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This paper presents the approximate analytical expression for transient and steady-state concentration 

profiles of enzymes, mediator, substrate and current. The transport and kinetics of the reaction in the 

diffusion layer with a rotating disc electrode are described using closed-form solutions of homogeneous 

systems. These new approximate analytical expressions are valid for all values of parameters. 

Furthermore, in this work, the numerical simulation is also presented using the Matlab program. The 

analytical results are compared with simulation results, and satisfactory agreement is noted. 
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1. INTRODUCTION 

 

Nonlinear differential equations are used in many fields such as rotating disc electrode [1-7], 

biosensors [8-12], biofuel cells [13-16], biofilms [17-18], bioreactors [19], biofilters [20] and 

ultramicroelectrodes [21-22] etc. It is very important to solve the nonlinear equations, but exact solutions 

for such equations are not available [23]. So we can use some asymptotic methods like homotopy 

perturbation method [24-28], Adomian decomposition method [29-30], variational iteration method [31-

34], Taylor series method [35], Akbari Ganji’s method [36-37], Pade approximant method [7,9] to solve 

nonlinear equations.  

Nonlinear equation occurs in the homogeneous mediated enzyme reaction mechanism. Albery  

and coworkers [38] presented a comprehensive theoretical treatment for an amperometric enzyme 

electrode that uses a mediator interacting in a homogeneous solution to transfer the electrons. Bartlett 
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and Pratt [39] presented the results of a study of the glucose, glucose oxidase, ferrocene monocarboxylic 

acid system using the rotating disc electrode. The limiting current during the anodic dissolution of 

tungsten rotating disk electrode in alkaline solutions, as well as the distribution of ionic concentrations, 

partial currents, and potential near the anode, are all numerically solved by Volgin et al. [40]. Schwartz 

and coworkers [41] investigated the nonlinear behaviour of a sinusoidally modulated rotating disk 

electrode to determine the flow and concentration field interactions that trigger resonance and 

nullification conditions in the system's electrochemical response. Using the variational iteration method, 

Loghambal and Rajendran [42] proposed an approximate analytical solution of steady-state nonlinear 

differential equations describing the transport and kinetics of the enzyme and mediator in the diffusion 

layer of the electrode. Saravanakumar et al. [43] provided an approximate analytical expression of 

current for the non-steady-state convection-diffusion equation of the rotating disk electrode for all time. 

Saravanakumar and coworkers [44] derived an analytical expression of concentration and current 

by solving the reaction convection-diffusion equations for the EC’ and ECE reaction mechanism. Chitra 

Devi et al. [45] solved a system of convection-diffusion equations in the pseudo-first-order EC-catalytic 

mechanism at a rotating disk electrode. Visuvasam et al. [46] studied the analytical and numerical 

solution of nonlinear diffusion equations for the chronoamperometric limiting current generated from 

the electrochemical reaction in a rotating disk electrode for second-order ECE reactions when the 

chemical step is irreversible.  

Albery and coworkers [38], Bartlett and Pratt [39] analysed the comprehensive theoretical 

treatment for an amperometric enzyme electrode that uses a mediator interacting in a homogeneous 

solution to transfer the electrons at the rotating disc electrode for steady-state conditions. However, to 

the best of our knowledge, there was the no rigorous analytical expression corresponding to the 

concentrations and current for non-steady-state conditions reported.  In this communication, the 

approximate analytical expressions of the enzyme, mediator, substrate concentrations and transient and 

steady-state current are derived.  

 

 

 

2. MATHEMATICAL FORMULATION OF THE PROBLEM  

The homogeneous kinetics of mediated enzyme reactions which describe overall two-electron 

processes are expressed by [38,39]: 
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where 𝑘𝐸 = 𝑘𝑐𝑎𝑡𝑆∞/(𝐾𝑚 + 𝑆∞) and 𝑆∞ is the substrate concentration in the bulk solution. 

Substrate present to regenerate reduced form of the enzyme, E’. Building upon earlier work for these 

mechanisms, Albery et al. [38] and Bartlett et al. [39] presented a concise discussion and derivation of 

the mass transport equation for these mechanisms for non-steady-state condition, which is summarized 

briefly for completeness. The following schematic diagram depicts the reaction system. 
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Figure 1. A schematic diagram of the homogeneous system. 

 

The oxidized and reduced forms of the mediator species are represented by M and M ', 

respectively. The oxidized and reduced enzyme species are E and E'.  𝑘𝑀 is a bimolecular rate constant 

and 𝑘𝐸 a pseudo-first-order rate constant for the reaction between E and S. When the substrate 

concentration is high enough, the enzyme becomes saturated and 𝑘𝐸 equals 𝑘𝑐𝑎𝑡. Nonlinear reaction 

diffusion-reaction equations for the four species [38,39] can be written as follows: 
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In the above analysis, the only diffusion of enzyme and mediator is examined. We assume that 

substrate is present in excess, so the reaction-diffusion of S may be neglected. If not, the further reaction-

diffusion equation must be considered, and the equation of the substrate is as follows: 
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where m, 'm and ,e eare the concentrations of oxidized and reduced form mediator and enzyme. 

S is the concentration of substrate. MD  and ED  are the diffusion coefficients of species ',MM and , 'E E  

respectively. SD  is the diffusion coefficients of the substrate. The concentration of total enzyme 𝑒  in 

the solution is considered to be uniform. This means that the oxidized and reduced forms of the enzyme 
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have the same diffusion coefficients. Then at any place and any time in the solution 𝑒  𝑒′  𝑒 . 

Assuming that the diffusion coefficients of the oxidized and reduced forms of the mediator are equal and 

that the mediator is totally reduced in bulk solution. i.e  𝑚 𝑚′ 𝑚 = 𝑚′∞ = 𝑚0 . Here 𝑚  is the total 

concentration of the mediator, 𝑚′∞ is the bulk concentration of the reduced mediator. 𝑚0  is the 

concentration of M at the electrode surface. The initial and boundary conditions are [38,39] 
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The current I is calculated from the flux of mediator reacting at the electrode: 
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The following dimensionless variables are used in this model. 
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Here DZ  is the Levich diffusion layer thickness given by 

WDZ MD /64.0 3/16/1  (14) 

where   is the kinematic viscosity and W (Hz) is the rotation speed. Now the Eq. (4), Eq. (6) 

and Eq. (8) are reduced in dimensionless form as follows: 
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The corresponding initial and boundary conditions for the above two equations are given by, 

1,1,1,0  wvu  (18) 

1,1,0,1  wvu  (19) 
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In dimensionless terms the current becomes [39] 
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3. ANALYTICAL EXPRESSION OF CONCENTRATION OF THE SPECIES USING NEW  

APPROACH OF HOMOTOPY PERTURBATION METHOD (HPM) 

Solving systems of nonlinear equations, which is one of the most fundamental problems in 

mathematics, can be used to solve several applied problems. In the physical and chemical sciences, novel 

methods have recently been used to solve nonlinear problems [23]. HPM is a common method used to 

solve a differential equation. 

The HPM was proposed by He in 1999 [24]. This approach has recently been used in 

nanotechnology to solve nonlinear oscillator problems [25-26].  This method is also applied to solve 

coupled nonlinear differential equations in the microelectromechanical system [27], and axial vibration 

system [28], etc. Using the new approach of HPM, the approximate analytical expressions for the 

concentration of the mediator, enzyme and substrate are obtained (Appendix-A) as follows: 
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The dimensionless current is given as follows:  
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 1sec

)1('
,)12(4)(),(4)12()( 22

2

22

1 E
S

E handnnfnnf          

    (26)                                                 

 

 

 

4. LIMITING CASES   

Here we have derived the concentration of the mediator, enzyme and corresponding expression 

of current for various special cases. 
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4.1. Limiting case 1: Enzyme-mediator kinetics and high reaction rate 

We begin by considering the case where 1 , 1  (enzyme-mediator reaction is rate 

limiting) and 1E  (the most E will escape from the diffusion layer before regenerated to E’). The rate 

of reaction is sufficiently high ( 1M and M will be more likely to react than escape). Since both u 

and v are less than unity, the term ),(),(  vuM  and )),(1(  vE   are neglected. In this 

situation the Eqs. (15) and (16) becomes as follows: 
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Using the initial and boundary conditions (18-20), we can solve Eqs. (27) and (28) to obtain exact 

analytical expressions for mediator and enzyme concentrations (Appendix B). 
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The current becomes  
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The steady-state current 
Mss    when 1  and 1E . This is the limiting case I result 

of Bartlett et al. [39].  

 

4.2. Limiting case 2: Enzyme-substrate kinetics and high rate of reaction 

When the rate of reaction is sufficiently high ( 1M and M will be more likely to react than 

escape) and 1E  (the most E will escape from the diffusion layer before regenerated to E' ), and 

1  (enzyme-substrate reaction is the rate limiting step), 1  (equal diffusion coefficients of 

enzyme and mediator), the nonlinear reaction diffusion equations (15-16) becomes as follows: 
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The approximate expressions of mediator and enzyme concentrations are obtained by solving the 

above two equations with the boundary conditions (18-20). 
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The current is  
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When M  is very large and  the maximum value of    ,1sec0   h  from the Eq. (36) we get 

Mss   .      

 

4.3. Limiting case 3: Enzyme-mediator kinetics and low reaction rate  

When the rate of reaction is sufficiently low ( 1M  and the most M escapes from the diffusion 

layer without reacting) and 1E (the most E will escape from the diffusion layer before regenerated to 

E’), 1 (enzyme-mediator reaction is rate limiting), the reaction diffusion equations (15-16) 

becomes 
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Using the initial and boundary conditions (18-20), we get exact solution as follows: 
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When both 1,1  M , the current for steady-state 1ss . This result is also confirmed in 

Bartlett et al. [39]. Approximate analytical expressions of dimensionless concentrations and current for 

the above different limiting cases is also given Table. 1. 

 

 

 

5. RESULT AND DISCUSSION 

Equations (22), (23) and (24) are the new, general and simple analytical expressions of 

concentration profiles for the mediator (u), enzyme (v) and substrate (S) for transient conditions. Albery 

and co-workers [38], Bartlett and Pratt [39] derived the different approximate solutions for various 

limiting cases for steady-state only. Logambal and Rajendran [42] applied  He’s variational iteration 
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method to find an approximate analytical solution of steady-state nonlinear differential equations 

describing the transport and kinetics of the enzyme and of the mediator in the diffusion layer of the 

electrode. But in this method, it is very difficult to find the unknown parameter in the concentration. 

We have also derived analytical expressions of concentration of mediator, enzyme and current 

for transient conditions for the three main limiting cases such as (i) Enzyme-mediator kinetics and high 

reaction rate, (ii) Enzyme-substrate kinetics and high rate of reaction, (iii) Enzyme-mediator kinetics and 

low reaction rate. Approximate analytical expressions of concentration of mediator and current are also 

validated with the numerical results and limiting case result in Tables 2-3 and Fig. 2. A satisfactory 

agreement is noted. Also, from the Table, it is observed that when the distance from the electrode surface 

increases, the concentration of mediator decreases.  

 

Table 2. Comparison of dimensionless concentration of mediator, ),( u  (Eq.(25)) with simulation 

results for .1.0,1,1,1   EM  

 

  

05.0  1.0  5  

Num 
Ana  
Eq. (25) 

Error % Num 
Ana 
Eq. 
(25) 

Error % Num 
Ana 
Eq. (25) 

Error % 

0 1 1 0 1 1 0 1 1 0 

0.25 0.94 0.96 2.13 0.86 0.88 2.32 0.7 0.71 1.43 

0.5 0.84 0.85 1.11 0.67 0.69 2.98 0.44 0.46 4.54 

0.75 0.55 0.56 1.82 0.39 0.4 2.56 0.22 0.23 4.55 

1 0 0 0 0 0 0 0 0 0 

Average Error % 1.03 Average Error % 1.57 Average Error % 2.1 

 

 

Table 3. Comparison of dimensionless concentration of mediator, ),( u  (Eq. (25)) with simulation 

results for .1.0,1,1.0,10   EM  

 

  
05.0  1.0  5  

Num 
Ana 
Eq. (25) 

Error % Num 
Ana 
Eq. (25) 

Error % Num 
Ana 
Eq. (25) 

Error % 

0 1 1 0 1 1 0 1 1 0 

0.25 0.68 0.69 1.47 0.54 0.54 1.85 0.45 0.45 0 

0.5 0.55 0.56 1.82 0.33 0.34 3.12 0.19 0.20 5.3 

0.75 0.35 0.36 2.86 0.17 0.18 5.88 0.075 0.08 6.7 

1 0 0 0 0 0 0 0 0 0 

Average Error % 1.23 Average Error % 2.2 Average Error % 2.4 
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Figure 2. Comparison of dimensionless current,   (Eq. (25)) (solid line) with limiting current (Eq. (36)) 

(dotted line) versus dimensionless time,   for all values of the parameter 

1,10,10 22   E  and for different values of parameter M . 

 

 

Eq. (25) is the new expression of transient expression of current for all time in terms of parameter 

,,,  EM and .  The parameter M  in these equations represents the chance of the mediator M 

escaping from the diffusion layer before reacting with the enzyme. If 1M , M is more likely to respond 

rather than escape. If ,1M  the majority of M exits the diffusion layer without reacting. 

Similarly, the E  describes the chance of enzyme E being converted to E' by substrate inside 

the diffusion layer. If 1E , the majority of E formed in the diffusion layer is transformed back to E' 

inside the layer. If 1E  is valid, the maximum of E will leave the diffusion layer before being 

regenerated to E'. 

The local steady-state between the two enzyme forms at the electrode surface is defined by the 

parameter .  If   is less than unity )( EM   , the predominant form E' at the electrode surface is the 

same as the bulk form. If   is greater than unity, the predominant form at the electrode surface will be 

E; somewhere in the diffusion layer, the predominant form will switch from E to E' if the kinetics are 

quick enough to maintain the steady-state. The transient current profiles for different values of the 

chemical reaction parameter ,,,  EM  and   are displays in the Figs. 3(a-d). From Figures 3(a-d), it 

is inferred that, the value of the current increases  when M  (dimensionless rate constant of mediator) 

and  (ratio of diffusion coefficients of the enzyme to the mediator) increases. It is also notice that an 
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increase in E  (dimensionless rate constant of enzyme) and  (ratio of total concentration of the 

mediator to the enzyme) leads to decrease current values. Also the current reaches the steady-state value 

when 5.0  for all values of other parameters. The three-dimension plot (Fig.4(a-c)) of current versus 

other parameters also confirm this results. 

 

 

 
 

Figure 3. Dimensionless current,   (Eq.(25)) versus dimensionless time,  for various values of the 

parameter (a) ,1,1.0,5   E and for different values of parameter .M  (b) ,5M  

,1,1.0   and for different values of parameter .E  (c) ,1,5,5   ME and for 

different values of parameter .  (d) ,5,5,10   EM  and for different values of parameter 

.M   
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Figure 4. Three dimensionless plot of current (Eq. (25)) versus (a) M  and   for ,1,1   E .1.0  

(b) E  and   for .1.0,1,5  M  (c)   and   for ,1,1  E .5M  

 

 

 

6. CONCLUSIONS 

The approximate solutions of a second-order system of nonlinear differential equations 

describing the transport and kinetics of the enzyme and the mediator in the diffusion layer of the 

electrode are derived. The exact (Limiting case-1 and 3) and approximate (Limiting case-2) analytical 

solutions of the diffusion-reaction equations for transient conditions are also provided. The simple 

closed-form of expressions of concentrations of mediator, enzyme and current are derived for all values 

of parameters. The numerical and analytical results are compared for some of the experimental value of 

the parameter. The Tables and figures show that analytical results are in good agreement with the 

simulation result.  
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1. Analytical expressions of dimensionless concentrations and current for different cases. 

 

Cases 
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Table 4. Previous results of current by Bartlett et al. [39] for all limiting cases: 

Limiting case Dimensionless current Dimension current 

Case I : 1,1  E   

(Limiting case-1) 
M  

 ekDnFAm MM
 

Case IV: 1,1  ME   EM   DE ZenFAD   

Case VI: 1,1  E  M2  
 ekmDnFA EM2  

Case VII: 1,1  ME   EM   
MEkDnFAe  

Case VIII: 1,1  M    

(Limiting case-3) 
1 DM ZmnFAD   

 

NOMENCLATURE: 

Parameter Meaning Units 

M and M’ Mediator in oxidized and reduced form - 

E and E’ Enzyme in oxidized and reduced form - 

m and m’ Concentration of mediator in oxidized and reduced form mol cm-3 

e and e’ Concentration of enzyme in oxidized and reduced form mol cm-3 

S Concentration of substrate mol cm-3 

t Time s 

Mk , Ek , catk  Rate constants  s-1 

MD  Diffusion coefficients of species ',MM  cm2 s-1 

ED  Diffusion coefficients of species '., EE  cm2 s-1 

SD  Diffusion coefficients of substrate cm2 s-1 

𝑚 , 𝑒  Total concentration of mediator and enzyme mol cm-3 

MK  Michaelis–Menten constant mol cm-3 

𝑆∞ Substrate concentration in the bulk solution mol cm-3 

𝑚′∞ Concentration of reduced mediator in the bulk solution mol cm-3 

𝑚0  Concentration of M at the electrode surface mol cm-3 

DZ  Levich diffusion layer thickness m 

  Kinematic viscosity cm2 s-1 

W Rotation speed Hz 

I Current A  

F Faraday constant C mol-1 

A Universal gas constant J K-1 mol-1 

u  Dimensionless concentration of the mediator None 
v  Dimensionless concentration of the enzyme None 
w  Dimensionless concentration of the substrate  None 
  Dimensionless distance from the electrode/membrane 

interface 
None 

  Dimensionless time None 
  Ratio of the rates of the enzyme-substrate and  None 
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enzyme-mediator reactions at the electrode surface 

  Diffusion coefficient ratio of the enzyme to the mediator  None 

'  Diffusion coefficient ratio of the substrate to the mediator  None 

M  Dimensionless rate constant of the mediator None 

E  Dimensionless rate constant of the enzyme None 

  Dimensionless current None 
 

 

Appendix-A 

We can construct the homotopy [17] for the equations (15-16) are as follows: 
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The approximate solution of Eq. (15) and Eq. (16) are 
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Substituting equations (A3) and (A4) into equations (A1) and (A2) and equating the coefficients of like 

powers of p , we get 
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For solving the above equations, we need to take Laplace transformation. Therefore, Eqs. (A5) and (A6) 

becomes, 
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The corresponding boundary conditions are 
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,0   0,/1)0( 0 
d

vd
su  (A9) 

1 , svu /1,0)1( 0   (A10) 

where s  is the Laplace variable and an over bar indicates a Laplace-transformed quantity,  

),0(0   v and ),2/1(0   u  Solving the Eq. (A8), and using the boundary conditions and 

(A9) and (A10) we can find the following results 
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Now, we indicate how Eq. (A11) can be inverted using the complex inversion formula. If )(sy  represents 

the Laplace transform of a function )(y , then according to the complex inversion formula we can state 

that 
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where the integration in Eq. (A12) is to be performed along a line cs   in the complex plane where 

.iyxs  The real number c  is chosen such that cs   lies to the right of all the singularities, but is 

otherwise assumed to be arbitrary. In practice, the integral is evaluated by considering the contour 

integral presented on the right-hand side of Eq. (A12), which is then evaluated using the so-called 

Bromwich contour. The contour integral is then evaluated using the residue theorem which states for 

any analytic function )(zF . 
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where the residues are computed at the poles of the function ).(zF  Hence from Eq. (A13), we note that  
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From the theory of complex variables we can show that the residue of a function )(zF  at a simple pole 

at az   is given by  
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Hence, in order to invert Eq. (A11), we need to evaluate  
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The poles are obtained from   0 EEss   and  
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Applying L-Hospital rule in the above equation, 
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Where, )(4)12()( 22

1 EEnnf    

Using Eq. (A23), Eq. (A7) can be written as follows 
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On solving Eq. (A24), we get  

 
 

 
 MM

M

MM

MM

M ss

s

sss

s

s
u

























sinh)(

sinh

sinh)(

)1(sinh1
),(0

                (A26) 

Applying the complex inversion formula for the above equation similar to Eq. (A11) we get, 
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Appendix B:  

For the limiting case 1 (Enzyme-mediator kinetics and low reaction rate), the equation for the 

concentration of mediator and enzyme are given by 
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with boundary conditions  
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The Laplace transformation for the Eq. (B2) is as follows:   
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The corresponding boundary conditions are 
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On solving Eq. (B6) with respect to the boundary conditions (B7), we get  
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Using the complex inversion formula, Eq. (B8) becomes 

1),( v  (B9) 

Substituting Eq. (B9) in Eq. (B1) we get the following equation, 
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The Laplace transformation for the above equation is as follows:   
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With the corresponding boundary condition 
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On solving Eq. (B11) with respect to the boundary condition (B12), we get 
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Applying the complex inversion formula for the above equation we get, 
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For the limiting case 3 (Enzyme-mediator kinetics and high reaction rate), the equation for the 

concentration of mediator and enzyme are given by 
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The Laplace transformation for the above equations are as follows: 
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The boundary conditions are as follows: 
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On solving Eq. (B17) and Eq. (B18) with respect to the above boundary conditions, we get 
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Using the complex inversion formula, the above two equations becomes,  
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Appendix C. Illustrative Mathlab code. 

Matlab coding for Eq. (15) and Eq. (16): 

function pdex4 

m = 0; 

x = linspace(0,1); 

t = linspace(0,10); 

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 

u1 = sol(:,:,1); 

u2 = sol(:,:,2); 

figure 

plot(x,u1(end,:)) 

%cftool(x,u1(end,:)) 

title('u1(x,t)') 

xlabel('Distance x') 

ylabel('u1(x,2)') 

%figure 

%plot(x,u2(end,:)) 

%title('u2(x,t)') 

%xlabel('Distance x') 

%ylabel('u2(x,2)') 

function [c,f,s] = pdex4pde(x,t,u,DuDx) 

c = [1; 1]; 

f = [1; 1].*DuDx; 
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km=10; 

r=5; 

ke=0.1; 

e=1; 

F1 = -km*u(1)*u(2); 

F2 = -r*ke*u(1)*u(2)+ke*e*(1-u(2)); 

s = [F1;F2]; 

function u0 = pdex4ic(x) 

u0 = [1; 1]; 

function [pl,ql,pr,qr] = pdex4bc (xl,ul,xr,ur,t) 

pl = [ul(1)-1;0]; 

ql = [0;1]; 

pr = [ur(1);ur(2)-1]; 

qr = [0; 0]; 

 

Matlab coding for Eq. (22): 

 

function umani 

x=linspace(0,1); 

km =10; % parameter 

gamma=5; 

ke=0.1; 

e=1; 

t = 0.1; 

s = 0; % initial sum 

N = 100;% number of terms 

for n = 1: N; 

L = 1/cosh((gamma*ke/e+ke)^(1/2)); 

s = s+(((-1)^n)/n)*((L*km)*(sin((x-1)*n*pi))/(L*km+(n*pi)^2)-sin(n*pi*x))*exp(-

t*(L*km+(n*pi)^2)); 

u = sinh((1-x)*((L*km)^(1/2)))/sinh((L*km)^(1/2))+(2/pi)*s; 

plot(x,u); 

end 
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