
  

Int. J. Electrochem. Sci., 16 (2021) Article Number: 211021, doi: 10.20964/2021.10.28 

 

International Journal of 

ELECTROCHEMICAL 
SCIENCE 

www.electrochemsci.org 

 

Short Communication 

Preparation of electrochemical sensor assisted unmanned aerial 

vehicles system for SO2, O3, NO2, CO and PM2.5/PM10 

detection in air 

 
Rongqiang Guan, Jing Yu*, Mingyue Li, Jingjing Yan, Zichao Liu 

Jilin Engineering Normal University, Changchun, Jinlin, 130052, P.R. China 
*E-mail: jingyu_0c14@163.com 
 

Received: 30 May 2021  /  Accepted: 22 July 2021  /  Published: 10 September 2021 

 

 

The spatial and especially vertical monitoring of atmospheric pollutants is of great significance to the 

analysis and prevention of air pollution. It is also a useful supplement to the current monitoring method 

which is mainly based on ground monitoring stations. Small UAVs offer a new way of vertical 

monitoring of air pollution. In this study, an electrochemical sensor incorporated unmanned aerial 

vehicles (UAV) platform was proposed, which can detect pollution at vertical heights, and has been  

used for PM2.5, PM10 and 4 pollutants (SO2, O3, NO2, CO) at different heights. Based on this monitoring 

data, the vertical distribution characteristics as well as the statistical correlation of PM2.5 and its 

pollutants were analyzed. The experimental results show that PM2.5 concentration increases with height 

in the larger integrated industrial areas, while it decreases and then increases near the small-scale 

industrial and residential areas. The trends of PM10 and PM2.5 are basically consistent. In the vertical 

direction, the maximum values of CO and SO2 always appear near the ground and then start to decrease, 

and NO2 increases with the height. 
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1. INTRODUCTION 

 

With the rapid economic development, urbanization and the increase in the number of motor 

vehicles, air pollution has gradually become one of the major environmental problems in China [1–3]. 

Among all the types of atmospheric particulate matter, those with aerodynamic equivalent diameter less 

than or equal to 2.5 μm are called PM2.5. Studies have shown that human exposure to PM2.5, especially 

for children, can lead to the development of severe respiratory disease at high PM2.5 concentrations 

[4,5]. An increase in the concentration of fine particles in ambient air may result in a decrease in 

cardiopulmonary function, myocardial infarction, etc., and may even affect human life expectancy. The 
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main pollutants of PM2.5 are volatile organic compounds (VOCs), NOx, SO2, CO and NH3, which 

combine with atmospheric particles through photochemical reactions to produce PM2.5 particles. The 

formation, dispersion and dissipation processes of fine particulate matter pollution are closely related to 

pollutants and meteorological conditions [6–8]. Therefore, if the distribution state of fine particulate 

matter and pollutants in the atmosphere before and after the pollution event can be grasped, the 

correlation between them can be analyzed to provide a reference for the study of the generation process 

of fine particulate matter, as well as the prediction and control of air pollution [9–16]. 

UAVs, an emerging technology in recent years, have also been applied in environmental 

monitoring [17,18]. However, very few monitoring systems have been studied and designed for PM2.5 

and its pollutants. Air quality monitoring stations are still the major facilities that are used to obtain 

PM2.5 and its pollutant concentration data [19]. Many scholars in the atmospheric field intend to study 

not only the horizontal ground-level concentration distribution, but also the vertical distribution 

characteristics and interrelationships of pollutants such as PM2.5. However, the analysis of the 

correlation between PM2.5 and its pollutants with the data from monitoring stations is not satisfactory 

either [20]. 

PM2.5 sensors are developed based on the scattering principle of light. The light source can be 

classified into two types: infrared type and laser type [21,22]. Infrared sensors are slow to start and can 

only measure particles with a diameter of 1μm or more. In contrast, laser-type sensors are fast-acting 

and can measure particles as small as 0.3 μm in diameter. Due to the different mechanisms, the accuracy 

of detecting changes in the concentration of CO, SO2, NO2 and O3 pollutants of PM2.5 in the air is much 

lower than that of detecting PM2.5 [23–25]. The various gas sensors on the market are basically 

electrochemical sensors, and the integration of electrochemical sensors into UAVs is a very interesting 

attempt. This work tested a system for monitoring PM2.5 and its pollutant concentrations [26,27], in 

which several technical indicators, monitoring functions and operational stability were tested. The data 

of spatial distribution of PM2.5 and its pollutant concentrations were analyzed and a correlation strength 

study was made with the statistical Spearman correlation coefficient. 

 

 

 

2. SYSTEM AND METHODS 

2.1. System structure 

A self-developed UAV was adopted as a test platform,  the system of which can be divided into 

two parts, aerial monitoring and ground monitoring. The aerial monitoring includes the UAV mounting 

platform and the on-board gas monitoring board, which can receive the ground track planning 

information to achieve the goal of automatic flight and hovering according to the specified route. The 

airborne gas monitoring board was installed on the UAV carrier platform, and the sensors on board can 

measure PM2.5, SO2, NO2, and CO concentrations, as well as meteorological parameters such as 

temperature, humidity, and air pressure for reference in the study of the correlation between PM2.5 and 

pollutants. Figure 1 shows the structure of the system. Mission Planner was used as ground monitoring 

station software. 
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Figure 1. Structure of the UAV system for PM2.5 and pollutants detection. 

 

2.2. Monitoring module structure 

Figure 2 illustrates the overall structure of the monitoring module. The microcontroller module 

on the on-board gas monitoring board communicates with the ground wireless monitoring terminal in 

both directions through the wireless transmission module. The microcontroller module on the monitoring 

board is mainly responsible for collecting the data monitored by the sensors and then sending them to 

the ground microcontroller module through the wireless transmission module. It is peripherally 

connected to electrochemical CO, SO2, O3, NO2 sensors and PM2.5/PM10 sensors. The portable wireless 

receiver includes a microcontroller module, a TFT color display, a wireless transmission module and an 

external SD card module. 

 

 

 
 

Figure 2. Wireless monitoring module structure of UAV system for PM2.5 and pollutants detection. 
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2.3. Electrochemical sensors 

The electrochemical gas sensors on the market are divided into two categories according to the 

types of the output signal, which is either analog or digital. The accuracy of sensors with analog output 

is extremely dependent on the design level of the peripheral circuitry and requires professional 

calibration. Since the focus of this work is not on small signal amplification, denoising circuit design or 

sensor calibration, the electrochemical gas sensors with digital output were selected. The electrochemical 

sensors (CO, SO2, NO2, O3) used in the system were selected from the 7NE series of sensors produced 

by SerCom Solutions Ltd. Co. The sensors for SO2, O3 and NO2 have a resolution of 1ppb, and the CO 

sensors have a resolution of 0.01ppm. This paper adopts the approach of sharing a set of microcontroller 

IO ports to form a serial data bus for multiple serial ports. Each electrochemical sensor has a unique 

address which is relied on by the sensor to  identify each device mounted on the serial bus. 

 

2.4. Airflow shielding test 

The electrochemical sensor was installed on the UAV platform and then rested on a flat and clean 

surface. The power of the on-board sensor, the ground wireless monitoring end and the UAV were all 

turned on to make sure that they were  in working condition. The electrochemical sensor was being 

warmed up for 1 h and the rotor could not be rotated during this time [28–32]. Afterwards, the store 

button on the wireless monitor was pressed to start recording all measurements for 1 minute 

continuously, then the recording was stopped and data set 1 was obtained. The UAV flight control was 

immediately unlocked and the throttle was pulled to the middle position to keep the rotor at the maximum 

speed before takeoff. The store button on the wireless monitor was pressed again to start recording all 

the measurement data for 1 min, then the recording was stopped and data set 2 was obtained. 

 

 

 

3. RESULTS AND DISCUSSION 

Before the UAV platform took off with electrochemical sensors, the effectiveness of the 

optimized UAV platform structure needed to be verified. A set of experiments was designed to test the 

airflow shielding effect of the UAV platform. The two sets of measurements were averaged and the 

results are shown in Table 1. 

 

 

Table 1. The average value of each measurement before and after rotation. 

 

Data PM2.5 PM10 SO2 NO2 CO O3 

Set 1 51.3 64.2 108.4 90.5 0.62 60.5 

Set 2 54.8 68.3 109.1 84.6 0.62 60.3 
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It can be seen from Table 1 that the average value of PM2.5, PM10 and SO2 increases by 3.5 

g/m3, 4.1 g/m3 and 0.7 ppb, respectively. The average value of NO2 and O3 decreases by 5.9 ppb and 0.2 

ppb, respectively. The results show that the data does not show large fluctuations, indicating that the 

rotor rotation has not exerted much effect on the sensor. Typically, air pollutants can transport down to 

the ground during the night before, which increases the accumulation of pollutants on the ground, but 

this process is blocked by the inversion layer and thus the PM2.5 concentrations are higher above the 

inversion layer than on the ground [33]. The results present that the data does not show any significant 

fluctuations, indicating that the rotor rotation does not have much influence on the sensor work, with the 

sensor work bin having the expected effect. 

We did 5 groups of tests around Jilin Engineering Normal University and the results are shown 

in Figure 3-5. It can be seen from the figures that the trend of CO, SO2 and NO2 is relatively stable. The 

peak of CO and SO2 concentrations on the vertical gradient always occurs at the height near the ground. 

The concentration of NO2 increases with the height, while there is a decreasing trend above 500 m. 

PM2.5 and PM10 decrease and then increase with the increase of height, and then start to decrease again 

at 400 m. The rising trend from 100-400m may be resulted from the presence of an inversion layer 

around 400m [34]. In addition, it can be noted that the PM2.5 and PM10 concentration levels at Location 

1 are significantly higher than those at Location 2. The real-time meteorological parameters were 

collected from both locations. It was found that at the same altitude, the humidity in Location 1 was 

higher and the temperature was lower than that in Location 2. Through comparing pollutant 

concentrations and meteorological parameters at Location 4 and Location 5, it is found that there was 

little difference between the values of all monitoring items except humidity. The humidity at Location 4 

was always 5-8% lower than that at Location 5 in the vertical direction, which indicates that humidity 

exerts an important effect on PM2.5. From the pollutant concentrations at each monitoring site, it can be 

seen that when the average concentration of PM2.5 is high, the average concentrations of CO and SO2 

are at a higher level, and their influence on PM2.5 is more significant. This result is consistent with the 

result of the research carried out with the unmanned aircraft “ALADINA” [35]. 

 

 

 
 

Figure 3. Variation of PM2.5 and PM10 with height. 
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Figure 4. Variation of CO and O3 concentrations with height. 

 

 
 

Figure 5. Variation of NO2 and SO2 concentrations with height. 

 

 

Figure 6 shows a scatter plot of the spatial distribution of pollutants for the five groups obtained 

from this experiment. It is apparent that Locations 4 and 5 have significantly higher overall concentration 

levels compared to other monitoring sites, the reason for which is that  these detection sites are located 

in industry-intensive areas and commercial centers. The higher SO2 pollution is mainly concentrated in 

the boundary layer close to the ground. O3 is stable and relatively uniform below 350 m, but after the 

altitude rises above 350m, the concentration starts to be unevenly distributed. On the contrary to SO2, 

NO2 concentration is at a relatively low level in the near-surface region. The thermal inversion is formed 

due to the heterogeneity of terrain, underlying surface and meteorological conditions, which could 

produce dynamic and thermodynamic effects towards airflow movements and change the spread 

condition of air pollutants [36]. The figure presents that the highest NO2 concentration is in the air around 

500m, and the concentration of NO2 may increase further with the altitude. 
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Figure 6. Scatter diagram of spatial distribution of pollutants. 

 

 

The influence of secondary transformation of gaseous pollutants on the formation and 

accumulation of PM2.5 has been generally recognized. This work adopts correlation coefficients to 

analyze this relationship. The strength of the correlation between the independent and dependent 

variables can be determined by performing Spearman correlation analysis on the data. In this work, SO2, 

NO2, O3 and CO concentrations were selected as independent variables and PM2.5 concentrations as 

dependent variables. The vertical distribution of air temperature reflects the stability of the atmospheric 

structure which impacts the strength of turbulence activity, and governs the spread of air pollution [37]. 

Wind speed and wind direction were not considered in the correlation analysis because the UAV could 

not steadily carry wind speed and wind direction instruments. In addition, even if the instruments were 

mounted on the monitoring platform, it would be difficult to measure the actual wind speed and direction 

directly due to turbulence resulted from by the motion of the UAV. Therefore, the instrument was used 

on the ground as an auxiliary measurement to determine the real-time wind speed and direction during 

the experiment. The calculated results are shown in Table 2. 

The Spearman correlation analysis shows that the correlation between CO and PM2.5 

concentrations is the strongest, reaching 0.622. O3 concentrations have the second strongest correlation 

with PM2.5 concentrations. The weakest relationship is between NO2 and PM2.5 concentrations with 

correlation coefficients of -0.187, 0.622 and 0.070, respectively, while, as seen in the table, SO2 and NO2 

correlation coefficients are positive and they show a positive correlation with PM2.5 concentrations. The 

correlation was tested for significance at the level of 0.05. Therefore, this study can draw a conclusion 

that among the pollutants SO2, NO2, CO and O3, CO has the greatest effect on the variation of PM2.5 

concentration and the higher the concentration of the pollutant CO is, the higher the concentration of 

PM2.5 is. 
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Table 2. Spearman correlation coefficient and P value of PM2.5 and pollutants. 

 

 PM2.5 SO2 NO2 CO 

SO2 Correlation 

coefficient 

0.095 - - - 

P 0.000 - - - 

NO2 Correlation 

coefficient 

0.070 -0.287 - - 

P 0.002 0.003 - - 

CO Correlation 

coefficient 

0.622 0.060 -0.127 - 

P 0.002 0.005 0.002 - 

O3 Correlation 

coefficient 

-0.187 0.255 0.061 -0.321 

P 0.000 0.001 0.003 0.002 

 

 

 

4. CONCLUSION 

In summary, an electrochemical UAV system for PM2.5 and its pollutant concentration 

monitoring  is described in this paper. The spatial distribution of PM2.5 and its pollutants were produced 

from the data collected at five locations, and the strength of the correlation between PM2.5 and each 

pollutant was obtained based on the statistical Spearman correlation coefficient. 
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