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This study discusses a mathematical model for the steady-state reaction of a pH-based potentiometric 

biosensor immobilizing organophosphorus hydrolase (OPH). The model that combines diffusion and 

enzymatic reaction processes in the membrane is a system of five interconnected nonlinear reaction-

diffusion equations. Approximate analytical expressions for the substrate concentration 

(organophosphorus pesticides (OPs)) and products are derived for all possible values of Thiele modulus 

and buffer concentration using the Akbari-Ganji method. In addition, analytical expressions for the 

current, sensitivity, and resistance of pH-based potentiometric biosensors are also derived. The obtained 

analytical results are convergent on the prescribed domain and firmly match the fourth-order Runge-

Kutta numerical simulations. 
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1. INTRODUCTION 

 

Enzymes are deemed the most suitable recognition elements owing to their high chemical 

specificity and intrinsic biocatalytic signal amplification. Biosensors use enzymes, which catalyze the 

interaction with an analyte are now possible due to advances in biological components and microsystem 

technology. Biosensors can be classified according to the mode of physicochemical transduction or the 

type of biorecognition element.   

Organophosphorus pesticides (Ops) are evaluated using enzyme-based electrochemical 

biosensors [1-5]. In biosensors for determining OPs, organophosphorus hydrolase (OPH) has recently 
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been used instead of acetylcholinesterase (AChE) or butyrylcholinesterase (BChE). With the discovery 

of organophosphorus hydrolase (OPH), an enzyme that can hydrolyze a wide range of organophosphate 

pesticides releasing detectable products [6,7], several enzymes and microbial biosensors based on OPH 

for rapid, simple, selective monitoring of these neurotoxic pesticides with the potential for in the field 

analysis have been reported [8-12]. Many experimental methods for determining organophosphorus 

pesticides have been reported in gas and liquid chromatographic technologies [13], immunoassays [14], 

and inhibition of cholinesterase [15]. 

Modeling OPH biosensors is crucial to understanding their behavior, analyzing their analytical 

characteristics, and optimizing industrial processes. Examples of non-OPH models of pH-based 

potentiometric enzyme electrodes immobilizing include the use of magnetic polysiloxane polyvinyl 

alcohol particles [16] and a model for a pH-based enzymatically coupled field-effect transistor [17]. 

Lihong et al. have presented a numerical solution for estimating the steady-state response of pH-based 

potentiometric biosensors that immobilize organophosphorus hydrolase (OPH) [1].  Meena et al. [18] 

discussed a model of a pH-based potentiometric biosensor immobilizing organophosphorus hydrolase. 

Saranya et al. [19] utilized a modified homotopy perturbation method to derive semi-analytical 

expressions for the substrate and product concentrations. 

In this communication, we present a simple approximate closed-form formula for the 

concentrations of the substrate (organophosphorus pesticides (OPs)) and deprotonation products for all 

values of the system parameters using the efficient AGM method. pH-based potentiometric biosensors' 

current, sensitivity, and resistance are also presented and discussed for various experimental parameters. 

 

 

 

2. FORMULATION AND SOLUTION OF THE MODEL    

Figure 1 shows a schematic diagram of a pH-based potentiometric biosensor that immobilises 

organophosphorus hydrolase (OPH). S is the organophosphorus chemicals' substrate in this diagram 

(OPs). The hydrolysis products of organ phosphodiester and alcohol, respectively, are PhH and ZH.  

 

 

 
 

Figure 1. Schematic representation of pH-based potentiometric biosensor immobilizing OPH. 

 

 

https://www.scirp.org/journal/articles.aspx?searchcode=Jeganathan++Saranya&searchfield=authors&page=1
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In Figure 1, AH is the added external buffer and Ph
−, Z−, A−, and H+ are the deprotonation 

products. Within the enzyme membrane, an enzyme-catalyzed reaction is described by: 

 

S
H2O
→  
E
PhH+ ZH,  PhH

kp
′
⇔
kp

Ph
− + H−, ZH

kZ
′
⇔
kZ
Z− + H+, AH

kA
′
⇔
kA
A− + H+. (1) 

 

2.1. Mathematical formulation of the probelm 

We begin by assuming that [1]: First, the sensor surface is of infinite extent and the 

concentrations vary in the dimension that is normal to the surface; second, the surface is impassable to 

the substrate and the products; third, the stirring rate is sufficiently high to ensure that the concentrations 

at the interface of the membrane and bulk solutions are equal; fourth, only diffusion is the transport 

median inside the membrane, and the concentrations of the formed products are negligible in the bulk 

solution, and fifth, all species’ diffusion coefficients are equal. The governing diffusion-reaction 

equation is given by  

𝜕𝐶i
𝜕𝑡
= 𝐷i

𝜕2𝐶i
𝜕𝑥2

+ 𝑅(𝐶i), (1) 

where 𝐶i is the species concentration, 𝐷i is the diffusion coefficients, and 𝑅 is the nonlinear reaction rate. 

The diffusion-reaction equations in steady-state are [1]: 

𝐷
𝑑2 [S]

𝑑𝑥2
− 𝑅 = 0, (2) 

𝐷
𝑑2 [PhH]

𝑑𝑥2
+ 𝑅 − 𝑟PhH = 0, 

(3) 

𝐷
𝑑2 [Ph

−]

𝑑𝑥2
+ 𝑟PhH = 0, 

(4) 

𝐷
𝑑2 [ZH]

𝑑𝑥2
+ 𝑅 − 𝑟ZH = 0, 

(5) 

𝐷
𝑑2 [Z−]

𝑑𝑥2
+ 𝑟ZH = 0, 

(6) 

𝐷
𝑑2 [AH]

𝑑𝑥2
− 𝑟AH = 0, 

(7) 

𝐷
𝑑2 [A−]

𝑑𝑥2
+ 𝑟AH = 0, 

(8) 

𝐷
𝑑2 [H+]

𝑑𝑥2
+ 𝑟PhH + 𝑟ZH + 𝑟AH = 0, 

(9) 

where 𝑅, 𝑟PhH, 𝑟ZH, and 𝑟AH are the reaction rates for the reactions in (1). It is also assumed that the 

substrate S follows the catalysts via Michaelis-Menten kinetics as per the scheme: 

S + EH−
k−1
↔ 
k1
EH− − S

k2
→ EH− − P

k3
→ E + P. (10) 

The overall rate R is given by 

𝑅 =
𝑉max[S]

 [S] + 𝑘𝑚
, (11) 

where 𝑉max =
𝑘2𝑘3 [E]𝑡

(𝑘2+𝑘3)
, 𝑘𝑚 =

(𝑘2+𝑘−1)

(𝑘2+𝑘3)

𝑘3

𝑘1
 in which  𝑘1 and  𝑘−1 are the rate constants for the Michaelis 

complex formation, 𝑘2 is the chemical transformation rate constant, 𝑘3 is the product dissociation rate 
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constant, and [E]𝑡 is the enzyme concentration. We introduce the following set of dimensionless 

variables:  

𝐶i =
𝐶i

𝐾𝑚
,  𝐶i

𝑏 =
𝐶i
𝑏

𝐾𝑚
  𝑥 =

𝑥

𝐿
 , and 𝑎2 =

𝐿2𝑉max

𝐷𝐾𝑚
, (12) 

where 𝐾𝑚 is the Michaelis-Menten constant. We define the composite species as follows [1] 

 [Ph]T = [PhH] + [Ph
−] , [Z]T = [ZH] + [Z

−] , [A]T = [AH] + [A
−] ,                                   

 [H+]T = [H
+] + [PhH] + [ZH] + [AH],   

(13) 

where [Ph]T, [Z]T and [𝐴]𝑇 represent the sums of dissociated and undissociated concentrations of the 

species PhH, ZH, and AH, respectively. The instantaneous reaction terms 𝑟PhH, 𝑟ZH, 𝑟AH, 𝑟AH are cancelled 

as per Eq. (14). From Eq. (14) and the dimensionless variables in Eq. (13), the nonlinear system (3)-(9) 

is converted into the following dimensionless nonlinear boundary value system  

𝑑2 [S]

𝑑𝑥
2 − 𝑎

2
[S]

  [S] + 1
= 0, (14) 

𝑑2 [𝑃ℎ]𝑇

𝑑𝑥
2 + 𝑎2

[S]

  [S] + 1
= 0, 

(15) 

𝑑2 [Z]T

𝑑𝑥
2 + 𝑎2

  [S]

  [S] + 1
= 0, 

(16) 

𝑑2 [A]T

𝑑𝑥
2 = 0, 

(17) 

𝑑2 [H+]T

𝑑𝑥
2 + 2𝑎2

  [S]

  [S] + 1
= 0, 

(18) 

where 𝑎  is the Thiele modulus. The dimensionless boundary conditions become  
𝑑𝐶i

𝑑𝑥
(0) = 0;  for 𝐶i = [S],   [Ph]T,  [Z]T,  [A]T,  [H+]T ,     (19) 

𝐶i(1) = 𝐶i
𝑏; for  𝐶i =  [S], [A]T,  [H+]T;   [Ph]T(1) =  [Z]T(1) = 0.      (20) 

From Eqs. (15)-(17) and Eq. (19), we have 

𝑑2 [Ph]T

𝑑𝑥
2 =

𝑑2 [Z]T

𝑑𝑥
2 =

1

2

𝑑 [H+]T

𝑑𝑥
2 = −

𝑑2 [S]

𝑑𝑥
2 , (21) 

for which the solution, obtained by direct integration, is given by 

[Ph]T(𝑥) =  [Z]T(𝑥) =
1

2
 [H+]T(𝑥) = − [S] + 𝐶1𝑥 + 𝐶2. (22) 

Using boundary conditions (20) and (21) in Eq. (23), we obtain the following concentrations: 

[Ph]T(𝑥) =  [Z]T(𝑥) = − [S] + [S]
𝑏
,  [H+]T(𝑥) = 2 (− [S] + [S]

𝑏
) + [H+]T

b
. (23) 

Similarly, by direct integration of Eq. (18) and the use of the boundary conditions, we obtain 

 [A]T(𝑥) =  [A]T
b
. (24) 

The dimensionless current is then reduced to 

𝜓=
𝐼

𝑛𝑒𝐹𝐷
[
𝐿

 [S]b
] =

𝑑 [Ph]T
𝑑𝑥

|

𝑥=1

. (25) 
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2.2. Analytical expressions of the concentrations using Akbari-Ganji method 

Although many numerical solutions are accurate and efficient to obtain approximate solutions of 

nonlinear systems, some of their downsides are more serious about being ignored. Numerical stability 

and adjusting parameters to match the numerical data can be tremendously challenging to realize 

numerical solutions.  Therefore, analytical solutions are more preferred by researchers as they give a 

better insight for analyzing the effect of model parameters. Over the past four decades, many reliable 

and highly accurate analytical methods have emerged and been successfully utilized in solving many 

nonlinear models in various fields of science. To list a few, we mention the homotopy analysis [20, 21], 

variational iteration [22, 23], differential transformation [24], Adomian decomposition [25], Green’s 

function-fixed point [26, 27], homotopy perturbation (HPM) [28-31], Taylor series [32-36], and Akbari-

Ganji method [37-41].  

In this article, we used the Akbari-Ganji method to derive the following formula for the 

concentration of substrate (see Appendix-A for details): 

[S](𝑥) = [S]
𝑏  cosh (𝑚𝑥)

cosh 𝑚
, (26) 

where  

𝑚 =
𝑎 

√1 + [S]
𝑏
. (27) 

Substituting Eq. (27) into Eq. (24) yields the following approximate analytical expressions for the 

concentrations of [Ph]T , [Z]T and [H+]T :  

 [Ph]T(𝑥) =  [Z]T(𝑥) = [S]
𝑏
(1 −

 cosh (𝑚𝑥)

cosh 𝑚
), (28)  

 [H+]T(𝑥) = 2[S]
𝑏
(1 −

 cosh (𝑚𝑥)

cosh 𝑚
) + [H+]T

b
. (29) 

The dimensionless current is then readily obtained 

𝜓=
𝐼

𝑛𝑒𝐹𝐷
[
𝐿

𝐾𝑚
] =

d [Ph]T
d𝑥

|

𝑥=1

= −[S]
𝑏
 𝑚 tanh 𝑚, (30) 

The current in dimensionless form is computed by the formula: 

𝐼

𝑛𝑒𝐹
= −

𝐷[S]𝑏

𝐿𝐾𝑚
𝑚 tanh 𝑚, (31) 

 𝑚 =
𝑎 

√1 + [S]
𝑏
= √

𝑉max 𝐿2

𝐷(𝐾𝑚 +  [S]b)
. (32) 

 

 

3. RESULTS AND DISCUSSION 

Meena et al. [18] employed a modified version of the homotopy perturbation method (HPM) to 

derive the following approximate expression for the substrate concentration:  
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[S](𝑥) =
[𝑆]

𝑏
(𝑒𝑎𝑥 + 𝑒−𝑎𝑥)

(𝑒𝑎 + 𝑒−𝑎)
−

([𝑆]
𝑏
)2

(𝑒𝑎 + 𝑒−𝑎)2
[2 −

(𝑒2𝑎𝑥 + 𝑒−2𝑎𝑥)

3
] [𝑒𝑎𝑥 + 𝑒−𝑎𝑥 − 𝑒𝑎 − 𝑒−𝑎] 

 (33) 

Tables 1 and 2 give a comparison between the proposed AGM solution given in Eq. (27), the 

HPM solution given in Eq. (34), and a numerical solution obtained by MATLAB function pdex4 (see 

Appendix B).  

 

Table 1. Comparison of analytical expression of dimensionless concentration [S](𝑥) with simulation 

result for various values of 𝑎 when [S]
𝑏
= 1. 

 
𝑥 [S]

𝑏
= 1, 𝑎 = 0.1 [S]

𝑏
= 1, 𝑎 = 0.5 [S]

𝑏
= 1, 𝑎 = 1 

Numerical 
 

HPM 
Eq.(34) 

AGM 
Eq.(27) 

% deviation Numerical 
 

HPM 
Eq.(34) 

AGM 
Eq.(27) 

% deviation Numerical 
 

HPM 
Eq.(34) 

AGM 
Eq.(27) 

% deviation 

Eq.(34) Eq.(27) Eq.(34) Eq.(27) Eq.(34) Eq.(27) 

0.0 0.9975 0.9983 0.9975 0.0802 0.0000 0.9391 0.9537 0.9406 1.5547 0.1597 0.7760 0.8001 0.7933 3.1057 2.2294 

0.2 0.9976 0.9984 0.9976 0.0802 0.0000 0.9416 0.9549 0.9430 1.4125 0.1487 0.7847 0.8016 0.8012 2.1537 2.1027 

0.4 0.9979 0.9986 0.9979 0.0701 0.0000 0.9488 0.9587 0.9500 1.0434 0.1265 0.8111 0.8081 0.8252 0.3699 1.7384 

0.6 0.9984 0.9989 0.9984 0.0501 0.0000 0.9610 0.9662 0.9618 0.5411 0.0832 0.8553 0.8278 0.8658 3.2152 1.2276 

0.8 0.9991 0.9994 0.9991 0.0300 0.0000 0.9780 0.9790 0.9785 0.1022 0.0511 0.9181 0.8789 0.9236 4.2697 0.5991 

1.0 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 

 Average deviation 0.0518 0.0000 Average deviation 0.7757 0.0949 Average deviation 2.1857 1.3162 

 

Table 2. Comparison of analytical expression of dimensionless concentration [S](𝑥)  with simulation 

result for various values of [S]
𝑏
when 𝑎 = 0.1. 

 
𝑥 [S]

𝑏
= 0.1, 𝑎 = 0.1 [S]

𝑏
= 5, 𝑎 = 0.1 [S]

𝑏
= 10, 𝑎 = 0.1 

Numerical HPM 
Eq.(34) 

AGM 
Eq.(27) 

% deviation Numerical  HPM 
Eq.(34) 

AGM 
Eq.(27) 

% deviation Numerical  HPM 
Eq.(34) 

AGM 
Eq.(27) 

% deviation 

Eq.(34) Eq.(27) Eq.(34) Eq.(27) Eq.(34) Eq.(27) 

0.0 0.0995 0.0995 0.0995 0.0000 0.0000 4.9958 5.0577 4.9958 1.2390 0.0000 9.9955 10.2805 9.9955 2.8513 0.0000 

0.2 0.0996 0.0995 0.0995 0.1004 0.1004 4.996 5.0577 4.9958 1.2350 0.0040 9.9956 10.2805 9.9955 2.8503 0.0010 

0.4 0.0996 0.0996 0.0996 0.0000 0.0000 4.9965 5.0553 4.996 1.1768 0.0100 9.9962 10.2692 9.9956 2.7310 0.0060 

0.6 0.0997 0.0996 0.0996 0.1003 0.1003 4.9973 5.0483 4.9965 1.0206 0.0160 9.9971 10.2352 9.9962 2.3817 0.0090 

0.8 0.0998 0.0997 0.0997 0.1002 0.1002 4.9985 5.0367 4.9973 0.7642 0.0240 9.9984 10.1788 9.9971 1.8043 0.0130 

1.0 0.1000 0.0998 0.0998 0.2000 0.2000 5 5.0206 4.9985 0.4120 0.0300 10 10.1003 9.9984 1.0030 0.0160 

 Average deviation 0.0835 0.0835 Average deviation 0.9746 0.0140 Average deviation 2.2703 0.0075 

 

Tables 1 and 2 show that the maximum error for the AGM method is 1.3162% and for HPM is 

2.2703%. Therefore, the accuracy of the proposed method surpasses the accuracy of the HPM. In 

addition, the approximate solution obtained using the AGM method archives all the parameters in the 
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equations immediately. In contrast, the homotopy perturbation method needed two iterations to 

approximate all parameters' approximate solution to appear in the differential equation. 

In the following subsections, we study the sensitivity and resistance of biosensors [42-45] using 

these derived concentrations and current expressions.     

 

3.1. Sensitivity of biosensor 

The amperometric biosensor sensitivity, denoted by 𝐵𝑆, is defined as the maximal biosensor 

current density gradient to the substrate concentration [S]b [45]. Therefore,  [S]b is computed by  

𝐵𝑆([S]
b) =

 [S]b

𝐼([S]b)

d𝐼([S]b)

d[S]b
= 1 −

[S]b

2(𝐾𝑚 + [S]b)
(1 + 𝑚(coth(𝑚) − tanh(𝑚))),  (34) 

where 𝐼([S]b) is the steady-state biosensor current density. From Eq.(35), it is deduced that the 

sensitivity 𝐵𝑆 varies between 0 and 1. 

 

  
Figure 2. Biosensor sensitivity curve (Eq. (35)) given that (a) 𝐷 = 300 cm2/s, 𝑉max = 1 mol/s cm3, 𝐿 =

500 cm and various values of 𝐾𝑚, (b) 𝐷 = 300 cm2/s, 𝑉max = 1 mol/s cm3, 𝐾𝑚 = 100 mol/
cm3 and various values of 𝐿, (c) 𝐾𝑚 = 100 mol/cm3, 𝑉max = 1 𝑚𝑜𝑙/𝑠 𝑐𝑚

3, 𝐿 = 500 cm and 

various values of 𝐷, and (d) 𝐷 = 300 cm2/s, 𝐾𝑚 = 100 mol/cm3, 𝐿 = 500 cm and various 

values of 𝑉max. 
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The biosensor sensitivity for different parameter values is displayed in Figure 2(a-d). From 

Figures 2(a, b, d), it is inferred that the biosensor sensitivity is proportional to the Michaelis-Menten 

constant, membrane thickness, and maximal enzymatic rate. Figure 2(c), on the other hand, shows the 

sensitivity is inversely proportional to the diffusion coefficient.     

 

3.2. Resitance of biosensor 

 
Figure 3. Biosensor sensitivity curve (Eq. (36)) given that (a) 𝐷 = 300 cm2/s, 𝑉max = 1 mol/

s cm3, 𝐾𝑚 = 100 mol/cm3 and various values of [𝑆]𝑏, (b) 𝐷 = 300 cm2/s, 𝑉max = 1 mol/s cm3,
[𝑆]𝑏 = mol/s cm3 and various values of  𝐾𝑚, (c) 𝐾𝑚 = 100 mol/cm3, 𝑉max = 1 mol/
s cm3, [𝑆]𝑏 = 100 mol/s cm3 and various values of 𝐷, and (d) 𝐷 = 300 cm2/s , 𝐾𝑚 =
100 mol/cm3, [𝑆]𝑏 = 100 mol/s cm3 and various values of 𝑉max. 

 

 

In this section, we discuss the resistance of the membrane-based biosensors to the changes in 

thickness. The steady-state biosensor current gradient to the enzyme layer thickness 𝐿 is the normalized 

dimensionless biosensor resistance 𝐵𝑅 [45]. 

𝐵𝑅(𝐿) =
𝐿

𝐼(𝐿)

d𝐼(𝐿)

d𝐿
= 𝑚(coth(𝑚) − tanh(𝑚)), (35) 
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where 𝐼(𝐿) is the steady-state biosensor current calculated at the thickness of the enzyme layer 𝐿. From 

Eq. (36), it is observed that the resistance BR varies between 0 and 1. 

Figure 3(a-d) illustrates the biosensor resistance 𝐵𝑅 versus the membrane thickness 𝐿 for 

different values of the parameters. The normalized resistance curves' shapes conclude that an increase 

in the membrane thickness decreases resistivity. In other words, the maximal and the minimal biosensor 

resistance are directly proportional to Thiele’s modulus. 

Figure 3(a-c) confirms that an increase in the bulk concentration ([𝑆]𝑏), Michaelis-Menten 

constant (𝐾𝑚), or diffusion coefficient (𝐷) lead to an increase in the resistance. In contrast, the 

increasing value of maximal enzymatic rate (𝑉max) implies a decrease in resistance as portryed in Fig 

3(d). 

 

 

4. CONCLUSIONS 

The Akbari-Ganji method was employed to derive simple semi-analytic approximate expressions 

of steady-state concentrations of organophosphorus pesticides (OPs) and deprotonation products for all 

possible values of parameters. In addition, approximate analytical expressions of the current at steady-

state, the sensitivity, and resistance were also derived. The derived analytical expressions were employed 

to investigate the biosensor sensitivity and resistance to various parameters of the model.  

 

APPENDIX A: Approximate analytical solution of nonlinear Eq. (15) using AGM method 

Consider the differential equation (15):  

𝐹(𝑥) =
𝑑2 [S]

𝑑𝑥
2 − 𝑎

2
[S]

  [S] + 1
= 0, (A.1)  

with boundary conditions: 

𝑑[S]

𝑑𝑥
(0) = 0, [S](1) = [S]b. (A.2)  

 Assume that the solution of equations (A.1) is given by 

[S](𝑥)  = 𝐴 cosh(𝑚𝑥) + 𝐵 sinh(𝑚𝑥), (A.3)  

where 𝐴, 𝐵, and 𝑚 are constants to be determined.  

 From boundary condition (A.2), we readily obtain 

𝐴 =
[S]

𝑏

cosh(𝑚)
,     𝐵 = 0 (A.4)  

 Replacing these constants into equations (A.3) gives  

[S](𝑥)  = [S]
𝑏  cosh (𝑚𝑥)

cosh 𝑚
, (A.5)  
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where 𝑚 is the constant coefficient.  

Substituting the value of (A.5) into (A.1) implies 

𝐹(𝑥) = 𝑚2[S]
𝑏  cosh (𝑚𝑥)

cosh 𝑚
− 𝑎2

 cosh (𝑚𝑥)

  cosh (𝑚𝑥) + cosh 𝑚
= 0, (A.6)  

and by substituting 𝑥 = 1 into (A.6), we get 

𝐹(𝑥 = 1) = 𝑚2[S]
𝑏
− 𝑎2

[S]
𝑏

  [S]
𝑏
+ 1

= 0. (A.7)  

From equation (A.7), the value of the constant 𝑚 is obtained, that is 

𝑚 =
𝑎 

√1 + [S]
𝑏
. 

(A.8)  

 

 

APPENDIX B MATLAB program to find the numerical solution of Eq. (15) 

 

function pdex4 

m=0; 

x=linspace(0,1); 

t=linspace(0,100000); 

sol=pdepe(m,@pdex8pde,@pdex8ic,@pdex8bc,x,t); 

u=sol(:,:,1); 

figure 

plot(x,u(end,:)) 

% ........................................................ 

function [c,f,s]=pdex8pde(x,t,u,DuDx) 

c=1; 

f =DuDx; 

a = 0.1;                                                                       

s = -(a^2*u)/(1+u);                                                              

% ,...................................................... 

function u0=pdex8ic(x) 

u0=0;                                                                             

% ........................................................ 

function [p1,q1,pr,qr]=pdex8bc(x1,u1,xr,ur,t) 
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Sb=0.1; 

p1=0; 

q1=1; 

pr = ur-Sb;       

qr = 0;                                                                        

 

NOMENCLATURE:  

 

Symbol Definition Usual units                            

[S]                                            Substrate concentration [mol/cm3]                          

[PhH] Hydrolysis products of organo phosphodiester [mol/cm3]                          

[ZH]                                          Hydrolysis products of alcohol [mol/cm3]                         

[AH]                                          Added external buffer [mol/cm3]                         

Ph
−, Z−, A−, H+                           Deprotonation products  [mol/cm3]                         

𝐶i                                                Concentration of the species [mol/cm3] 

𝐷i                                                Diffusion coefficients [cm2/s] 

𝑅 , 𝑟PhH, 𝑟ZH,𝑟AH,𝑟AH           Rate of reactions    [𝜇 mol/min] 

𝑘1 , 𝑘−1                                      Rate constant for the formation of the Michaelis 

complex 

[cm/s]   

𝑘2   Rate constant for the chemical transformation [cm/s] 

𝑘3 Rate constant for dissociation [cm/s] 

[E]t                                            Enzyme concentration [mol/cm3] 

[S]                                              Dimensionless concentration of  S none 

[Ph]T                                           Dimensionless concentration of  𝑃ℎ𝐻                                                 none 

[Z]T                                            Dimensionless concentration of  𝑍𝐻           none 

[A]T                                            Dimensionless concentration of   𝐴𝐻                                                                            none 

 [H+]T                                         Dimensionless concentration  H+ none   

a Thiele modulus none                          

L   Thickness of membrane [mol/s cm3] 

𝐾m                                              Michaelis-Menten constant. [mol/cm3] 
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𝐾Ph/𝐾m, 𝐾Z/𝐾m,𝐾A/

𝐾m           

Equilibrium constants none 
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