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In the battery management system, the state-of-energy is an important state to represent the remaining 

energy of the battery. The equivalent circuit model is the key to predicate this state of the lithium-ion 

battery. Therefore, the modeling and parameter identification of the battery model is crucial. This paper 

proposes a full parameter identification algorithm based on the forgetting factor recursive extended least-

square algorithm, which is leveraged to calculate parameters including the open-circuit voltage of the 

equivalent circuit model. Besides, the prior noise correction adaptive extended Kalman filtering 

algorithm is derived to predict the state-of-energy with the proposed full parameters identification 

algorithm. The prior noise correction is an efficient method to reduce the estimation error of the extended 

Kalman filtering algorithm, which predicts the noise at the next moment by current noise. Comparing 

with the extended Kalman filtering algorithm, the noise of prior noise correction adaptive extended 

Kalman filtering algorithm can be corrected efficiently. In this way, the maximum error of the forgetting 

factor recursive extended least-square algorithm to estimate open-circuit-voltage is 0.41% under 

different complex working conditions comparing with actual values. The modeling accuracy by full 

parameters identification is higher than 99.31%. For verification of state-of-energy, two different 

complexes working conditions are conducted to calculated state-of-energy, the error of state-of-energy 

estimation is less than 1.49%. The results demonstrate that the proposed algorithm can perfect the state 

estimation. 
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1. INTRODUCTION 

Now, most Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) are powered by 

lithium-ion batteries [1, 2]. Compared with other types of power batteries, lithium-ion batteries have the 
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advantages of high energy ratio, high single battery voltage, low self-discharging rate, long charge and 

discharge life, and no pollution, which occupy a very important position in the field of new energy 

sources [3-5]. In the use of lithium-ion batteries, the detection and control of lithium-ion batteries are 

important [6]. The accuracy of lithium-ion batteries parameter detection is related to the efficiency and 

safety of lithium-ion batteries.  

The battery management system (BMS) is usually leveraged to detect, manage and diagnose the 

batteries. In BMS, the state-of-energy (SOE) is one of the most important parameters that characterize 

the remaining energy of lithium-ion batteries, and it is related to the residual driving mileages of EVs 

and HEVs [4, 7]. The accurate estimation of SOE is a guarantee for the safety of lithium-ion batteries 

and avoids the over-discharge and over-charge of the batteries. Besides, its accuracy can also avoid 

safety problems caused by sudden power failures of the EVs during driving. The SOE estimation 

methods can be divided into three categories [8], the first category is the model-based methods, the 

second category is the data-driven algorithms, and the last is the traditional methods. The model-based 

methods include the Kalman filtering (KF) algorithm and its improvement [4, 9, 10], particle filtering 

(PF) algorithm [11], and so on. The data-driven algorithms include the neural network method [12, 13], 

fuzzy control approach, and machine learning-based approaches [14]. The traditional methods include 

the integral method and open-circuit-voltage method. 

Some methods developed by the neural network method and machine learning require a large 

number of training samples and calculations [15], which will greatly increase the computing load of the 

battery management system. Besides, data-driven algorithm accuracy also depends on the accuracy of 

the training samples. The model-based method is universal and the estimation accuracy does not depend 

on historical data. In the traditional method, the integral method is the basic method of SOE, but this 

method has accumulated errors and initial errors. The KF [9, 16] is an optimal choice to solve the 

problem of initial error and cumulative error in state estimation, but it is often used to estimate linear 

systems. Since lithium-ion batteries are non-linear systems, many improved Kalman filtering methods 

have been proposed to solve this problem. The widely used improved algorithm is the extended Kalman 

filtering (EKF) [17, 18]. The EKF approximately linearizes the nonlinear system by first-order Taylor 

expansion. However, the EKF can linearize the lithium-ion battery, but the Kalman filter defaults the 

system noise to Gaussian noise which is difficult to satisfy in practice. Therefore, KF and EKF will cause 

estimation errors due to system noise and measurement noise [19-21]. This paper proposes a prior noise 

correction adaptive extended Kalman filtering algorithm to estimate SOE.  

The parameters of the equivalent circuit model (ECM) are related to accurate state prediction 

[22-24]. In the model-based state estimation algorithm, the open-circuit-voltage (OCV) is vital for states 

calculation, which is a coupling relationship of lithium-ion battery states including state-of-energy, state-

of-power, and state-of-charge. At present, most studies in lithium-ion battery state prediction are 

estimation parameters of equivalent circuit models without OCV [25, 26]. In practical applications, it is 

difficult to obtain the relationship between the OCV and the state of the lithium-ion battery under various 

scenarios. Therefore, online estimation of OCV is essential, and it provides a method to calculate OCV 

that is not affected by the working conditions. In this research, the Thevenin model with noise correction 

is proposed as the model to study SOE estimation with online full parameters identification by forgetting 

factor recursive extended least-square (FFRELS) algorithm.  
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2. MATHEMATICAL ANALYSIS  

2.1. Modeling and full parameter identification 

The lithium-ion battery model reflects the working characteristics of lithium-ion batteries, and 

an accurate model plays an important role in the accuracy of state estimation [13, 27-30]. The equivalent 

model of a lithium-ion battery can be divided into the electrochemical model and equivalent-circuit 

model[31, 32]. The electrochemical model can better reflect the working conditions of lithium-ion 

batteries [33, 34], but the model is complex, which is not conducive to engineering applications. 

Compared with the electrochemical model [35, 36], the equivalent-circuit model can reflect the dynamic 

and static characteristics of the battery through a simple circuit model and has higher accuracy.  

Common equivalent-circuit models include the PNGV model[37], Thevenin model [38-40], Rint 

model, and GNL model [41]. The Rint model is simple, but it does not consider the polarization reaction 

during the charging and discharging of lithium-ion batteries. The GNL model can fully reflect the 

polarization characteristics and self-discharge characteristics of lithium-ion batteries, but this model is 

complicated for parameter identification so it is not conducive to engineering applications. The PNGV 

model and the Thevenin model are not complicated and can also reflect the polarization reaction of 

lithium-ion batteries. The research by He [42] illustrated that the Thevenin model is the most accurate 

to reflect the characteristics of the ternary lithium-ion batteries. Besides, the Thevenin model has fewer 

parameters. Therefore, this paper adopts the Thevenin model with noise correction as the model to 

estimate SOE, which can accurately reflect the characteristics of lithium-ion batteries and reduce the 

influence of noise. 

In the improved ECM, the ohmic internal resistance of the battery is reflected by the resistance 

R0, and the polarization effect of lithium-ion batteries is simulated by RC parallel circuit, which is shown 

in Figure 1. In this figure, UOC is the open-circuit-voltage of the lithium-ion battery, and UL is the output 

voltage. RP and CP are used to represent the polarization characteristics. 
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+
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Figure 1. The improved Thevenin equivalent-circuit model 

 

 

Wherein, the voltage of resistance R0 is set as U0 when the current is I, the voltage of the RC 

parallel circuit of the ECM is UP, so Eq. (1) can be derived by the Kirchhoff voltage principle. In this 

paper, negative numbers of current indicate discharging and positive numbers are charging of the 

lithium-ion battery. 
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  In Eq. (1), the output voltage UL and the current I in the circuit can be measured. The parameters 

need to be identified including open-circuit-voltage UOC, ohmic internal resistance R0, polarization 

resistance RP, polarization capacitance CP, and measurement noise represents by v(t). Therefore, five 

parameters need to be identified.  

The principle of the RELS algorithm is based on the least-square algorithm, and its 

implementation is mainly based on the principle of minimum mean square error. Taking the voltage of 

the lithium-ion battery as the output and the currents as the input, it can be regarded as a single-input-

single-output (SISO) model. Therefore, Eq (1) can be obtained by Laplace transform to Eq. (2). 
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  Wherein, τ represents the time-constant of the RC parallel circuit. Then, the discrete system as 

shown in the following equation can be obtained with bilinear transformation, which is shown as follows 

Eq. (3).  
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(3) 

 In the above equations, the yL(k) represents terminal voltage, yOCV(k) is the OCV in the ECM. 

The variables a, b and c are leveraged to represent the coefficients in Eq. (3). Wherein, the coefficients 

of the discrete system are shown in Eq. (4). 
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  According to the lithium-ion battery system in Eq. (3). The output yL(k) can be reinterpreted as 

the least-square expression. It is crucial to OCV online identification, so yOCV(k)- ayOCV(k-1) combine 

with the coefficients are regarded as the identification variables. The system can be rewritten as Eq. (5). 
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(5) 

 In the RELS algorithm, the noise has seemed as the variable of lithium-ion, and the influence of 

noise is taken into account, which improves the accuracy of parameter estimation. In Eq. (5), the v(k) is 

the noise in the battery system, and n1 and n2 are the related parameters. According to the recursive 

extended least-square algorithm, which is shown as Eq. (6), the parameters can be calculated by the 

RELS estimation results and the coefficients which are shown in Eq. (4). 
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(6) 

  In the above equation, λ is the forgetting factor, which can reduce the influence of old data. The 

P(k) denotes the error covariance matrix. To acquire high accuracy parameter identification results, the 

initial values of θ(k) should set as small as possible, P(k) is supposed to set as an identity matrix with 

great gain. 

 

2.2. Prior noise correction-adaptive extended Kalman filtering 

The state-of-energy, which represents the remaining energy of the battery, is a vital parameter of 

BMS. It reflects the current energy of lithium-ion batteries so that it can better reflect the endurance 

mileage when the lithium-ion batteries are used as the power of electric vehicles. Its definition is shown 

in Eq (7).  
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  Wherein, the E0 is the initial value of lithium-ion batteries, SOE(0) is the SOE at the initial 

moment, η is the Coulomb efficiency, I(k) and UL(k) are the output current and voltage, respectively, 

which can be measured by sensors. According to equation (7), by selecting appropriate input and output, 

the state space equation of the equivalent circuit model can be obtained. The calculation of SOE [43, 44] 

and the output equation of the lithium-ion battery system are shown in Eq. (8). 
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(8) 

Wherein, the 
 k

 in equation (8) is the system noise matrix, 
   1 2( )

T

k k k      . The 
 v k

in this equation is the measurement error matrix. 

Kalman filtering is one of the optimal filtering methods. At first, this method predicts the state 

at times k, then it calculates the compensation gain and the system residual to correct the predicted value, 

thus the final state prediction results can obtain. This method can accurately calculate the state of the 

system, but it does not apply to estimation errors caused by nonlinear systems and colored noise. In this 

research, an improved prior noise correction adaptive extended Kalman filtering (PNC-AEKF) was 

proposed to estimate SOE. Since it is difficult to meet the requirements of the extended Kalman filtering 

algorithm for noise in practical applications, estimation errors will be caused. The prior noise correction 

method can realize adaptive noise correction and reduce prediction errors. The extended Kalman filter 

algorithm uses the first-order Taylor expansion to linearize the nonlinear system. Therefore, a nonlinear 

system can be represented by Eq. (9). 
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(9) 

For the SOE estimation, step 1 is calculating the state prediction and estimate the error covariance 

matrix. 
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 Wherein xk is the state vector, A is the state transition matrix, B is the control matrix. In this 

formula, Pk+1/k is the predicted error covariance matrix, Qk is the noise covariance matrix which generates 

by the lithium-ion battery system. Step 2 is calculating the Kalman gain. 
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  In equation (11), C is the measurement matrix of the system. Rk is measurement noise. Step 3 

is predicting the state at the next moment and updating the error covariance matrix at the next moment. 
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(12) 

Wherein, ζk+1 is the system residual error, D is the feedforward matrix. SOE can be revised by 

ζk+1. The system noise of this algorithm has seemed as Gaussian white noise when using EKF, which 

ignores the noise characteristics so that the estimation error will be caused by noises in the practical 

application of it.  

To solve errors caused by noise, this paper leverages prior noise correction to update the noise 

variables Qk and Rk in the EKF algorithm. The error covariance matrix Qk and Rk are determined by 

system noise and observation noise, respectively. According to their definition, the calculation equations 

are shown as follows. 

  

 

T

k k k

T

k k k

E Q

E v v R

   


   

(13) 

Wherein, the variable ωk is system noise, and νk is the measurement noise. Thence, these two 

variables can be applied to compute the covariance matrix Qk and Rk respectively. When the estimation 

result at time k+1 is obtained, the prediction equation can be used to calculate the system noise.  
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  According to the observation equation and the measured voltage, the observation error can be 

calculated, which is caused by observation noise. 
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Wherein, the variable εk+1 represents the residual in the battery system. To consider the impact 

of sudden changes in noise, a forgetting factor is increased to improve the stability of the estimation 

results. The adaptive equation is shown below. 
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In Eq (16), yk+1 is the state observation. In the next moment for SOE prediction, the covariance 

matrix Qk and Rk which are estimated by prior noise correction can be adopted into the EKF algorithm. 

The prediction principle of SOE based on full parameter identification and PNC-AEKF algorithm is 

shown in Fig 2. 
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Figure 2. Prediction principle of state-of-energy 

 

 

 

3. EXPERIMENTAL ANALYSIS  

3.1. The verification of parameters identification 

For verification of the parameter identification results of the ECM, 72Ah ternary lithium-ion 

battery was selected for experiments. For parameter identification result accuracy verification, the 

Beijing bus dynamic stress test (BBDST) working conditions and the dynamic stress test (DST) working 



Int. J. Electrochem. Sci., 16 (2021) Article ID: 21077 

  

8 

conditions [45] were leveraged to identify the parameter identification results. Wherein, the BBDST and 

the DST are complex working conditions, both of them have come from actual automobile road tests. In 

this paper, the lithium-ion battery data is obtained by experiments in the laboratory. Besides, both of 

them were conducted at 25oC. The working steps of two working conditions are shown in Tables 1 and 

2. 

 

 

Table 1. The working steps of the Beijing bus dynamic stress test 

 

steps P/KW t/s condition steps P/KW t/s condition 

1 45 21 starting 11 12 16 glissade 

2 80 12 speed up 12 -15 6 breaking 

3 12 16 glissade 13 80 9 speed up 

4 -15 6 braking 14 100 6 rapidly 

speed up 
5 45 21 speed up 15 45 21 constant 

speed 
6 12 16 glissade 16 12 16 glissade 

7 -15 6 braking 17 -35 9 braking 

8 80 9 speed up 18 -15 12 braking 

9 100 6 rapidly 

speed up 
19 12 71 stop 

10 45 21 constant 

speed 
   

 

The BBDST working condition mainly uses the power values in each step to represent the 

conditions. In actually using, the power of each step was reduced in proportion. The total test time of 

this test is 300 seconds. In this paper, the battery is used to test by BBDST working condition circularly 

until reaching cut-off voltage.  

 

 

Table 2. The working steps of the dynamic stress test 

 

steps t/s 

Maximum power 

percentage steps t/s 

Maximum power 

percentage 

1 16 0% 14 36 -13% 

2 28 -13% 15 2 -100% 

3 12 -25% 16 6 -50% 

4 8 13% 17 24 -63% 

5 16 -2% 18 8 25% 

6 24 -13% 19 32 -25% 

7 12 -25% 20 8 50% 

8 8 13% 21 12 -2% 

9 16 -2% 22 2 -121% 

10 24 -13% 23 5 -2% 

11 12 -25% 24 2 66% 

12 8 25% 25 23 -2% 

13 16 -2%    
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The DST working condition mainly uses the maximum power ratio to express the working 

conditions. The working time of each is 360 seconds of each circulation. The test method of a lithium-

ion battery of DST working condition also is the same as BBDST working condition. 

 In the two tables above, the negative sign represents discharging of the lithium-ion battery, and 

the positive numbers are the charging sections. Under the BBDST working condition, the verified results 

of parameters identification of the improved Thevenin model are shown in Fig 3. The results of the DST 

working condition are shown in Fig 4.  

 

 

(a) Open-circuit-voltage (b)Error of open-circuit-voltage

(c)Internal resistance and polarization resistance       (d)Polarization capacitance

(e)Terminal voltage (f)Error of terminal voltage
 

Figure 3. Parameters identification base on Beijing bus dynamic stress test working condition 

 

Figure 3(a) is the comparison between the actual open-circuit-voltage curve and the estimated 

open-circuit-voltage curve which is predicted by the online full parameters identification algorithm. 

Wherein, S1 is the true value, and S2 is the estimated curve. Figure 3(b) is the online OCV estimation 
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error. The maximum value of the error is 16.9 mV, which is less than 0.41%, indicating that the 

prediction result is reliable. Figure 3(c) and (d) are the remaining parameters in the proposed ECM. Due 

to internal chemical reaction, the internal resistance, polarization resistance and polarization capacitance 

of the battery will change with the charge and discharge rate. Therefore, the fluctuation of the parameters 

is mainly caused by the charge and discharge rates. Figure 3(e) is the simulation voltage by the identified 

parameters and the measured terminal voltage by the sensor. Wherein, U1 is the simulation value and the 

U2 is the measured. The error between the simulation voltage and the actual value is shown in figure 3(f). 

Wherein, the maximum error is 24.2 mV, which is less than 0.58%. This result can conclude that this 

ECM has high precision and parameter identification result is efficient. By comparing with the modeling 

accuracy in references [39], [40], and [41], the proposed model can better characterize the working 

characteristics of the battery than the references. 

 

 

(a) Open-circuit-voltage (b)Error of open-circuit-voltage

(c)Internal resistance and polarization resistance       (d)Polarization capacitance

(e)Terminal voltage (f)Error of terminal voltage
 

 

Figure 4. Parameters identification base on dynamic stress test working condition 
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The above figures are the simulation result of parameters identification results verification under 

DST working conditions. In figure 5(a), the simulation result S2 is the estimated OCV. It can conclude 

that the OCV prediction is accurate from figure 4(b). The maximum error is 14.7 mV, which is less than 

0.35%. The parameters identification verification is the figure 4(e) and (f). The curve U1 is the real 

voltage of the lithium-ion battery, U2 is the simulation result to verify the accuracy of identified 

parameters. From figure 4(f), the error is no more than 28.7mV, the maximum value is 0.69%.  

 

3.2. State of energy estimation under Beijing bus dynamic stress test working condition 

About SOE estimation, MATLAB was used for simulation, and the parameters of the equivalent 

circuit model identified by the full parameter identification algorithm are taken into the SOE estimation. 

EKF algorithm and PNC-AEKF algorithm were used to estimate the SOE under the BBDST experiment. 

Figure 5(a) shows the comparison between simulation results of SOE estimation of lithium-ion battery 

by two different algorithms and real SOE. Figures 5(b) and 5(c) are the enlarged view of SOE estimation 

results. Figure 5(d) shows the error curves of SOE estimation by two algorithms under BBDST. 

 

 

(a) State-of-energy estimation (b)Enlarged view of state-of-energy estimation

(c)Enlarged view of state-of-energy estimation     (d)State-of-energy estimation error
 

 

Figure 5. State-of-energy estimation results under Beijing bus dynamic stress test working condition 

 

In figure 6(a), the S3 is the real SOE, S1, S2, S4, and S5 are the SOE estimated by the improved 

AEKF algorithm, EKF algorithm, BP neural network, and integral method respectively. Among them, 
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the initial SOE value of the integral method, EKF, and improved AEKF is set to 98%, and the actual 

initial value of SOE is 100%. From the enlarged figures can conclude that the prior noise correction can 

enhance the tracking performance of the EKF algorithm. It is easy to find that the improved method can 

effectively reduce the fluctuation of SOE estimation. Besides, the simulation results show that the 

proposed AEKF can reduce the initial error compare with the integral method. The S4 is the experimental 

result from the BP algorithm, and the neural network model is trained by DST working conditions. 

Compared with the AEKF, it can conclude that the AEKF has better versatility than BP neural network 

algorithm.  In figure 6(d), E1 is the PNC-AEKF estimation error, and E2 is the EKF estimation error. In 

BBDST working conditions, the maximum error is 1.21% by the PNC-AEKF algorithm, the maximum 

error is 2.94% of EKF. E3 and E4 are the errors of BP and integral methods respectively. The simulation 

results show that the proposed improved method can enhance the robustness of SOE estimation and 

improve the accuracy and has better performance than other SOE estimation methods. In reference [43] 

and [44], the SOE estimation results are obtained by improved EKF. In both of them, the error is 

exceeded 4%. Compared with the methods proposed in reference [43] by Lin and reference [44] by Li, 

the method in this paper can better estimate the SOE and the error is significantly smaller than the 

references. 

During the discharge of lithium batteries, since the EKF algorithm ignores the characteristics of 

noise in the discharge process, the accumulated noise error will gradually diverge SOE estimation error. 

The error variation in the EKF algorithm in figure 5(d) can be verified well. At the same time, with the 

further decrease of SOE of the lithium-ion battery, the nonlinear degree of the lithium-ion battery will 

be more intense. The EKF algorithm will further increase the estimation error because it ignores the 

higher-order term of the system.  

By comparing the simulation results of the improved algorithm and EKF algorithm, the 

advantages of adding adaptive prior noise correction for noise correction to SOE estimation are 

illustrated. This method can effectively improve the accuracy of SOE estimation and make up for the 

shortcoming that the EKF algorithm does not consider noise characteristics. 

 

3.3. State of energy estimation under dynamic stress test working condition 

The dynamic stress test is a kind of complicated working condition simplified by the working 

condition of the federal city in the United States, which plays an important role in verifying the 

estimation of SOE by an algorithm. In this paper, DST working conditions also was adopted to verify 

this algorithm. The estimation result of the PNC-AEKF algorithm about SOE under DST condition is 

shown in figure 6.  

In figure 6(a), S1, S2, S3, S4, and S5 are the PNC-AEKF estimation results, EKF estimation 

result, real value, BP neural network prediction results, and integral method estimated SOE respectively. 

The SOE estimation result by the improved algorithm in DST working conditions is closest to the real 

SOE value than the other algorithms, which is consistent with the result obtained under BBDST working 

conditions. In figure 6(d), E1 is the error of the PNC-AEKF algorithm, whose maximum error is 1.49%, 

and E2 is the error of the EKF algorithm, whose maximum error is 2.16%. E3 is the estimation error of 
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the BP algorithm, and the model is trained by BBDST working conditions, the error shows that the 

generalization is poor of the neural network to estimate SOE than AEKF. E4 is the simulation error of 

the integral method, the error proves that the proposed AEKF can make up the shortcoming of the 

integral method. The comparison results of the two algorithms also show that adaptive filtering can 

effectively solve the error accumulation caused by noise and improve the accuracy of SOE estimation. 

Besides, the simulation results also batter than the references [43] and [44] of SOE estimation. 

 

 

(a) State-of-energy estimation (b)Enlarged view of state-of-energy estimation

(c)Enlarged view of State-of-energy estimation     (d)State-of-energy estimation error
 

 

Figure 6. State-of-energy estimation results under dynamic stress test working condition 

 

 

 

 

4. CONCLUSIONS 

In this paper, the improved Thevenin model was adopted as the equivalent circuit model of the 

lithium-ion battery. For full parameters online identification, the FFRELS algorithm is leverage to 

estimate parameters with the proposed least-square expression method. The experimental results show 

that this method can identify parameters effectively, the maximum voltage error is no exceed 28.7 mV 

under complex conditions. Besides, the improved PNC-AEKF algorithm is adopted to estimate SOE 

under different working conditions. Compared with the other algorithms, the simulation results show 

that the proposed algorithm with adaptive prior noise correction is more accurate than the traditional 

EKF algorithm and other methods, the improved algorithm avoids the cumulative error caused by the 
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EKF algorithm ignoring noise characteristics. The simulation results show that the noise accumulation 

error in the EKF algorithm can be reduced by prior noise correction, and the improved PNC-AEKF 

algorithm enhances the accuracy of SOE estimation of lithium-ion battery and the robustness is better 

than the EKF algorithm and the generalization is good of proposed algorithm.  
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