of the novel BCRLS-BP-EKF method under HPPC and BBDST 

operating condition can be controlled within 0.11% and 1.41% in state-of-charge estimation, which 

verifies that the proposed algorithm in this research has high precision and convergence characteristics. 

The novel BCRLS-BP-EKF method lays a theoretical foundation for accurate state estimation of lithium-

ion batteries, which will effectively improve the security and reliability of electric vehicles. 
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1. INTRODUCTION 

 

With the emergence of global warming and various extreme weather, the problem of climate 

change and the shortage of energy supply has once again attracted widespread attention in society. 

Electric vehicles have the advantages of low noise, low pollution, low cost, easy maintenance and other 

advantages, which have gradually become a necessary vehicle for people's daily travel [1-3]. The 

lithium-ion battery has been widely applied in electric vehicles on account of long cycle life, high energy 

density, high rated voltage and low self-discharge rate [4, 5]. State of Charge (SOC) is one of the 

important indicators to measure the state of the battery. Accurate and real-time estimation of SOC is an 
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important premise to ensure the safety and health of the battery, as well as the necessary basis to ensure 

the safety of electric vehicles [6-8]. 

The commonly used SOC estimation algorithms include traditional estimation method, model-

based method and data-driven method [9, 10]. Traditional estimation methods include ampere-hour (Ah) 

integration, open-circuit voltage (OCV) method and internal resistance method [11-13]. Model-based 

estimation methods are widely used at present, which are usually combined with equivalent circuit 

models and various filtering algorithms to estimate state variables [14]. Among them, Kalman filter 

algorithm is the most widely used, its core idea is to make the optimal estimation of the state of the 

system in the sense of minimum variance [15]. To better adapt to the nonlinear system of battery, the 

extended Kalman filter (EKF) algorithm and the unscented Kalman filter (UKF) algorithm are proposed 

[16-18]. However, considering the defects of various Kalman algorithms, there is still much room for 

improvement. The data-driven method is a hot topic and trend of current research [19, 20]. Due to the 

complex internal structure of lithium battery, it has strong nonlinear behavior. However, this method 

ignores the chemical and physical reactions inside the battery, thus avoiding battery modeling, but its 

physical significance is not obvious and it lacks effective theoretical support. The back propagation (BP)  

neural network has a strong nonlinear mapping ability and is especially suitable for dealing with the 

nonlinear internal structure of lithium batteries [21]. Chen et al. use BP neural network to estimate SOC, 

which improves the estimation accuracy of SOC to a certain extent [22]. However, BP neural network 

has a slow convergence speed, and the output results are random, and the error may be large. 

 To better characterize the battery characteristics, in this research, the second-order RC 

equivalent circuit model is constructed, the bias compensation recursive least square (BCRLS) algorithm 

is introduced innovatively to identify the parameters online precisely. To estimate the battery state-of-

charge accurately, the BP-EKF method is proposed, which aims at the shortcomings of the EKF to deal 

with the nonlinear system and the defects of BP neural network. Considering that EKF has fast 

convergence speed and stable output results, and BP neural network has strong nonlinear processing 

ability, the two can be combined to make up for their shortcomings.  

 

 

 

2. MATHEMATICAL ANALYSIS 

2.1 Second-order RC equivalent modeling  

The equivalent circuit model simulates the physical and chemical reactions inside the battery 

through components such as resistors and capacitors to characterize the nonlinear working principle of 

the battery [23]. The commonly used equivalent circuit models include Thevenin model, second-order 

RC model and PNGV model [24]. The more complex the model, the more accurate the nonlinear 

characteristics of the battery, but the corresponding calculation and parameter identification are also 

larger. Considering the difficulty of calculation and identification comprehensively, the second-order 

RC equivalent circuit model is selected in this paper, which has high simulation accuracy and moderate 

difficulty of calculation, and is suitable for the application of practical scenes. The second-order RC 

equivalent circuit model is shown in Figure 1. 
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Figure 1. Second-order RC equivalent circuit model 

 

 

In Figure 1, the open-circuit voltage (OCV) is represented by UOC, the terminal voltage is 

represented by UL, the ohmic internal resistance is represented by R0, where R1 and R2 represent the 

polarization resistance, C1 and C2 represent the polarization capacitance. R1C1 loop represents the stage 

of rapid voltage change in the process of chemical reaction inside the battery, and R2C2 loop represents 

the stage of slow voltage change in the process of chemical reaction inside the battery. Let the current I 

is in the positive direction when discharging, the voltage and current expression of the second-order RC 

equivalent model can be obtained from Kirchhoff circuit law, as shown in Equation 1. 

{
 
 

 
 
𝑈𝐿 = 𝑈𝑂𝐶 − 𝐼𝑅0 − 𝑈1 − 𝑈2
𝑑𝑈1
𝑑𝑡

=
𝐼

𝐶1
−

𝑈1
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𝑑𝑈2
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𝐼

𝐶2
−
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 （1） 

In Equation 1, U1 and U2 are the terminal voltages of the two RC loops respectively, and the 

open-circuit voltage UOC can be represented by SOC in the state of charge.  [SOC, U1, U2]
T is selected 

as the state variable, and the equivalent circuit is discretized. The discretized state space expression is 

shown in Equation 2. 

{
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 （2） 

In Equation 2, Δt represents the sampling interval, 𝜏 is the time constant, 𝜏1= R1C1, 𝜏2= R2C2. Wk 

and Vk are state error and measurement error respectively. The rated battery capacity is represented by 

QN, and 𝜂 is coulomb efficiency. 
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2.2 Parameter identification based on BCRLS 

Recursive least square (RLS) algorithm is developed based on adaptive filtering theory [25]. Its 

basic principle is to estimate the coefficient on the premise of known input and output, to minimize the 

sum of squares of the difference between the actual value and the estimated value. This method is widely 

used in the field of system identification by modifying and updating the system parameters continuously 

to obtain the real-time characteristics of the system accurately. Due to filter saturation phenomenon in 

RLS algorithm, which will weaken the ability of data correction and eventually lead to larger parameter 

identification error [26]. Forgetting factor recursive least square (FFRLS) is introduced to reduce the 

influence of old data and enhance the feedback effect of new data, thus improving the online estimation 

ability of RLS. However, in the actual scene, the environment of lithium batteries is complex and 

changeable, and there will always be a lot of uncertain noise influence in the process of use, so the results 

identified by FFRLS are no longer unbiased [27]. Therefore, this paper introduces the bias compensation 

recursive least square (BCRLS) algorithm, which adds the bias compensation based on FFRLS to better 

capture the real-time operation characteristics of the system. The recursive process of BCRLS is shown 

in Figure 2. 
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Figure 2. The process of BCRLS Recursive calculation 

 

 

It can be seen from Figure 2 that the iterative calculation of BCRLS algorithm is divided into 8 

steps, and every 8 steps is a cyclic iteration. Where, in Equation 3~10, ˆ
LS represents the estimated 

parameter of FFRLS, ˆ
C  represents estimated parameters after bias compensation, K is the gain matrix, 

P is the covariance matrix, J is the output error criterion function, I0 is the identity matrix, e is innovation 

matrix,
2̂ is noise variance, 𝛬 is the correlation matrix, and is a positive number, larger when the initial 

parameter is unknown and smaller when the initial parameter is known. 
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2.3 BP-EKF joint SOC estimation strategy 

BP neural network is a kind of multi-layer feedforward neural network, which is mainly 

characterized by signal forward transmission and error back propagation [28]. It is composed of input 

layer, hidden layer and output layer [29]. Generally, parameters with high correlation with output 

expected value are selected as the input of neural network, and the correlation between output values 

should be as small as possible. The main function of the hidden layer is to deal with nonlinear problems, 

which can be set according to the complexity of the problem. BP neural network training, the first step 

is the forward propagation process, input data signal from the input layer into the neural network, layer 

by layer through the hidden layer until the output layer. The weights and thresholds of the network are 

adjusted according to the prediction errors so that the predicted output of BP neural network is 

approaching the desired output. Because the interior of lithium battery is a nonlinear system, it is 

especially suitable for BP neural network processing. The model structure of BP neural network for SOC 

prediction is shown in Figure 3. 

 

 U

I 

  

X1

X2

Xn

Input layer

Hidden layer 

Output layer

Y
SOC

 
 

Figure 3. The model of BP neural network for SOC prediction 

 

 

It can be seen from Figure 3 that the logical relationship among input layer, hidden layer and 

output layer of BP neural network. The input layer parameters are voltage, current, temperature, internal 

resistance and other parameters related to SOC estimation accuracy. The number of nodes in the hidden 

layer can be set according to the complexity of the processing problem and the number of input 

parameters. The output of the output layer is the prediction target SOC of the neural network. 

Kalman filter (KF) is a filtering theory established by state space theory in time domain, which 

is mainly used to estimate linear time-invariant systems. The core algorithm is to obtain the state estimate 

corresponding to the minimum mean square error in finite iteration operation according to the principle 

of least mean square error, so that the estimated value is constantly close to the real state value [30]. 
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When dealing with the nonlinear problem of lithium battery, the extended Kalman filter method adopts 

the first-order Taylor series expansion to linearize the nonlinear state space model, and then adopts the 

basic Kalman filter algorithm to implement it. Its iterative calculation process is shown in Figure 4. 
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Figure 4. The process of Iterative calculation for EKF algorithm 

 

 

It can be seen from Figure 4 that the iterative calculation of EKF algorithm is divided into 5 

steps, and every 5 steps is a cyclic iteration. Where, in Equation 11~15, x(k) represents the state variable, 

Ak is the state transition matrix, Bk is the system control input matrix, ik is the input current value, Ck is 

the system observation matrix, Kk is Kalman gain, Pk is error covariance matrix, Qk is the expectation 

for noise of the system process, Rk is the expectation for noise of the system observation, UL(k) represents 

the real-time terminal voltage value, E is the identity matrix. 

EKF algorithm has fast convergence speed and stable estimation results, but it ignores the higher-

order terms of Taylor expansion when dealing with nonlinear systems, so there are certain model errors, 

which will indirectly lead to the decrease of the accuracy of the estimation results. In order to compensate 

the error of EKF model, BP neural network is introduced. With the powerful self-learning ability and 

nonlinear processing ability of neural network, the estimation error of EKF can be corrected by learning 

and training relevant parameters that affect the estimation value of filtering. The process of BP-EKF 

joint algorithm is shown in Figure 5. 

There are three modules in Figure 5, BCRLS parameter identification module, EKF algorithm 

estimation module and BP-EKF error modification module, which collectively construct the BP-EKF 

joint algorithm. 
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Figure 5. The process of BP-EKF joint algorithm 

 

3. EXPERIMENTAL VERIFICATION 
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Figure 6. Experimental test platform 
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In this study, a ternary lithium-ion battery with a rated capacity of 50 Ah is taken as the 

experimental object, the voltage, current, capacity and other relevant data of charge and discharge under 

different working conditions is recorded through experiments. To obtain experimental data, an 

experimental platform is built with the BTS200-100-104 battery test device and temperature control 

equipment. The platform is shown in Figure 6. 

As shown in Figure 6, working condition setting, charging and discharging test instrument and 

test data acquisition are controlled by computer terminal. The thermostat ensures constant temperature 

during battery testing. 

 

3.2 Parameter identification experiment and analysis 

The hybrid pulse power characterization (HPPC) working condition data at room temperature 

(25°C) are selected for online parameter identification of the model. The HPPC experiment steps are as 

follows: 

Step 1. Charge the battery at constant current and constant voltage (4.2 V/1 C) until it is fully 

charged. 

Step 2. After the battery is left for 40 min, the voltage at both ends of the battery is measured and 

recorded. 

Step 3. Conduct current pulse experiment on the battery. First, charge the battery at a constant 

current of 1 C for 10 s, then stand for 40 s, and then charge the battery at a constant current of 1 C for 

10 s to restore the power before discharge. 

Step 4. Reduce the power of the battery by 10% at a constant discharge of 1 C for 6 min, and 

then stand for 40 min. The recording terminal voltage is the open-circuit voltage at this time. 

Step 5. Repeat Step 3 and Step 4 10 times until the battery level is 0. 

After the HPPC experimental data were collected, FFRLS algorithm and BCRLS algorithm were 

used to identify the parameters of the second-order model, to obtain the corresponding values of internal 

resistance R0, polarization resistance R1 and R2, and polarization capacitance C1 and C2 of lithium battery 

at different times. Using these data as the input of the model, the real-time terminal voltage simulation 

value can be obtained through calculation, and the terminal voltage simulation value and the measured 

value are compared and analyzed to verify the effectiveness of the improved algorithm. The experimental 

results are shown in Figure 7. 
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(A) Comparison of identification results of HPPC working condition 
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(B) Comparison of identification errors of HPPC working condition 

 

Figure 7. Parameter identification result of HPPC working condition 

 

Table 1. Comparison of identification errors analysis under HPPC working condition 

 

Identification 

method 

FFRLS BCRLS 

Mean Err -0.77% -0.75% 

MAE 1.21% 1.19% 

RMSE 2.63% 2.61% 

 

Figure 7A shows the voltage comparison of parameter identification results of the two 

algorithms, where U1 represents the measured voltage, U2 represents the simulation voltage value 

identified by FFRLS, and U3 represents the simulation voltage value identified by BCRLS. In Figure 

7B, Err1~Err2 represent the simulation voltage error curve corresponding to U2 ~U3. It can be seen that 

the initial voltage error of each charge and discharge cycle is relatively large, and the error at the end of 

the final discharge is also larger, which is caused by the violent chemical reaction inside the lithium-ion 

battery. While the error in the remaining part is smaller, and the simulation effect is better. Furthermore, 
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it can be seen from Table 1 that the mean error, mean absolute error and root mean square error of 

BCRLS are 0.02 percentage points smaller than FFRLS. The experimental results show that BCRLS 

algorithm has better parameter identification effect and higher precision. 

 

3.3 Verification and analysis of BP algorithm 

To better verify the superiority of BP-EKF algorithm, first of all, the BP neural network algorithm 

and EKF algorithm are analyzed experimentally. To verify the effect of BP neural network, voltage and 

current are directly used as input of neural network, and SOC is used as output of neural network. The 

data under BBDST working conditions are taken as the training data of BP neural network, 85% are 

randomly selected as the training set and 15% as the verification set.  
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(B) Comparison of SOC estimation error with BP and EKF 

 

Figure 8. SOC estimation results and errors of BP and EKF under HPPC working condition 

 

The training times of BP neural network was set as 1000, the number of hidden layer nodes was 

set as 8, the learning rate was set as 0.01, and the training target error was set as 1e-7. After the neural 
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network training is completed, the data under HPPC condition is used to test， and the result is compared 

with the estimated value of EKF algorithm. The experimental results are shown in Figure 8 and Table 2. 

 

 

Table 2. Comparison of experimental error analysis of BP and EKF under HPPC working condition 

 

Estimation method BP EKF 

Maximum Err 12.88% 4.08% 

MAE 1.28% 1.94% 

RMSE 2.47% 2.06% 

 

 

As shown in Figure 8A, SOC1 represents the reference SOC value, SOC2 represents the SOC 

value of the EKF algorithm, and SOC3 represents the SOC estimated value of the BP neural network 

algorithm. In Figure 8B, Err1 and Err2 represent the estimation errors corresponding to SOC2 and SOC3 

respectively. As can be seen from Figure 8A, BP neural network has poor SOC curve fitting effect in the 

pulse discharge stage, and the error is significantly greater than that of EKF algorithm. However, in the 

static stage after discharge, the SOC curve fitting effect is better, which is significantly better than that 

of EKF algorithm. According to the analysis in In Figure 8B and Table2, the error curve of EKF 

algorithm has small fluctuation and fast convergence and finally tends to be stable with a small error 

value. The error curve of BP neural network algorithm oscillates obviously, the convergence effect is 

poor and the error value is larger. In conclusion, BP neural network and EKF can be combined to improve 

the estimation accuracy of SOC. 

 

3.4 Verification and analysis of BP-EKF algorithm 

To verify the effectiveness and feasibility of BP-EKF algorithm, the data under Dynamic Stress 

Test (DST) operating condition is used as the training data of BP neural network. After screening, a total 

of 91343 groups of effective test data were selected under DST operating condition, 85% are randomly 

selected as the training set, 15% as verification set, the training times of BP neural network is set to 

1000, the number of hidden layer nodes is set to 8, the learning rate is set to 0.001, and the training target 

error is set to 1e-7. Firstly, the initial estimate value is obtained by using EKF algorithm. Next, the 

Kalman gain K, the estimated value of SOC, the terminal voltage U1 and U2 of two RC loops are taken 

as input of BP neural network. The estimated error of SOC, namely Err, is taken as output of neural 

network. Then, BP neural network is trained according to the set parameters. For details, please refer to 

Figure 5. 
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3.4.1 HPPC working condition verification test 

The trained neural network is verified with the data under HPPC working condition. There are 

283665 groups of valid data, the verification results are shown in Figure 9 and Table 3. 
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(B) Comparison of SOC estimation error with different algorithms 

 

Figure 9. SOC estimation results and errors of HPPC working condition 

 

 

Table 3. Comparison of experimental error analysis of different algorithms under HPPC working 

condition 

 

Estimation method EKF BP-EKF 

Maximum Err 2.65% 2.52% 

MAE 2.17% 0.09% 

RMSE 2.27% 0.11% 

 

As shown in Figure 9A, SOC1 represents the reference SOC value, SOC2 represents the SOC 

value of the EKF algorithm, and SOC3 represents the SOC estimated value of the BP-EKF algorithm. 
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In Figure 9B, Err1 and Err2 represent the estimation errors corresponding to SOC2 and SOC3 

respectively. It can be seen from Figure 9A that the curve fitting effect of BP-EKF algorithm is 

significantly better than that of EKF algorithm, and it almost coincides with the reference value curve, 

which fully reflects the significant error compensation effect of BP neural network. It can be seen from 

Figure 9B that the corresponding error curves of the two algorithms fluctuate in the early stage of 

discharge, but the fluctuation range of BP-EKF algorithm is significantly smaller. The error curves 

gradually tend to be stable at the middle and late discharge period, but the BP-EKF algorithm converges 

faster and the error is smaller. Furthermore, it can be analyzed from the Table 3 that the maximum error, 

the mean absolute error and root mean square error of BP-EKF algorithm under HPPC working condition 

are reduced by 0.13%, 2.08% and 2.16%, respectively, compared with EKF algorithm. The results show 

that BP-EKF has excellent tracking performance and stability performance. 
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Figure 10. SOC estimation results and errors of BBDST working condition 

 

The practical application condition of lithium-ion batteries is complex and changeable. BBDST 

working condition is obtained from the real data collection of the Beijing bus dynamic stress test, 
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including the data of the bus in the start, taxiing, acceleration, rapid acceleration, and other operations, 

which can verify the stability and strong tracking performance of the proposed algorithm. There are 

277275 groups of valid data, the verification results are shown in Figure 10 and Table 4. 

 

 

Table 4. Comparison of experimental error analysis of different algorithms under BBDST working 

condition 

 

Estimation method EKF BP-EKF 

Maximum Err 4.84% 3.01% 

MAE 3.12% 1.16% 

RMSE 3.36% 1.41% 

 

As shown in Figure 10A, SOC1 represents the reference SOC value, SOC2 represents the SOC 

value of the EKF algorithm, and SOC3 represents the SOC estimated value of the BP-EKF algorithm. 

In Figure 10B, Err1 and Err2 represent the estimation errors corresponding to SOC2 and SOC3 

respectively. It can be seen from Figure 10A that the SOC curve fitting degree of BP-EKF algorithm is 

closer to the reference truth value, reflecting its strong tracking ability. It can be seen from Figure 10B 

that the shapes and trends of the two sets of error curves are very similar, but the error value of BP-EKF 

algorithm is significantly smaller and closer to 0, reflecting the good self-learning ability and error 

correction ability of BP neural network. At the beginning and end of discharge, the error curves of the 

two algorithms fluctuate widely, which is caused by the violent chemical reaction inside the battery. 

Furthermore, it can be analyzed from the Table 3 that the maximum error, the mean absolute error and 

root mean square error of BP-EKF algorithm under BBDST operating condition are reduced by 1.83%, 

1.96% and 1.95%, respectively, compared with EKF algorithm. The results show that BP-EKF has better 

tracking performance and stability performance. 

 

 

 

4. CONCLUSIONS 

The SOC estimation accuracy of lithium-ion batteries directly determines the quality of battery 

management system, and the accuracy of battery equivalent model and parameter identification will 

affect the SOC estimation accuracy. In this research, the second-order RC model is applied to 

characterize the state and characteristics of the battery, and the BCRLS method is applied for online 

parameter identification, which effectively improves the accuracy of online parameter identification. To 

improve the estimation accuracy of SOC, a novel joint algorithm for modifying and optimizing EKF 

based on BP neural network is proposed. The relevant parameters affecting the estimation of EKF 

algorithm are trained by BP neural network, and the error of EKF algorithm is compensated. The 

experimental data of HPPC and BBDST operating conditions are used for verification, the results show 

that the RMSE of the novel BCRLS-BP-EKF algorithm under HPPC and BBDST condition can be 

controlled within 0.11% and 1.41% in SOC estimation, the accuracy and performance are greatly 
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improved. The paper not only lays a foundation for further research on battery health state and 

optimization of battery management system but also has positive significance for the further 

development of new energy vehicles. 
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