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Super capacitors with layered double hydroxides (LDHs) have excellent specific capacitance and cycling 

performance due to their unique layered structures and rich REDOX sites. The basal spacing (dspacing) of 

LDHs can be controlled by selecting optimal metal cations and interlayer anions. In general, the greater 

the dspacing of LDHs electrode materials, the greater the specific capacitance of the super-capacitors. In 

this work, the machine learning model was utilized to seek for novel LDHs materials with the larger 

dspacing. The genetic algorithm combined machine learning approaches were utilized to select the 

appropriate feature subset including atomic parameters and chemical compositions of LDHs. The 

Extreme Gradient Boosting model was established to predict the dspacing of LDHs. The correlation 

coefficient between predicted dspacing and experimental dspacing reached as high as 0.94 for the training set 

in leave-one-out cross-validation (LOOCV) and 0.89 for the independent testing set, respectively. The 

high-throughput screening of new LDHs with larger dspacing was carried out by using our online 

computation platform for materials data mining (OCPMDM). The dspacing of designed LDHs 

(Co0.67Fe0.33[Fe(CN)6]0.11•(OH)2) was predicted to be 12.40Å, increasing by 10.91% compared to the 

maximum dspacing (11.18Å) of Mg0.67Al0.33 [Fe(CN)6]0.08•(OH)2 reported. The online platform for 

predicting dspacing of unknown LDHs can be accessible for the public on the web server: http://materials-

data-mining.com/online_model/LDHs_basal_spacing_model. 
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1. INTRODUCTION 

 

Considering the current environmental protection problem and shortage of energy, the energy 

storage field was widely concerned owe to the probability of clean energy power generation. [1-5] 

Energy storage devices include conventional capacitors, fuel cells, rechargeable batteries, and super-
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capacitors. Super-capacitors are new components that store energy through a two-layer interface between 

an electrode and an electrolyte. Super-capacitor has drawn great concern in recent years owe to long 

cycle life, high specific capacitance, excellent reliability, and wide operating temperature. [6-10] In view 

of different storage energy mechanisms, super-capacitors can be divided into two categories: 

electrochemical double-layer capacitors (EDLCs) based on carbon and pseudo-capacitors based on metal 

oxides/hydroxides or electronically conducting polymers. [11] Pseudo-capacitors mainly generate 

pseudo-capacitance through the reversible REDOX reaction on the surface of the active electrode 

material to realize the storage and conversion of energy. The specific capacitance of the pseudo-

capacitors is tens of times larger than that of EDLCs by using interfacial reversible faradaic reactions. 

Traditional pseudo-capacitor materials mainly include typical transitional metal oxides/hydroxides, such 

as RuO2, MnO2, Co3O4, NiO, Fe3O4, Ni(OH)2, Co(OH)2, and their binary systems. [6] Recently, layered 

double hydroxides (LDHs) were regarded as the electrode material for super-capacitors due to their 

layered structures.  

LDHs are the type of two-dimensional nanostructured anionic clays with commutable anions in 

the interlayer space composed of two kinds of metallic cations. [12] LDHs may be represented by the 

general formula[𝑀1−𝑥
2+ 𝑀𝑥

3+(𝑂𝐻)2]𝑥+(𝐴𝑛−)𝑥/𝑛, where 𝑀2+(M = e.g. Mg, Cu, Ni, Co, Cd, or Zn) and 

𝑀3+(M = e.g. Al, Ga, Cr, Fe or In) are divalent and trivalent cations respectively; 𝐴𝑛− is an anion 

including 𝐶𝐼−，𝐵𝑟−，𝐶𝑂3
2−，𝑁𝑂3

−，𝑆𝑂4
2−,[𝐹𝑒(𝐶𝑁)6]3−, etc. The value of 𝑥 is the mole fraction of 

𝑀3+ and is generally in the range 0.2-0.33; If 𝑥 is too big, it's going to form M(OH)3; If 𝑥 is too small, 

it's going to form M(OH)2. Therefore, 𝑥 needs to be limited within a certain range to form pure LDHs. 

The greatest advantage of LDHs is that its layered structure can provide abundant REDOX sites, so it is 

suitably used as electrode materials for super-capacitors. Figure 1 illustrates the structure of LDHs. The 

basal spacing is defined as:  

dspacing= dlayer + dinter,  

Where dlayer represents the laminate thickness of the LDHs; the dinter represents the height 

between two laminates of the LDHs.  

 

 
 

Figure 1. The structure of LDHs 
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In the process of electrochemical energy storage, due to the narrow basal spacing (dspacing) of the 

LDHs material, the intercalation of electrolyte ions is generally inhibited, thereby limiting the full 

utilization of the internal structure between the layers in the electrochemical energy storage process. 

Xiao et al. synthesized CoAl-LDHs with different dspacing and tested the pseudo capacitance of super-

capacitors. The results show that increasing the dspacing can increase the pseudo capacitance. [13].  

Data mining can be adapted for material design and property optimization. [14-18] For example, 

Li predicted Zeta potential of decomposed peat via machine learning model. [19] Partha S. reported that 

the artificial neural network (ANN) model was used to predict fluoride adsorption capacity of calcined 

Ca-Al-(NO3)-LDHs. [20] Hu predicted the specific surface area of LDHs by using support vector 

regression (SVR) model and the novel LDHs material (Ni-Fe-(CO3)-LDHs) with the desired specific 

surface area was confirmed via experiments. [21] Xiong demonstrated how to predict dspacing of LDHs 

accurately via machine learning. [22] However, how to design the novel LDHs with larger dspacing has 

not been solved up to now.  

In this work, the XGBoost model was constructed to screen for novel LDHs with the largest 

dspacing. The result indicates that XGBoost model can be used to discover the potential LDHs with the 

largest dspacing via high throughput screening of virtual samples. 

 

 

 

2. MATERIALS AND METHODS   

2.1. Data preparation 

The dspacing of LDHs were searched from the literatures on the web of science. [12, 23-66] The 

data set consisted of 85 samples with dspacing ranging from 6.7Å to 11.18Å. The testing set with 17 samples 

was randomly selected from the total data set. The rest samples were used as the training set with 68 

samples. 

After collecting samples, the feature candidates were collected from Lang’s handbook of 

chemistry. [67] The table S1 lists dspacing data for all samples in the supporting information. 

 

2.2. Extreme gradient boosting  

The extreme gradient boosting (XGBoost) algorithm is simple in structure, small in computation 

and high in accuracy, which has become a very popular algorithm for machine learning in recent years. 

[68-72]  

 

2.3. Metrics for model  

Three metrics were adapted for evaluating machine learning model. The root mean square error 

(RMSE) is utilized to evaluate the deviation between the experimental and the predicted values. The 

mean relative error (MRE) is the mean of the relative errors. The MRE describes the deviation degree 
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of samples. The correlation coefficient (R) can be used to evaluate the linear correlation between the 

predicted and the experimental values. [73]The three metrics are defined as: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑝𝑖−𝑒𝑖)2𝑛

𝑖=1

𝑛
                                                     (1) 

𝑀𝑅𝐸 =
1

𝑛
∑ |

𝑝𝑖−𝑒𝑖

𝑒𝑖
|𝑛

𝑖=1                                                       (2) 

𝑹 =
∑(𝒆𝒊−𝒆𝒊)(𝒑𝒊−𝒑𝒊)

√∑(𝒆𝒊−𝒆𝒊)𝟐 ∑(𝒑𝒊−𝒑𝒊)𝟐
                                                     (3) 

Where 𝑝𝑖  and 𝑒𝑖are

 

the predicted and experimental value of i,  𝑝𝑖 and 𝑒𝑖 are

 

the predicted and 

experimental mean value of all samples, n is the number of all samples. 

 

2.4. Computational software 

The materials machine learning was implemented by using the ExpMiner (Data mining software 

package) and OCPMDM (online computation platform for materials data mining) developed in our 

laboratory. [74] The ExpMiner of the trial version can be downloaded on the website: http://materials-

data-mining.com/home. The OCPMDM can be available at the web address: http://materials-data-

mining.com/ocpmdm.（ID: demo; password: demo） 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Flowchart of materials data mining 

Figure 2 shows the materials machine learning flowchart from data collection to model 

explanation. Firstly, the dspacing of LDHs were searched from the literatures on the web of science [12, 

23-66] and the feature candidates were collected from Lang’s handbook of chemistry. [67]  

 

 
Figure 2. The materials data mining flowchart in this work 

http://materials-data-mining.com/home
http://materials-data-mining.com/home
http://materials-data-mining.com/ocpmdm
http://materials-data-mining.com/ocpmdm
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Secondly, the subset of optimal features was selected by using the genetic algorithm (GA) 

combined with machine learning approaches. [14]Then, the machine learning model based on the 

XGBoost method was constructed to predict the dspacing of LDHs. Lastly, the virtual LDHs with the 

largest dspacing were found via high throughput screening. Furthermore, the machine learning model can 

be explained via materials pattern recognition and sensitivity analysis. [14] 

 

3.2. Feature selection  

After data preparation, there are 19 candidate features in all for feature selection. Table S2 lists 

19 candidate descriptors and the corresponding meanings in supporting information.  

 

 

 
 

Figure 3. Feature selection by using GA-XGBoost, GA-SVR and GA-ANN, respectively 

 

In this work, the Pearson correlation coefficient was used to calculate the correlation between 

feature pairs. [14] The features number selected is 15 after deletion of feature pairs with Pearson 

correlation coefficient larger than 0.9. Then feature selection was implemented by adopting genetic 

algorithm (GA) combined with three data mining approaches in model selection. [14]. The RMSE of 

machine learning models in LOOCV (leave one out cross-validation) was employed to evaluate the 

feature selection. 

Figure 3 shows the results of feature selection by using GA-XGBoost, GA-SVR and GA-ANN, 

respectively. It can be inferred that the optimal feature subset was selected based on GA-XGBoost with 

the minimum RMSE. Generally, the smaller the RMSE is, the better feature subset is. Table 1 lists the 

corresponding meanings of 6 descriptors selected by using GA-XGBoost. 
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Table 1. 6 descriptors selected by using GA-XGBoost 

 

Selected features Meaning 

TRz Thermochemical radii of the anion(Å) 

Nz The mole fraction of anions 

Ra Ionic radius of the divalent metal element(Å) 

Na The mole fraction of atoms of the divalent metal element 

Rb Ionic radius of the trivalent metal element(Å) 

Ea Electronegativity of the divalent metal element 

 

3.3. Model selection 

The result of LOOCV was utilized to select the machine learning model. In this work, three 

machine learning approaches including XGBoost, SVR and ANN were adopted to establish models for 

predicting dspacing of LDHs.  

 

 
Figure 4. The Pred.dspacing versus Exp.dspacing of training set (LOOCV) and independent testing set by 

using XGboost, SVR, and ANN approaches, respectively 

 

 

Table 2. The MRE, RMSE and R of training set (LOOCV) and independent testing set by using 

XGBoost, SVR, and ANN approaches, respectively 

 

Methods 
XGboost SVR ANN 

training set testing set training set testing set training set testing set 

RMSE 0.39 0.44 0.42 0.52 0.47 0.53 

MRE 3.72% 4.16% 3.76% 4.68 4.71% 6.26% 

R 0.91 0.87 0.88 0.84 0.81 0.78 

 

Figure 4 shows the plots of predicted dspacing (Pred. dspacing) and experimental dspacing (Exp. dspacing) 

of training set (LOOCV) and independent testing set via using XGBoost, SVR and ANN approaches, 

respectively. Table 2 lists the MRE, RMSE and R of training set (LOOCV) and independent testing set 

using XGBoost, SVR and ANN approaches, respectively. Generally, the smaller the RMSE, the better 
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the model is. It was concluded that the XGBoost model with the smallest RMSE outperformed SVR and 

ANN models.  

 

3.4. Random sampling 

To avoid contingency on account of a single sampling, three randomly sampled data sets were 

used to construct the XGBoost models, which were compared with the XGBoost model established 

above.  

 

 
Figure 5. The Pred. dspacing versus Exp. dspacing of the training set (LOOCV) and the testing set by 

XGBoost, (a) the XGBoost model established above, (b-d) the XGBoost models for three random 

samplings 

 

 

Table 3. The MRE, RMSE and R of training set (LOOCV) and testing set for the XGBoost models of 

four random samplings 

 

model samples RMSE MRE R 

XGBoost model established above 
training set 0.39 3.72% 0.91 

testing set 0.44 4.16% 0.87 

XGBoost model for the first random sampling 
training set 0.38 3.81% 0.91 

testing set 0.45 4.08% 0.87 

XGBoost model for the second random 

sampling 

training set 0.37 3.67% 0.92 

testing set 0.46 4.26% 0.86 

XGBoost model for the third random sampling 
training set 0.41 3.87% 0.90 

testing set 0.43 4.13% 0.87 

Average value of four random samples 
training set 0.39 3.78% 0.91 

testing set 0.45 4.16% 0.87 



Int. J. Electrochem. Sci., 16 (2021) Article Number: 211146 

  

8 

Figure 5(a-d) demonstrates the plots of Pred. dspacing versus Exp. dspacing of training set (LOOCV) 

and testing set via using XGBoost, (a) the XGBoost model established above, (b-d) the XGBoost models 

for three random samplings. Table 3 lists the MRE, RMSE and R of training set (LOOCV) and testing 

set for the XGBoost models of four random samplings. It can be inferred that the XGBoost model is 

robust since there are no large differences of metrics for the training set (LOOCV) and the testing set 

based on different random samplings. 

 

3.5. Hyper-parameter optimization 

3.5.1. Hyper-parameter 

Hyper-parameter are not arguments obtained through training, but parameters that need to be set 

in advance to control the learning process. In general, optimal hyper-parameters are helpful to optimize 

the prediction ability of machine learning model. [75] 

 

3.5.2. Optimization methods 

Table 4. The hyper-parameter optimized via Bayesian optimization. 

 

Main hyper-parameter Space Step Distribution Optimal value 

n_estimators [40,100] 10 Quniform 70 

max_depth [3,12] 1 Quniform 4 

min_samples_leaf [2,10] 1 Quniform 3 

min_samples_split [2,20] 1 Quniform 6 

learning_rate [0.05,0.4] 0.05 Loguniform 0.25 

Subsample [0.1,0.8] 0.1 Uniform 0.6 

 

The common methods of hyper-parameter optimization are random search, grid search, genetic 

algorithm optimization and Bayesian optimization. Bayesian optimization refers to previous evaluations 

when trying the next set of hyper-parameters. Therefore, so it can save a lot of useless work. [76]The 

optimal values selected by Bayesian optimization are shown in Table 4. 

 

3.6. Validation of optimal model 

After hyper-parameter optimization, the MRE, RMSE and R of the testing set and the training 

set were adopted to estimate the generalization performance of the optimal model. 

Figure 6 illustrates the plots of the Pred.dspacing versus Exp.dspacing based on the optimal XGBoost 

model in the training set (LOOCV). The table S3 lists the Pred.dspacing and Exp.dspacing of training set 

(LOOCV) in the supporting information. The MRE、RMSE and R of the training set (LOOCV) are 

3.26%、 0.35、0.94, respectively. 
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Figure 6. The Pred. dspacing versus Exp. dspacing based on the XGBoost model in LOOCV of training set 

 

 

Figure 7 illustrates the plots of Pred. dspacing and Exp. dspacing of LDHs by establishing the optimal 

XGBoost model for independent testing set and training set, respectively. The table S4 lists the Pred. 

dspacing of the testing set in the supporting information. The MRE、RMSE and R for the modeling are 

2.44%, 0.11, 0.98, respectively. The MRE、RMSE and R of the independent testing set are 4.16%, 0.35, 

0.89, respectively. In general, the smaller the MRE is, the better the performance of the model is. 

 

 
 

Figure 7. The Pred. dspacing versus Exp. dspacing of training dataset and independent testing dataset by 

using XGBoost 
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To further validate our model, the above established XGBoost model was used to test whether it 

can accurately predict our previous experiment [22, 74] and newly literature reported data in 2020 [77-

83]. Table.5 list the experimental and predicted dspacing of our previous experiment and reported data. 

The MRE values between the experimental and predicted dspacing values is 4.13%. 

 

 

Table 5. The Exp. dspacing and Pred. dspacing of our previous experimental and literature reported data 

 

formula Exp.dspacing (Å) Pred. dspacing (Å) Ref. 

Mg0.65Al0.35(NO3)0.35 7.51 7.59 [22] 

Ni0.65Al0.33(CO3)0.17 7.68 7.45 [74] 

Ni0.75Mn0.25(NO3)0.25 7.38 7.51 [77] 

Mg0.67Fe0.33(NO3)0.33 7.74 7.76 [78] 

Ca0.67Al0.33(NO3)0.33 8.58 8.23 [79] 

Cu0.75Cr0.25(NO3)0.25 7.68 8.7 [80] 

Ni0.67Fe0.33(Cl)0.33 7.67 7.59 [81] 

Ni0.75Mn0.25(Cl)0.25REF 7.91 7.15 [82] 

Ni0.67Fe0.33(NO3)0.33b 7.79 8.13 [83] 

 

3.7. Model application 

3.7.1. Virtual Screening 

The XGBoost model is proved to be able to accurately predict dspacing of LDHs. So, the XGBoost 

model was combined with the OCPMDM that can be used for screening out the novel LDHs with larger 

dspacing among numerous candidate materials. One the basis of the formula of LDHs, altogether 11000 

candidates were generated. 

Table 6 lists 5 potential candidate LDHs with larger dspacing screened out by using the XGBoost 

model available. The largest dspacing of designed LDHs (Co0.67Fe0.33[Fe(CN)6]0.11•(OH)2) was predicted 

to be 12.40Å, increasing by 10.91% compared to the maximum dspacing of 

Mg0.67Al0.33[Fe(CN)6]0.08•(OH)2 (11.18Å) reported. The mole fraction of trivalent cations in the virtual 

sample was recorded to verify the formation of pure LDHs.  

 

 

Table 6. The potential candidate LDHs with larger Pred.dspacing screened out by using the XGBoost 

model available 

 

Molecular formula Pred.dspacing  Mole fraction 

Co0.67Fe0.33[Fe(CN)6]0.11•(OH)2 12.40 0.33 

Co0.75Fe0.25[Fe(CN)6]0.08•(OH)2 11.80 0.25 

Ni0.67Fe0.33[Fe(CN)6]0.11•(OH)2 11.72 0.33 

Ni0.67Fe0.33[MoO4]0.17•(OH)2 11.66 0.33 

Co0.75Al0.25[Fe(CN)6]0.08•(OH)2 11.62 0.25 
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3.7.2. Online Prediction 

The online prediction platform based on the XGBoost model can help the experimental scientists 

to quickly predict the dspacing of new LDHs. Figure 8 shows the online platform for predicting dspacing of 

LDHs. User only need to input the formula of LDHs and click the ‘predict’ button to obtain the dspacing. 

[14]The online prediction platform can be accessible at the web address: http://materials-data-

mining.com/online_model/LDHs_basal_spacing_model. 

 

 
 

Figure 8. The online platform for predicting dspacing of LDHs 

 

3.8. Model explanation 

3.8.1. Materials pattern recognition 

Material pattern recognition such as Fisher discriminant analysis (FDA) was used to interpret 

five virtual promising candidate LDHs samples. [84] Pattern recognition is based on the principle that 

birds of a feather flock together. Figure 9 illustrates the classification diagram of pattern recognition of 

different types of LDHs by employing FDA method. The samples with dspacing larger than 8Å were tagged 

as red circle (○), while the other samples are tagged as black triangle (△). It can be found that the five 

promising candidate LDHs tagged as green square (■) are projected in the area of circle samples in 

Figure 9. The distribution of the five promising candidate LDHs accords with the classification regularity 

based on FDA. The result of FDA verifies that the five promising candidate LDHs are located in the 

optimal region of pattern recognition diagram.  
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(○): The samples with the larger dspacing 

(△): The samples with the smaller dspacing 

(■): The virtual samples  

 

Figure 9. Materials pattern recognition of different types of samples by using FDA 

 

3.8.2. Sensitivity analysis 

Sensitivity analysis is widely utilized in materials machine learning. It can be applied to observe 

the tendency of object variable depending single feature while the other features are constant. [14]Six 

key features based on GA-XGBoost method are screened to draw the figures of sensitivity analysis. 

Figure 10(a-f) shows sensitivity analysis of selected features, including thermochemical radii of the 

anion(Å), the mole number of anions, ionic radius of the divalent metal element(Å), the mole number of 

atoms of the divalent metal element, ionic radius of the trivalent metal element(Å) and electronegativity 

of the divalent metal element, respectively.  
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Figure 10.（a-f） Sensitivity analysis of selected features (a)Thermochemical radii of the Anion(Å), 

(b)The mole number of anions, (c)Ionic radius of the divalent metal element(Å), (d)The mole 

number of the divalent metal element, (e)Ionic radius of the trivalent metal element(Å), and 

(f)Electronegativity of the divalent metal element, respectively 

 

From the structure of LDHs (see Figure 1), it can be seen that the size and number of anions will 

affect the size of the dinter. The larger the thermochemical radius and the mole fraction of anion is, the 

larger the dinter is, which agrees to Figure 10(a, b). In the same way, the larger the radius and the mole 

fraction of metal cation is, the larger the dlayer is, which corresponds to figure 10(c, d, e). The more 

electronegative the metal cation is, the closer the metal cation is bound to anion. Therefore, 

electronegative of the divalent metal element are negatively correlated with dlayer, which is shown in 

figure 10(f). 

 

 

 

3.9. Potential application of predicted materials  

It was reported that the pseudo-capacitances can be increased with the expansion of dspacing. [13]. 

It can be concluded that larger basal spacing allows more electrolyte ions to be stored, resulting in a 

higher electrochemical activity. Therefore, it is possible to apply CoFe(Fe(CN)6)–LDHs (12.4 Å , 

designed LDHs with lager dspacing) in a super-capacitors. 

 

javascript:;
javascript:;
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4. CONCLUSION 

In summary, the dspacing of LDHs was predicted conveniently by XGBoost model on the online 

platform for predicting dspacing of LDHs. Based on the developed machine learning model and OCPMDM 

platform, we predicted new LDHs (Co0.67Fe0.33[Fe(CN)6]0.11)•(OH)2 with the largest dspacing (12.40Å), 

increasing by 10.91% compared to the maximum dspacing of Mg0.67Al0.33[Fe(CN)6]0.08•(OH)2 (11.18Å) 

reported. More importantly, it can be expected that machine learning methods will be further applied in 

material design and property optimization. 
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SUPPORTING INFORMATION 

 

Table S1. The dspacing data for all samples in this work 

Table S2. 19 candidate features 

Table S3. The experimental dspacing and predicted dspacing of training set in LOOCV 

Table S4. The experimental dspacing and predicted dspacing of the testing set 

Table S1. The dspacing data for all samples in this work 

No Molecular formula dspacing (Å) 
1 Zn0.8Al0.2(NO3)0.2•(OH)2 8.90 
2 Mg0.67Al0.33(NO3)0.33•(OH)2 8.90 
3 Mg0.75Al0.25(NO3)0.25•(OH)2 7.80 
4 Mg0.8Al0.2(NO3)0.2•(OH)2 7.90 
5 Mg0.68Al0.32(CO3)0.16•(OH)2 7.61 
6 Ni0.66Al0.34(CO3)0.17•(OH)2 7.50 
7 Zn0.68Al0.32(CO3)0.16•(OH)2 7.53 
8 Zn0.75Al0.25(Cl)0.25•(OH)2 7.86 
9 Cu0.67Cr0.33(Cl)0.33•(OH)2 7.80 
10 Zn0.91Ti0.09(CO3)0.045•(OH)2 6.70 
11 Zn0.8Al0.2(SO4)0.1•(OH)2 11.00 
12 Mg0.67Al0.33[Fe(CN6)]0.11•(OH)2 11.18 
13 Mg0.75Al0.25[Fe(CN6)]0.083•(OH)2 9.82 
14 Ni0.75Ti0.25(CO3)0.125•(OH)2 7.75 
15 Mg0.73Al0.27(CO3)0.135•(OH)2 7.80 
16 Mg0.8Fe0.2(Cl)0.2•(OH)2 7.88 
17 Mg0.8Fe0.2(CO3)0.1•(OH)2 8.00 
18 Ca0.67Al0.33(NO3)0.33•(OH)2 8.80 
19 Zn0.65Al0.35(NO3)0.35•(OH)2 7.90 
20 Mg0.66Al0.34(CO3)0.17•(OH)2 7.58 
21 Ni0.67Al0.33(ClO4)0.33•(OH)2 8.78 
22 Ni0.75Al0.25(ClO4)0.25•(OH)2 8.98 
23 Ni0.8Al0.2(ClO4)0.2•(OH)2 9.04 
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24 Ni0.67Al0.33(CO3)0.165•(OH)2 7.56 
25 Ni0.75Al0.25(CO3)0.125•(OH)2 7.72 
26 Ni0.8Al0.2(CO3)0.1•(OH)2 7.74 
27 Mg0.5Al0.5(CO3)0.25•(OH)2 7.70 
28 Ni0.83Ti0.17(CNO)0.17•(OH)2 7.30 
29 Cu0.67Cr0.33(NO3)0.33•(OH)2 9.07 
30 Ni0.67Al0.33(NO3)0.33•(OH)2 8.60 
31 Mg0.67Al0.33(WO4)0.165•(OH)2 10.01 
32 Mg0.68Al0.32(WO4)0.16•(OH)2 10.53 
33 Cu0.67Al0.33(NO3)0.33•(OH)2 7.60 
34 Zn0.67Fe0.33(NO3)0.33•(OH)2 8.10 
35 Zn0.67Fe0.33(MoO4)0.165•(OH)2 8.20 
36 Ni0.5Fe0.5(F)0.50•(OH)2 7.60 
37 Ni0.5Fe0.5(Cl)0.50•(OH)2 7.80 
38 Ni0.5Fe0.5(Br)0.50•(OH)2 8.00 
39 Ni0.5Fe0.5(I)0.50•(OH)2 8.10 
40 Ni0.5Fe0.5(SO3)0.25•(OH)2 8.50 
41 Ni0.5Fe0.5(S2O3)0.25•(OH)2 8.30 
42 Ni0.5Fe0.5(S2O8)0.25•(OH)2 8.50 
43 Ni0.5Fe0.5(CO3)0.25•(OH)2 7.70 
44 Ni0.5Fe0.5(ClO)0.50•(OH)2 7.70 
45 Ni0.5Fe0.5(ClO2)0.50•(OH)2 7.90 
46 Ni0.5Fe0.5(ClO3)0.50•(OH)2 7.90 
47 Ni0.5Fe0.5(ClO4)0.50•(OH)2 8.20 
48 Ni0.5Fe0.5(NO2)0.50•(OH)2 7.90 
49 Co0.75Cr0.25(NO3)0.25•(OH)2 8.66 
50 Mn0.75Fe0.25(NO3)0.25•(OH)2 7.10 
51 Ni0.5Al0.5(NO3)0.5•(OH)2 8.90 
52 Ni0.5Al0.5(Cl)0.25•(OH)2 7.70 
53 Ni0.5Al0.5(CO3)0.25•(OH)2 7.70 
54 Zn0.75Al0.25(CO3)0.125•(OH)2 7.64 
55 Zn0.75Al0.25(SO4)0.125•(OH)2 8.50 
56 Ni0.75Fe0.25(CO3)0.125•(OH)2 7.53 
57 Ni0.75Fe0.25(Cl)0.25•(OH)2 7.78 
58 Ni0.75Fe0.25(NO3)0.25•(OH)2 8.23 
59 Ca0.82Al0.18(NO3)0.18•(OH)2 8.60 
60 Co0.75Fe0.25(Cl)0.25 •(OH)2 7.83 
61 Mg0.85Al0.15(NO3)0.15•(OH)2 8.11 
62 Zn0.67Al0.33(NO3)0.33•(OH)2 7.57 
63 Co0.67Mn0.33(NO3)0.33•(OH)2 7.80 
64 Co0.67Mn0.33(Cl)0.33•(OH)2 7.60 
65 Co0.67Mn0.33(SO4)0.165•(OH)2 10.80 
66 Co0.66Al0.34(NO3)0.34•(OH)2 8.90 
67 Co0.66Al0.34(CO3)0.17•(OH)2 7.50 
68 Mg0.67Al0.33(NO3)0.33•(OH)2 8.62 
69 Ca0.67Fe0.33(Cl)0.33•(OH)2 7.77 
70 Mg0.67Al0.33(Cl)0.33•(OH)2 8.66 
71 Zn0.67Al0.33(Cl)0.33•(OH)2 8.76 
72 Co0.67Al0.33(Cl)0.33•(OH)2 8.75 
73 Mg0.67Al0.33(H2PO4)0.33•(OH)2 10.85 
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74 Zn0.67Al0.33(CO3)0.17•(OH)2 7.46 
75 Zn0.8Ti0.2(Cl)0.2•(OH)2 7.08 
76 Ni0.67Fe0.33(NO3)0.33•(OH)2 7.64 
77 Ni0.67Fe0.33(VO3)0.33•(OH)2 7.78 
78 Ni0.67Fe0.33(MoO4)0.165•(OH)2 7.63 
79 Ni0.73Al0.27(NO3)0.27•(OH)2 8.00 
80 Zn0.67Cr0.33(Cl)0.33•(OH)2 7.81 
81 Mg0.75Al0.25(CO3)0.125•(OH)2 7.74 
82 Mg0.8Al0.2(CO3)0.1•(OH)2 7.91 
83 Co0.75Al0.25(CO3)0.125•(OH)2 7.69 
84 Zn0.75Ga0.25(Cl)0.25•(OH)2 7.86 
85 Zn0.67Ga0.33(NO3)0.33•(OH)2 7.60 

 
Table S2. 19 candidate features 

descriptors Meaning 

Ra Ionic radius of the divalent metal (Å) 

Ea Electronegativity of the divalent metal element 

Va Valence electron of the divalent metal element 

Da Distance valence electron of the divalent metal element 

Wa Atomic weight of the divalent metal element 

Na The mole number of the divalent metal ion 

Rb Ionic radius of the trivalent metal (Å) 

Eb Electronegativity of the trivalent metal element 

Vb Valence electron of the trivalent metal element 

Db Distance valence electron of the trivalent metal element 

Wb Atomic weight of the trivalent metal element 

Ra/b The weighted average Ionic radius of the divalent and trivalent metal (Å) 

Ea/b The weighted average electronegativity of the divalent and trivalent metal element 

Va/b The weighted average valence electron of the divalent and trivalent metal element 

Da/b The weighted average distance valence electron of the divalent and trivalent metal 

element 

Wa/b The weighted average atomic weight of the divalent and trivalent metal element 

TRz Thermochemical radii of the anion(Å) 

Wz Atomic weight of the anion 

Nz The mole number of anions 

 

Table S3. The experimental dspacing and predicted dspacing of training set in LOOCV 

No. Experimental dspacing (Å) Predicted dspacing (Å) 

2 8.9 8.82 

3 7.8 7.88 
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5 7.61 7.53 

6 7.5 7.49 

8 7.86 7.78 

9 7.8 7.88 

11 11 9.43 

12 11.18 11.1 

13 9.82 9.9 

17 8 8.08 

18 8.8 8.72 

19 7.9 7.96 

20 7.58 7.96 

21 8.78 8.81 

22 8.98 8.9 

23 9.04 9.12 

24 7.56 7.5 

25 7.72 7.64 

26 7.74 7.82 

27 7.7 7.78 

28 7.3 7.38 

29 9.07 8.99 

30 8.6 8.67 

31 10.01 10.09 

32 10.53 10.04 

34 8.1 7.8 

35 8.2 8.12 

36 7.6 7.6 

37 7.8 7.72 

38 8 7.85 

40 8.5 7.94 

41 8.3 8.38 

42 8.5 8.58 

43 7.7 7.78 

44 7.7 7.78 

45 7.9 7.88 

46 7.9 7.98 

47 8.2 8.12 

50 7.1 7.18 

52 7.7 7.78 

55 8.5 8.58 

56 7.53 7.59 

57 7.78 7.86 

58 8.23 8.15 

59 8.6 8.52 

60 7.83 7.85 

61 8.11 8.03 

62 7.57 7.83 

63 7.8 7.77 

64 7.6 7.52 

66 8.9 8.82 

67 7.5 7.51 
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68 8.62 8.82 

69 7.77 7.69 

71 8.76 8.08 

72 8.75 8.83 

73 10.85 9.31 

75 7.08 7.16 

76 7.64 7.72 

77 7.78 7.73 

78 7.63 7.71 

79 8 8.47 

80 7.81 7.89 

81 7.74 7.82 

82 7.91 7.96 

83 7.69 7.61 

84 7.86 7.78 

85 7.6 7.68 

 

Table S4. The experimental dspacing and predicted dspacing of the testing set 

No Experimental dspacing (Å) Predicted dspacing (Å) 

1 8.9 8.55 

4 7.9 7.73 

7 7.53 7.26 

10 6.7 7.27 

14 7.75 6.96 

15 7.8 7.46 

16 7.88 7.35 

33 7.6 8.61 

39 8.1 8.01 

48 7.9 7.83 

49 8.66 7.99 

51 8.9 9.3 

53 7.7 7.79 

54 7.64 8.05 

65 10.8 10.6 

70 8.66 7.79 

74 7.46 7.18 
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