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In this paper, the two-compartment mathematical model of the amperometric biosensor for the steady-

state condition is studied. This model relies on a nonlinear reaction-diffusion system with Michaelis-

Menten kinetics. A novel new approach of the homotopy perturbation method (HPM) is used in the 

enzyme and membrane layer to solve nonlinear reaction-diffusion equations. The simple and closed-

form of analytical expressions of concentrations and biosensor current is derived. This paper presents 

the approximate analytical expression of sensitivity and resistance of a two-compartment model of 

amperometric biosensors. Furthermore, in this work, the numerical solution of the problem is also 

reported using the Maple program. The obtained results are compared with the numerical and previous 

available limiting case results. The analytical result provided is effective and precise in understanding 

the behaviour of the system. 
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1. INTRODUCTION 

 

Catalytic biosensors are analytical devices that depend on the enzyme-catalyzed conversion of 

active redox products [1]. Due to the limitations of free-diffusing redox compounds, particularly in terms 

of continuous monitoring of the analyte, the use of various semi-permeable membranes enables the 

design of dependable and susceptible electrocatalytic systems [2]. A thin layer of polyvinyl alcohol, 

terylene, cellulose, or another substance frequently uses in commercial biosensors to keep the enzyme 

from decomposing [3]. 
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 It is critical to predicting both geometric and catalytic parameters when solving analytical 

problems and developing new biosensors.  Multi-layer models are essential for modelling biosensors 

with selective membranes to attain appropriate model accuracy [4,5]. Nonetheless, due to the model's 

simplicity, even monolayer models that disregard external mass movement by diffusion are still utilized 

in various applications [6]. Lyons [7] provided the analytical solutions for steady- state conditions for 

both the amperometric and potentiometric biosensor.  

The two-compartment models and a type of multi-layer model have been used to model 

biosensors [5,8-12]. The two-compartment biosensor model is characterized by a relatively thin layer of 

an enzyme and an external diffusion layer [5]. Various desirable characteristics of biosensors have been 

identified using two-compartment models [10,12]. 

Baronas [8,13] solve this initial boundary value problem numerically. We used the new 

homotopy perturbation approach to construct an approximate analytical solution of concentration and 

current to describe and analyze the performance biosensor in this work. 

 

 

2. MATHEMATICAL MODELLING 

 
 

Figure 1. The schematic diagram represents an amperometric biosensor. 

 

A principal form of the enzyme-catalyzed reaction is, 

𝐸 + 𝑆 ↔ 𝐸𝑆 → 𝐸 + 𝑃           (1) 

where substrate is 𝑆, 𝐸 is enzyme and to form a complex (𝐸𝑆). After product P is dissociated, the 

complex regenerates the enzyme [15,16]. Because the intermediate complex (ES) does not change in a 

quasi-steady state, it is possible to model biosensors biochemical behaviour [17]. As a result, the 

substrate (S) is converted to the product (P). 

 𝑆 → 𝑃                                (2) 
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The electro-active product P is converted at the electrode surface into a species P' that has no 

effect on the biosensor's function, 

 𝑃 → 𝑃′ ± 𝑒−            (3) 

The dimensionless form of the two-compartment model was obtained by rescaling space, 

concentrations, and diffusion coefficients as follows [14]: 
𝑑2𝑆𝑒

𝑑𝑋2 − 𝜎2 𝑆𝑒

1+𝑆𝑒
= 0           (4) 

𝐷𝑃𝑒
𝑑2𝑃𝑒

𝑑𝑋2 + 𝜎2 𝑆𝑒

1+𝑆𝑒
= 0, 𝑋 ∈ (0,1)          (5) 

The governing equations are given as follows:  
𝑑2𝑆𝑚

𝑑𝑋2 = 0            (6) 

𝑑2𝑃𝑚

𝑑𝑋2
= 0, 𝑋 ∈ (1,1 + 𝐿𝑚)                                                                             (7) 

The boundary conditions are  

𝑃𝑒(0) = 0,
𝑑𝑆𝑒

𝑑𝑋
|

𝑋=0
= 0         (8) 

𝑆𝑚(1 + 𝐿𝑚) = 𝑆0, 𝑃𝑚(1 + 𝐿𝑚) = 0        (9) 
𝑑𝑆𝑒

𝑑𝑋
|
𝑋=1

= 𝐷𝑆𝑚
𝑑𝑆𝑚

𝑑𝑋
|
𝑋=1

, 𝑆𝑒(1) = 𝑆𝑚(1)                      (10) 

𝑑𝑃𝑒

𝑑𝑋
|
𝑋=1

=
𝐷𝑃𝑚

𝐷𝑃𝑒

𝑑𝑃𝑚

𝑑𝑋
|
𝑋=1

, 𝑃𝑒(1) = 𝑃𝑚(1)                           (11) 

where  

𝑆𝑒 =
𝑠𝑒

𝑘𝑚
, 𝑃𝑒 =

𝑝𝑒

𝑘𝑚
, 𝑆𝑚 =

𝑠𝑚

𝑘𝑚
, 𝑃𝑚 =

𝑃𝑚

𝑘𝑚
    𝑋 =

𝑥

𝑙𝑒
, 𝐿𝑚 =

𝑙𝑚

𝑙𝑒
, 𝐾𝑀

𝑎𝑝𝑝 =
𝑘𝑀

𝑎𝑝𝑝

𝑘𝑀
, 𝑆0 =

𝑠0

𝑘𝑚
       

𝐷𝑃𝑒 =
𝑑𝑃𝑒

𝑑𝑆𝑒
, 𝐷𝑆𝑚 =

𝑑𝑆𝑚

𝑑𝑆𝑒
, 𝐷𝑃𝑚 =

𝑑𝑃𝑚

𝑑𝑆𝑒
, 𝜎2 =

𝑣𝑚𝑎𝑥𝑙𝑒
2

𝑘𝑚𝑑𝑆𝑒
                (12) 

 

where 𝑆𝑒 , 𝑃𝑒 , 𝑆𝑚, 𝑃𝑚 is the dimensionless concentrations of the substrates and products in the 

enzyme layer and membrane layer,  𝐷𝑆𝑒 , 𝐷𝑃𝑒 , 𝐷𝑆𝑚, 𝐷𝑃𝑚 are the dimensionless diffusion coefficients, 𝜎 

is the dimensionless diffusion module or the Damköhler number [5,13,18]. The dimensionless current 

‘I’ is as follows: 

𝐼 = 𝐷𝑃𝑒
𝑑𝑃𝑒

𝑑𝑋
|
𝑋=0

=
𝑖𝑙𝑒

𝑛𝑒𝐹𝑑𝑆𝑒𝑘𝑀
                   (13) 

 

3. ANALYTICAL EXPRESSION FOR THE CONCENTRATIONS OF THE SUBSTRATE  

(𝑺𝒆 𝐚𝐧𝐝 𝑺𝒎) AND THE PRODUCT  (𝑷𝒆 𝐚𝐧𝐝 𝑷𝒎). 

Mathematical models arising from modern, sophisticated biochemical reactions are frequently 

nonlinear differential systems with no concrete solutions. Although most numerical solutions are 

reasonably easy to find, researchers are continually concerned about flaws such as loss of stability of 

modifying parameters to match numerical data. Fortunately, in recent years, many trustworthy and 

highly accurate analytical procedures have been created using sophisticated computational tools. 

Variation iteration [19], homotopy perturbation [20,21], differential transformation [22,23], 

Green's function iterative [24,25], exp-function [26], and series technique [27], Adomian decomposition 

[28] are just a few examples of these methods. In this communication, we foresee that the wider science 

community would escalate the application of highly accurate and efficient analytical methods 

(homotropy perturbation method) accessible to all.   
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Solving the equations (4) to (7) for the BC’s (8) to (11), using new homotropy perturbation 

approach [29, 30] , the approximate analytical solution for concentrations of substrates (𝑆𝑒 , 𝑆𝑚) and the 

product (𝑃𝑒 , 𝑃𝑚) are obtained ( Appendix-A) as follows: 

𝑆𝑒(𝑋)=  
𝑆0𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇𝑋

𝐿𝑚  √𝜇  𝑠𝑖𝑛ℎ √𝜇+𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇
                  (14) 

 

𝑃𝑒(𝑋) =

𝑆0𝐷𝑆𝑚[
𝑋(𝐿𝑚𝐷𝑃𝑒√𝜇 𝑠𝑖𝑛ℎ √𝜇+𝐷𝑃𝑚 𝑐𝑜𝑠ℎ √𝜇−4𝐷𝑃𝑚)

𝐿𝑚𝐷𝑃𝑒+𝐷𝑃𝑚
−(𝑐𝑜𝑠ℎ(√𝜇𝑋)−4)

]

𝐷𝑃𝑒(𝐿𝑚√𝜇 𝑠𝑖𝑛ℎ √𝜇+𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇)
              (15) 

 

𝑆𝑚(𝑋) =
𝑆0[(𝑋−1)√𝜇 𝑠𝑖𝑛ℎ √𝜇+𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇]

𝐿𝑚√𝜇 𝑠𝑖𝑛ℎ √𝜇+𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇
                                      (16)  

𝑃𝑚(𝑋) =
𝑆0𝐷𝑆𝑚(1+𝐿𝑚−𝑋)[√𝜇𝑠𝑖𝑛ℎ(√𝜇)−cosh(√𝜇)+4]

(𝐿𝑚𝐷𝑃𝑒+𝐷𝑃𝑚)(𝐿𝑚√𝜇 𝑠𝑖𝑛ℎ √𝜇+𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇)
                 (17) 

where 𝜇 =
𝜎2

1+𝑆𝑒(0)
   and  𝑆𝑒(0) =

𝑆0𝐷𝑆𝑚

𝐿𝑚𝜎 𝑠𝑖𝑛ℎ 𝜎+𝐷𝑆𝑚𝑐𝑜𝑠ℎ𝜎
                                                       (18) 

The dimensionless currents,  

𝐼 =
𝑖𝑙𝑒

𝑛𝑒𝐹𝑑𝑆𝑒𝑘𝑀
=

𝑆0𝐷𝑆𝑚(𝐿𝑚𝐷𝑃𝑒√𝜇 𝑠𝑖𝑛ℎ √𝜇+𝐷𝑃𝑚(𝑐𝑜𝑠ℎ √𝜇−4))

(𝐿𝑚𝐷𝑃𝑒+𝐷𝑃𝑚)(𝐿𝑚√𝜇 𝑠𝑖𝑛ℎ √𝜇+𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇)
                                                         (19) 

When √𝜇 is very small,  𝑠𝑖𝑛ℎ √𝜇 ≈ √𝜇 and 𝑐𝑜𝑠ℎ √𝜇 ≈ 1. In this case the dimensionless current 

becomes 

𝐼 ≈
𝑆0𝐷𝑆𝑚(𝐿𝑚𝐷𝑃𝑒𝜇−3𝐷𝑃𝑚)

(𝐿𝑚𝐷𝑃𝑒+𝐷𝑃𝑚)(𝐿𝑚𝜇+𝐷𝑆𝑚)
                   (20) 

Recently Romas Baronas et al. [14] obtained current for the limiting cases as follows: 

𝐼 =
𝑖𝑙𝑒

𝑛𝑒𝐹𝑑𝑆𝑒𝑘𝑀
=

𝑆0𝐷𝑃𝑒(𝐷𝑆𝑚−𝜎2) [𝐿𝑚𝐷𝑃𝑒𝜎 sinh ( 𝜎)+𝐷𝑃𝑚(𝑐𝑜𝑠ℎ(𝜎)−1)]

(𝐿𝑚𝐷𝑃𝑒+𝐷𝑃𝑚)(𝐿𝑚𝜎 sinh ( 𝜎)+𝐷𝑆𝑚 𝑐𝑜𝑠ℎ(𝜎))
, 𝑆0 ≪ 1             (21) 

 

𝐼 =
𝑖𝑙𝑒

𝑛𝑒𝐹𝑑𝑆𝑒𝑘𝑀
= 𝜎2 (

𝐷𝑃𝑚+2𝐿𝑚𝐷𝑃𝑒

2(𝐷𝑃𝑚+𝐷𝑃𝑒𝐿𝑚)
) , 𝑆0 ≫ 1                 (22) 

 

3.1 Sensitivity Of Biosensor 

The most significant characteristics of biosensors is sensitivity. A sensitivity of the biosensor 𝐵𝑆  

can be described the maximum biosensor current density vs substrate concentration 𝑆0 [31]. The 

dimensionless sensitivity is calculated as follows: 

𝐵𝑆(𝑆0) =
𝜕𝐼(𝑆0)

𝜕𝑆0

𝑆0

𝐼(𝑆0)
 =

𝑆0𝐷𝑆𝑚𝐿𝑚𝜎2(𝐷𝑃𝑒𝐷𝑆𝑚+3𝐷𝑃𝑚)(𝐿𝑚𝜎2+𝐷𝑆𝑚)(
𝐿𝑚𝜎2

1+
𝑆0𝐷𝑆𝑚

𝐿𝑚𝜎2+𝐷𝑆𝑚

+𝐷𝑆𝑚)

((𝑆0+1)𝐷𝑆𝑚
2+2𝐷𝑆𝑚𝐿𝑚𝜎2+𝐿𝑚𝜎4)

2
(3𝐷𝑃𝑚−

𝐿𝑚𝜎2

1+
𝑆0𝐷𝑆𝑚

𝐿𝑚𝜎2+𝐷𝑆𝑚

)

                  (23) 

where 𝐼(𝑆0) is the density of the steady-state biosensor current.  

 

3.2 Resitance of Biosensor 

The resistance of biosensors 𝐵𝑅 is discussed. The biosensor current with respect to the enzyme 

layer thickness 𝐿𝑚 [31] is expressed as the dimensionless resistance of the biosensor. 
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𝐵𝑅(𝐿𝑚) =
𝐿𝑚

𝐼(𝐿𝑚)

𝑑𝐼(𝐿𝑚)

𝑑𝐿𝑚
=

(𝑆0𝐿𝑚
2 𝐷𝑆𝑚𝜎3)(𝐷𝑃𝑒𝐷𝑆𝑚+3𝐷𝑃𝑚)

(𝐿𝑚𝜎2+𝐷𝑆𝑚)(3𝐷𝑃𝑚−𝐷𝑃𝑒𝐿𝑚𝜎2)(𝐷𝑆𝑚𝑆0+𝐿𝑚𝜎𝐷𝑆𝑚)2                        (24) 

where BR  denotes the amperometric biosensor's sensitivity and 𝐼(𝐿𝑚)  the steady-state biosensor 

current estimated at the enzyme layer thickness (𝐿𝑚 ).  Conductance is the inverse of resistance. Thus, 

this type of detection is known as a conductometric electrochemical biosensor.  

 

 

4. RESULT AND DISCUSSION 

The nonlinear equations (4) to (7) are solved analytically. Equations (14)- (17) are the new, 

simple and closed-form of analytical expressions for the concentration of substrate in enzyme layer 

𝑆𝑒(𝑋) 𝑎𝑛𝑑  in the enzyme membrane  𝑆𝑚(𝑋).    𝑃𝑒(𝑋) and 𝑃𝑚(𝑋) are concentration of product in enzyme 

layer and in the enzyme membrane  for different values of parameters such as diffusion coefficients 

(𝐷𝑆𝑚, 𝐷𝑝𝑚 and 𝐷𝑝𝑒), the maximal enzymatic rate  (𝑣𝑚𝑎𝑥), Michaelis constant  (𝑘𝑀) and diffusion 

module (𝜎). 

 

4.1. Validation of analytical results with numerical simulation and previous results. 

 In this section, the obtained approximate analytical expression for the steady-state concentrations 

and given by equations (14)-(17) are compared to numerical results obtained by the highly accurate 

MAPLE software. Our analytical expression of the concentration of substrates and products in the 

enzyme and membrane layer is compared with simulation results in Figures 2(a-d) for the experimental 

values of parameters. Baronas et al. [14] obtained analytical expression of current for the limiting cases 

only. In Figures 3(a-b), our current result is compared to the limiting case results of Baronal et al. [14] to 

demonstrate the efficiency of the current method.  Figures S1-S4 are also provided in the supplementary 

materials  (initiated with S) to compare concentrations with simulation results by using Maple software 

for one-compartment model (𝐿𝑚 = 0). It's mentioned that there's a good agreement. 

When 𝐿𝑚 = 0 the two-compartment model becomes one-compartment model. In this case 

analytical expressions of concentrations and current becomes as follows: 

𝑆𝑒(𝑋)=  
𝑆0 𝑐𝑜𝑠ℎ √𝜇𝑋

𝑐𝑜𝑠ℎ √𝜇
                    (25)            

𝑃𝑒(𝑋) =
𝑆0𝐷𝑆𝑚[𝑋(𝐷𝑃𝑚 𝑐𝑜𝑠ℎ √𝜇−4𝐷𝑃𝑚)−𝐷𝑃𝑚𝑐𝑜𝑠ℎ √𝜇𝑋+4𝐷𝑃𝑚]

(𝐷𝑃𝑚)𝐷𝑃𝑒𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇
               (26) 

𝑆𝑚(𝑋) =
𝑆0[(𝑋−1)√𝜇 𝑠𝑖𝑛ℎ √𝜇+𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇]

𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇
                                      (27) 

 𝑃𝑚(𝑋) =
𝑆0𝐷𝑆𝑚(1−𝑋)[√𝜇𝑠𝑖𝑛ℎ(√𝜇)−cosh(√𝜇)+4]

(𝐷𝑃𝑚)(𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇)
                  (28) 

 where 𝜇 =
𝜎2

1+𝑆𝑒(0)
   and  𝑆𝑒(0) =

𝑆0

𝑐𝑜𝑠ℎ𝜎
    . 

The dimensionless current is,  

            𝐼 =
𝑖𝑙𝑒

𝑛𝑒𝐹𝑑𝑆𝑒𝑘𝑀
=

𝑆0(𝑐𝑜𝑠ℎ √𝜇−4))

𝑐𝑜𝑠ℎ √𝜇)
                                                                                                (29) 
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Figure 2. Dimensionless concentrations versus dimensionless distance. (a) Dimensionless concentration 

substrate in enzyme layer 𝑆𝑒(𝑋). b) Dimensionless concentration product in the enzyme 

layer𝑃𝑒(𝑋). c) Dimensionless concentration product in the membrane 𝑃𝑚(𝑋). d) Dimensionless 

concentration substrate in the membrane 𝑆𝑚(𝑋). 

 

Figure.4a represents the concentration of substrate 𝑆𝑒(𝑋)  versus normalized distance from the 

electrode surface  for various values of parameter thicknesses ratio of  enzyme layer and diffusion layer 

(𝐿𝑚) . In this figure, the concentration of the substrate increases when the parameter 𝐿𝑚  decreases. 

Figure.4b and Figure.4c shows the concentration of substrate versus normalized distance for various 

values of bulk concentration of substrate and Damköhler number. In those figures that the concentration 

of substrate increases when bulk concentration of substrate (𝑆0) and diffusion module (𝜎) increases.  

Figure 4d, illustrates the concentration of substrate for  different values of parameter ‘𝐷𝑆𝑚’ . In this 

figure, the concentration increases with the decreasing of diffusion coefficients.  
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Figure 3. Comparison of dimensionless current (𝐼) versus 𝑆0 for various values of parameters with 

previous results[14]. Here bold line represents eqn. (19)  and dotted line represents eqn. (21). 

 

 

Figure.5a to Figure.5d, obtained the concentration of product (𝑃𝑒) versus normalized distance for 

various values of thicknesses ratio of  enzyme layer and diffusion layer and  bulk concentration of 

substrate. It those figures that the concentration of product increases when 𝐿𝑚, 𝑆0, 𝜎, 𝐷𝑆𝑚 increases. 

Figure.5e inferred that the concentration of product versus normalized distance for various values of 

parameters. The figure represents the concentration of the product decreases when the diffusion 

coefficient (𝐷𝑃𝑒) increases.  

Figure.6a and Figure.6b shows the concentration of substrate versus normalized distance for 

various values of a parameter. In this figures that the concentration of the substrate increases when 𝑆0 

and diffusion coefficient (𝐷𝑆𝑚) increases. Figure.6c denotes the concentration of substrate versus 

normalized distance for various values of parameter. It fallows that the concentration of substrate 

increases when parameter diffusion module (𝜎) decreases. Figure.7a to Figure.7c shows the 

concentration of products versus normalized distance with various values of the parameters. In those 

figures, we can see that the concentration increases when the parameters 𝜎, 𝐷Pm, 𝐷Pe decreases. The effect 

of the diffusion coefficient (𝐷𝑆𝑚) and bulk concentration of substrate (𝑆0) on the concentration is exactly 

opposite to that of 𝜎, 𝐷Pm, 𝐷Pe as illustrated in Figure. 7d and Figure. 7e. 

Figure 8, illustrates the effect of thicknesses of enzyme layer and diffusion layer (𝐿𝑚 ) on 

sensitivity profile (𝐵𝑆). In this figure, the values of parameters 𝐿𝑚 and bulk concentration of substrate 

(𝑆0) is increases when sensitivity is also increases.  

The effect of different values of bulk concentration of substrate and ration of thicknesses of 

enzyme layer and diffusion layer for resistance profile is shown in Figure 9. It is observed that an increase 

in 𝑆0 and 𝐿𝑚 leads to increase  in resistance. 
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Figure 4. Dimensionless concentration of substrate 𝑆𝑒(𝑋), versus normalized distance (𝑋) for different 

values of parameters for some fixed experimental values of other parameters Common: 𝐿𝑚 =
1, 𝑆0 = 0.1, 𝜎 = 0.1, 𝐷𝑆𝑚 = 0.15, 𝐷Pm = 0.15, 𝐷Pe = 1. 
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Figure 5. Dimensionless concentration of product 𝑃𝑒(𝑋), versus normalized distance (𝑋) for different 

values of parameters for some fixed experimental values of other parameters Common: 𝐿𝑚 =
1, 𝑆0 = 0.1, 𝜎 = 0.1, 𝐷𝑆𝑚 = 0.15, 𝐷Pm = 0.15, 𝐷Pe = 1. 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 220238 

  

10 

 

 
 

 

Figure 6. Dimensionless concentration of substrate 𝑆𝑚(𝑋), versus normalized distance (𝑋) for different 

values of parameters for some fixed experimental values of other parameters Common: 

𝐿𝑚 = 1, 𝑆0 = 0.1, 𝜎 = 0.1, 𝐷𝑆𝑚 = 0.15, 𝐷Pm = 0.15, 𝐷Pe = 1. 
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Figure 7. Dimensionless concentration of substrate 𝑃𝑚(𝑋), versus normalized distance (𝑋) for different 

values of parameters for some fixed experimental values of other parameters Common: 𝐿𝑚 =
1, 𝑆0 = 0.1, 𝜎 = 0.1, 𝐷𝑆𝑚 = 0.15, 𝐷Pm = 0.15, 𝐷Pe = 1. 
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Figure 8. The sensitivity of biosensor using equation (23) for fixed values of  𝜎 = 1, 𝐷𝑆𝑚 = 1, 𝐷Pm =
1, 𝐷Pe = 1 and various values of  𝐿𝑚. 

 

 

 
 

Figure 9. The resistance of biosensor using equation. (24) for fixed values of : 𝜎 = 0.1, 𝐷𝑆𝑚 =
0.15, 𝐷Pm = 0.15, 𝐷Pe = 1  and various values of 𝑆0. 

 

 

4. CONCLUSIONS 

This paper discusses the modelling of the enzyme-based two-compartment model of 

amperometric biosensors. The approximate analytical expression for the concentration of the substrates, 

products in the enzyme layer and enzyme membrane (diffusion layer) and current for all parameter 

values are obtained. The analytical results are compared with simulation results. The same method can 

be applied to find the concentration and current of the two-compartment model of potentiometric 

biosensor by including the zero-flux boundary conditions. These new analytical results provide a good 

understanding of the system and the enhancement of the parameters in the two-compartment model 

of the biosensor.  
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NOMENCLATURE: 

Parameters Meanings Units 

𝑠𝑒 Concentrations of the substrate in the enzyme 

layer 

𝜇𝑚𝑜𝑙/𝑐𝑚2 

𝑝𝑒  Concentrations of the product in the enzyme layer 𝜇𝑚𝑜𝑙/𝑐𝑚2 

𝑠𝑚  Concentrations of the substrate in the enzyme 

membrane 

𝜇𝑚𝑜𝑙/𝑐𝑚2 

𝑝𝑚  Concentrations of the product in the enzyme  

membrane  

𝜇𝑚𝑜𝑙/𝑐𝑚2 

𝑆𝑒 Dimensionless concentrations of the substrate in 

the enzyme layer 

None 

𝑃𝑒 Dimensionless concentrations of the product in 

the enzyme layer 

None 

𝑆𝑚 Dimensionless concentrations of the substrate in 

the enzyme membrane 

None 

𝑃𝑚 Dimensionless concentrations of the product in 

the enzyme  membrane  

None 

𝑑𝑆𝑒 , 𝑑𝑃𝑒 , 𝑑𝑆𝑚, 𝑑𝑃𝑚 Diffusion coefficients 𝜇𝑀2/𝑠 

𝐷𝑆𝑒 , 𝐷𝑃𝑒 , 𝐷𝑆𝑚 , 𝐷𝑃𝑚 Dimensionless diffusion coefficients None 

𝑥 Distance from the electrode 𝑐𝑚 

𝑋 Dimensionless distance from the electrode None 

𝑣𝑚𝑎𝑥 Maximal enzymatic rate 𝜇𝑀/𝑠 

𝑘𝑀 Michaelis -Menten C constant 𝜇𝑀 

𝑙𝑒 Thicknesses of the enzyme layer 𝜇𝑚 

𝑙𝑚 Thicknesses of the enzyme membrane 𝜇𝑚 

𝐿𝑚 =
𝑙𝑚

𝑙𝑒
 

Dimensionless thicknesses ratio of  enzyme layer 

and diffusion layer 

None 

𝐼 Dimensionless current None 
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𝑖 Current density of the biosensor 𝜇𝐴/𝑐𝑚2 

𝑆0 =
𝑠0

𝑘𝑚
 

 

Dimensionless bulk concentration of substrate None 

𝐾𝑀
𝑎𝑝𝑝 =

𝑘𝑀
𝑎𝑝𝑝

𝑘𝑀
,   

Dimensionless Michaelis-Menten constant 

 

None 

𝑛𝑒 Number of electrons involved in a charge transfer 

at the electrode surface 

None 

𝐹 Faraday constant (96485 C/mol) C/mol 

𝐵𝑠 Dimensionless sensitivity None 

                    

𝐵𝑅 

Dimensionless Resistance  None 

𝜎 Dimensionless diffusion module or the 

Damköhler number 

None 

 

 

 

APPENDIX – A: THE APPROXIMATE ANALYTICAL EXPRESSION NONLINEAR  

EQUATIONS (4) AND (5) 

 

The homotopy for the eqns. (4) and (5) can be written as follows: 

(1 − 𝑝) [
𝑑2𝑆𝑒

𝑑𝑋2
−

𝜎2

1+𝑆𝑒(0)
𝑆𝑒] − 𝑝 [(1 + 𝑆𝑒)

𝑑2𝑆𝑒

𝑑𝑋2
− 𝜎2𝑆𝑒] = 0    (A1) 

(1 − 𝑝) [𝐷𝑃𝑒
𝑑2𝑃𝑒

𝑑𝑋2 +
𝜎2

1+𝑆𝑒(0)
𝑆𝑒] + 𝑝 [(1 + 𝑆𝑒)

𝑑2𝑃𝑒

𝑑𝑋2 + 𝜎2𝑆𝑒] = 0   (A2) 

where 𝑆𝑒(0) =
𝑆0𝐷𝑆𝑚

𝐿𝑚𝜎 𝑠𝑖𝑛ℎ 𝜎+𝐷𝑆𝑚𝑐𝑜𝑠ℎ𝜎
                                                                            (A3) 

Now assume that approximate solution of the eqns. (A1) and (A2) as 

𝑆𝑒 = 𝑆𝑒0 + 𝑝𝑆𝑒1 + 𝑝2𝑆𝑒2+. ..        (A4) 

𝑃𝑒 = 𝑃𝑒0 + 𝑝𝑃𝑒1 + 𝑝2𝑃𝑒2+. ..        (A5) 

Substituting the eqns.(A4) and (A5) in eqns. (A1) and (A2) and equating the coefficients of p on both 

sides we get,  

𝑝𝑜:
𝑑2𝑆𝑒0

𝑑𝑋2 −
𝜎2

1+𝑆𝑒(0)
𝑆𝑒0 = 0        (A6) 

𝑝0: 𝐷𝑃𝑒
𝑑2𝑃𝑒0

𝑑𝑋2
+

𝜎2

1+𝑆𝑒(0)
𝑆𝑒 = 0        (A7) 

The eqn. (A6) and (A7) can be written as  
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𝑑2𝑆𝑒0

𝑑𝑋2 − 𝜇𝑆𝑒0 = 0         (A8) 

𝐷𝑃𝑒
𝑑2𝑃𝑒0

𝑑𝑋2 + 𝜇𝑆𝑒0 = 0         (A9) 

where  𝜇 =
𝜎2

1+𝑆𝑒(0)
         (A10) 

The boundary conditions are 

𝑑𝑆𝑒0

𝑑𝑋
|
𝑋=0

= 0, 𝑃𝑒0(0) = 0        (A11) 

𝑆𝑚(1 + 𝐿𝑚) = 𝑆0, 𝑃𝑚(1 + 𝐿𝑚) = 0       (A12) 

𝑑𝑆𝑒0

𝑑𝑋
|
𝑋=1

= 𝐷𝑆𝑚
𝑑𝑆𝑚

𝑑𝑋
|
𝑋=1

, 𝑆𝑒0(1) = 𝑆𝑚(1)                 (A13) 

𝑑𝑃𝑒0

𝑑𝑋
|
𝑋=1

=
𝐷𝑃𝑚

𝐷𝑃𝑒

𝑑𝑃𝑚

𝑑𝑋
|
𝑋=1

, 𝑃𝑒0(1) = 𝑃𝑚(1)      (A14) 

Solving the above equations using the boundary conditions we get 

 

𝑆𝑒(𝑋) =
𝑆0𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇𝑋

𝐿𝑚√𝜇 𝑠𝑖𝑛ℎ √𝜇+𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇
       (A15) 

𝑃𝑒(𝑋) =

𝑆0𝐷𝑆𝑚[
𝑋(𝐿𝑚𝐷𝑃𝑒√𝜇 𝑠𝑖𝑛ℎ √𝜇+𝐷𝑃𝑚 𝑐𝑜𝑠ℎ √𝜇−4𝐷𝑃𝑚)

𝐿𝑚𝐷𝑃𝑒+𝐷𝑃𝑚
−(𝑐𝑜𝑠ℎ(√𝜇𝑋)−4)

]

𝐷𝑃𝑒(𝐿𝑚√𝜇 𝑠𝑖𝑛ℎ √𝜇+𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇)
              (A16) 

 

𝑆𝑚(𝑋) =
𝑆0((𝑋−1)√𝜇 𝑠𝑖𝑛ℎ √𝜇+𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇)

𝐿𝑚√𝜇 𝑠𝑖𝑛ℎ √𝜇+𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇
      (A17) 

 

𝑃𝑚(𝑋) =
𝑆0𝐷𝑆𝑚(1+𝐿𝑚−𝑋)[√𝜇𝑠𝑖𝑛ℎ(√𝜇)−cosh(√𝜇)+4]

(𝐿𝑚𝐷𝑃𝑒+𝐷𝑃𝑚)(𝐿𝑚√𝜇 𝑠𝑖𝑛ℎ √𝜇+𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇)
     (A18) 

The dimensionless currents, ‘I’ becomes 

𝐼 = 𝐷𝑃𝑒
𝑑𝑃𝑒

𝑑𝑋
|
𝑋=0

=
𝑖𝑙𝑒

𝑛𝑒𝐹𝑑𝑆𝑒𝑘𝑀
=

𝑆0𝐷𝑆𝑚(𝐿𝑚𝐷𝑃𝑒√𝜇 𝑠𝑖𝑛ℎ √𝜇+𝐷𝑃𝑚(𝑐𝑜𝑠ℎ √𝜇−4))

𝐷𝑃𝑒(𝐿𝑚𝐷𝑃𝑒+𝐷𝑃𝑚)(𝐿𝑚√𝜇 𝑠𝑖𝑛ℎ √𝜇+𝐷𝑆𝑚 𝑐𝑜𝑠ℎ √𝜇)
  (A19) 

---------------------------------------------------------------------------------------------------------------------- 
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SUPPLEMENTARY MATERIAL OF THE MANUSCRIPT. 

 

 

Figure S1. Dimensionless concentration of substrate 𝑆𝑒(𝑋), versus normalized distance (𝑋). (a) 𝑆0 =
0.0005, 0.1, 0.3, 0.5 .( b) 𝜎 = 0.005, 1, 3, 10 

 

 

Figure S2. Dimensionless concentration of product 𝑃𝑒(𝑋), versus normalized distance (𝑋)  (a) 𝑆0 =
0.005, 0.1, 0.3, 0.5 ,( b) 𝐷Sm = 0.2, 0.5, 1, 300,(c) 𝐷Pm = 0.1, 0.2, 0.3, 5 (d) 𝜎 =
0.005, 1, 3, 10,(e) 𝐷Pe = 2, 3, 5, 9 
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Figure S3. Dimensionless concentration of substrate 𝑆𝑚(𝑋), versus normalized distance (𝑋)(a) 𝑆0 =
0.005, 0.1, 0.3, 0.5 ,( b) 𝐷Sm = 0.2, 0.3, 0.5, 3,(c) 𝜎 = 0.005, 0.04, 0.07, 0.1 

 

 

Figure S4. Dimensionless concentration of substrate𝑃𝑚(𝑋), versus normalized distance (𝑋). (a) 𝑆0 =
0.005, 0.1, 0.3, 0.5 ,( b) 𝐷Sm = 0.2, 0.5, 1, 3,(c) 𝐷Pm = 0.1, 0.2, 0.3, 0.5 (d) 𝜎 =
0.005, 1, 3, 10,(e) 𝐷Pe = 1, 3, 5, 10 
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