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Internal short circuit (ISC) prediction is a critical challenge for battery failure detection (BFD). Accurate 

ISC prediction can effectively reduce the risk of battery thermal runaway (BTR) and ensure the safe use 

of lithium-ion batteries (LiB). The battery ISC is difficult to detect in early stages, and it takes a long 

time to determine the battery ISC via detection of the battery self-discharge phenomenon. Therefore, to 

achieve a simple and easy-to-use method for rapid measurement, a model for battery ISC prediction 

realized by the random forest classifier (RFC) is proposed in this paper. According to the relaxation 

behavior of LiB, sample data of ordinary batteries and batteries in the ISC state are collected by the 

hybrid pulse power characteristic (HPPC) test. The MATLAB curve fitting tool is used to fit the voltage 

relaxation curve in the sample data to obtain the parameters of the equivalent circuit model (ECM), and 

these parameters are used in the construction of the sample feature. Gray relational analysis (GRA) is 

used to select the features of the sample data, and the hyperparameters of the RFC model are obtained 

by a grid search (GS) with “Out-of-Bag” (OoB) errors. Through experimental analysis, the effectiveness 

and accuracy of the proposed method are verified, which is not only beneficial for BFD but also, increases 

the reliability of battery use. 

 

 

Keyword: Lithium-ion batteries; Internal short circuit; Random forest classifier; Equivalent circuit 
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1. INTRODUCTION 

Battery ISC is deemed to be one of the main reasons for triggering the thermal runaway of electric 

vehicles (EVs) [1, 2]. The early stage of the ISC last for a long time, the battery does not have the obvious 

characteristics of abnormal self-discharge, and the safety risk is low. As soon as the battery ISC enters the 

later stage, it will have the usual obvious characteristics, the battery terminal voltage will decrease 
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obviously, and the temperature of the battery will rise sharply. Because there will be heat accumulation in 

the process of battery ISC, it will trigger the battery heat abuse chain reaction in a short time, leading to 

the battery heat being out of control. Even if ISC only happens to the battery, it is likely to cause a series 

of accidents and even large LiB fires [3]. Since the time interval between the later stage of battery ISC and 

the thermal runaway of the battery is very short, there is almost no safety and time allowance for the 

prediction of the later stage of ISC to take corresponding measures. In contrast, there will be a sufficient 

safety and time margin if battery ISC is detected in the early stage to take corresponding countermeasures 

to solve the battery ISC problem ahead of time. 

 

1.1. Review of prediction approaches 

For the ISC prediction of battery packs, Ouyang et al. [4] developed a detection method based on 

parameter identification of the battery difference model (CDM). Through the analysis of the battery ECM, 

they found an abnormal open-circuit voltage (OCV) and resistance of the ISC battery. Experimental results 

show that the OCV difference of the ISC battery will increase gradually. However, under constant current 

conditions, the method may not be able to effectively determine OCV differences. X Feng et al. [5] studied 

battery ISC using a three-dimensional (3-D) electrochemical thermal coupling model. The short circuit 

resistance of the battery may produce too much heat, and excessive heat generated by ISC batteries was 

modeled. Experimental results show that the state of charging (SoC) of the ISC battery is abnormal [2]. 

Through internal and external experiments on LiB, R Zhao et al. [6] adopted an improved electrochemical 

thermal model (ETM) to predict the temperature change of the battery. Z Chen et al. [7] proposed a fault 

diagnosis method based on the online model. Although progress has been made in these studies, there is a 

heavy computational burden to identify model parameters in engineering applications. 

Several experimental methods have been used for battery ISC prediction. Nail penetration is a 

common method of determining battery health [8, 9]. Christopher D.Rahn devised a nail made up of 

sensors, used to gather experimental data with battery ISC [10]. Wang Hsin Wang designed an improved 

kneading torsion test method by increasing the torque on battery ISC [11]. Extrusion testing is another 

method and is the use of round rods or hard plates to press batteries to monitor ISC [12, 13]. The cell 

diaphragm may be broken by shear stress during crushing tests, or experiments may lead to contact 

between positive and negative components. The methods for nail penetration and crushing are easy to test, 

but it's difficult to control the progress of ISC experiments, mainly because the contact area and the short 

layer are difficult to control. As a key ISC parameter, the short circuit resistance of the battery is largely 

determined by the contact area [14]. To conquer this challenge, Premanand Ramadass used a hole 

compression way to trigger a battery ISC [15]. Donal P.Finegan [16] used PCM material instead of pores 

on the battery partition. When the battery is heated to a specific temperature, the wax will melt, which 

causes the battery cathode material and negative electrode material to come into contact. Although these 

experimental methods are easy to implement, they are hard to hold. In addition, putting metal particles into 

a battery or reassembling the battery may affect battery performance. 

Battery ISC can cause the battery temperature to rise. Chen et al. construct an electrothermal 

coupling model to further research the temperature distribution of ISC batteries [17]. Feng et al. designed 
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an electrothermal coupling model to reveal the corresponding relationship between the temperature and 

ISC state of LiBs [18]. Zhang et al. studied the relationship between battery ISC and mechanical abuse to 

analyze the corresponding battery temperature rise [19]. The results show that the temperature distribution 

of the battery pack is uneven. As a result, temperature-dependent prediction methods can be influenced by 

battery thermal management or the battery ISC external environment. 

The battery ISC reaction mechanism is complex and difficult to obtain. Additionally, there are 

some other battery ISC prediction methods. Through the use of X-ray technology, Sun et al. observed 

lithium dendrite growth and deformation of the battery diaphragm during the ISC process [20]. Rui Guo, 

et al. also used X-ray technology to study the process of battery thermal runaway and ISC triggers to 

improve the safety of battery design [21]. Guo et al. studied the whole battery ISC process by 

overdischarging the battery SoC to -100% [22]. Xiangdong Kong, et al. have established a pseudo two-

dimensional model of a micro ISCr battery [23] , revealing the battery drain phenomenon and the change 

of battery parameters when micro ISCr occurs in the battery, and also found that the electrical conductivity 

of the separator is the key parameter describing ISCr. Furthermore, through simulation and experiments, 

it is found that the impedance of the micro ISCr battery is different from that of the normal battery. 

Dongsheng Ren, et al. study on the relationship between battery ISC and thermal runaway [24]. Lishuo 

Liu, et al. comparative study of battery ISC alternative triggering methods [25]. 

Chemical reactions, heat accumulation, temperature increases and so on accompany battery ISCs. 

Therefore, a model-based battery ISC prediction method needs to establish a battery thermal model, 

electrochemical model, and ISC model [4-7]. However, in engineering applications, such methods usually 

require a heavy computational burden to identify the model parameters. ISC states in batteries are triggered 

by experimental techniques, such as nail penetration, extrusion testing, and reassembly of the battery. 

Experimental methods for ISC prediction of these batteries [8-16], which are usually easy to operate but 

difficult to control and reproduce, may bring about serious safety incidents, such as thermal runaway. There 

are two main factors that challenge temperature-based methods [17-19]: the temperature distribution on 

the surface of the battery is uneven, and the surface temperature of the battery is easily affected by the 

environment. Although some progress has been made in existing research on ISC prediction, there is still 

a lack of simple and effective methods for the early prediction of battery ISC. At the early stage of battery 

ISC, the short circuit current is small, the short circuit scale is relatively small, and the Joule effect heat 

from the short circuit current is also very small. In addition to the heat dissipation design of the battery, 

there is little heat dissipation in the early stage of the ISC. Moreover, the battery SoC or OCV changes 

relatively slowly due to the low short circuit current. Hence, it is difficult to detect ISC at an early stage by 

thermal or conventional voltage methods, and developing a simple and effective fast prediction method 

for battery ISC is a meaningful and challenging task. 

 

1.2. Contribution and organization 

To overcome such challenges, a model implemented by RFC is proposed for LiB ISC prediction. 

The contributions made in this research are as follows. 
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(1) A novel method for LiB ISC prediction is proposed. The RFC model only needs a few short-

term data samples and can work efficiently for rapid measurement, which does not depend on a thermal-

electrical coupled model, heavy computational burden, or time-consuming parameter identification. 

(2) Based on the relaxation behavior of LiBs, the data samples of the normal battery and battery 

with the ISC state are acquired by a group of current pulses that last only several minutes. This method 

for short-term feature acquisition is easy to implement in engineering applications. 

The following sections of this article are organized as follows. In Section 2, prior research related 

to battery ISC is introduced. Section 3 introduces the feature structure and the modeling method of battery 

ISC prediction. The results and analysis of the battery ISC prediction are introduced in Section 4. Section 

5 gives a discussion of battery ISC prediction, and section 6 serves as a conclusion. 

 

 

 

2. PRIOR RESEARCH OF BATTERY ISC 

2.1. An Introduction of battery ISC 

While the positive and negative electrodes inside the battery are switched on, ISC will occur. There 

are usually four types of ISCs according to the structure of the LiB [26]: aluminum-copper (Al-Cu), copper 

cathode material (Ca-Cu), aluminum anode material (Al-An) and cathode material (Ca-An). Battery ISCs 

are caused by three main reasons: mechanical abuse, thermal abuse and electrical abuse. 
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Figure 1. The battery ISC evolution process 

 

The evolution of the battery ISC state includes early, intermediate and final stages [27], as shown 

in Fig. 1. When the ISC resistance is high in the early stage of ISC, the battery discharge will cause the 

voltage to decrease slowly. At low exothermic power, the heat generated inside the battery can escape, so 

the battery temperature will not change significantly. The intermediate stage is the transition stage of the 

battery ISC. During the final stage of the ISC state, the ISC resistance is small, the current is large, and the 

battery voltage drops rapidly. The exothermic power of the battery is very large, which will produce a large 

amount of heat, and the temperature of the battery will rise. Based on the failure temperature of the battery 

partition, the battery diaphragm will break. As a result, with a large short circuit area between the positive 

and negative electrodes of the battery, the battery terminal voltage will be reduced to 0 V. In the meantime, 
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the high temperature will trigger the thermal runaway chain reaction, which will release a lot of heat in a 

short time, and ultimately trigger the thermal runaway of the battery [28]. 

 

2.2. The relaxation characteristics of lithium-ion batteries 

During battery testing, charging and discharging the battery will touch off the distribution of 

electrons and ions in the electrode to be unbalanced. This phenomenon is called battery polarization [29]. 

Because of this phenomenon, the electrode potential deviates from the equilibrium potential. Generally, 

there are three main types of battery polarization [30]. First, because of the resistance of the electrodes, 

electrolytes, and partitions, the voltage will drop, which is the ohmic polarization of the battery. Second, 

charge transfer is associated with the lithium ions of the battery and is known as battery activation 

polarization. Finally, concentration polarization is determined by the lithium-ion in solid-phase diffusion. 

 

 

CC-CV charge
CC-CV discharge

Relaxation

 
 

Figure 2. The relaxation process of the battery during testing 

 

 

When the battery stops charging and discharging, the battery voltage is still unstable during the 

relaxation time, as shown in Fig. 2, which can be regarded as the depolarization process of the battery. 

Fig. 3 shows in the relaxation curve of an LiB, where the battery voltage is first discharged at a current 

rate of 1 C to reduce the battery voltage to 3.3 V, and then the discharge is stopped to enter the relaxation 

time. The battery voltage rises sharply from the cutoff voltage V0 to the final stage of the battery 

discharge V1, caused by the rapid response and redistribution of the battery depolarization. The stage 

from V1 to V2 is the process of cell activation and concentration depolarization. The cell voltage rises 

rapidly from the initial state and then slowly tends to stabilize, which is determined by the charge balance 

in the particle-electrolyte interface and the particle body. 
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Figure 3. The relaxation curves of battery voltage 
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2.3. Problem formulation of battery ISC 

The voltage response of the battery test will be normal when ISC does not occur. However, when 

battery ISC occurs, the characteristics of lithium-ion migration inside the battery will change, which will 

affect the polarization phenomenon of the battery, thus affecting the battery voltage response process. 

Hence, the battery ISC problem can be transformed into a two-class problem to address. Emphasis is placed 

on selecting appropriate models and providing data samples to ensure accurate battery ISC prediction. 

Therefore, the data set for model training can be represented as follows: 

{ , }  X Y                                                                     (1) 

where 1 2{ , ,..., } nX x x x  and 1 2{ , ,..., } nY y y y  are the input sample data and output results, 

respectively. Here, 1 2 3 4 5[ ( ), ( ), ( ), ( ), ( )]kx F k F k F k F k F k  and {1, 1} ky , where 1( )F k , 2( )F k , 3( )F k  ,

4( )F k  , 5( )F k  are the sample features of the battery test, 1 and -1 are sample labels indicating whether the 

battery is exhibiting ISC or not. 

 

2.4. The parameter identification of battery ECM 

In general, the battery dynamic behavior can be described by an ECM composed of several 

resistance and capacitance (RC) combinations, as shown in Fig. 4, which is a second-order RC battery 

ECM. 
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Figure 4. A second-order battery ECM 

 

The battery ECM is composed of three parts: ocvU , the ohmic resistance ( 0R ), and two RC 

equivalent circuits for polarization. The parameters 0U , 1U , 2U , and tU  are the ohmic overpotential, 

diffusion overpotential, charge transfer overpotential, and battery terminal voltage, respectively. 
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Figure 5. The impulse discharge response of an LiB 
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According to Kirchhoff’s law, the circuit equation can be written as: 

1 1

1 1 1

2 2

2 2 2

1 2 0

1 1

1 1


  




  

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


t ocv

U U I
R C C

U U I
R C C

U U U U IR

                                                    (2) 

According to the second-order battery ECM and Fig. 5, the formula for calculating 0R  is as 

follows: 

0

| |
 D CU U

R
I

                                                                (3) 

According to Fig. 5, in the stage from A to C, the RC circuit is in the zero state response, and the 

voltage in this area can be obtained by: 
1 2/ /

0 1 2( ) ( ) (1 ) (1 )       t t

t ocvU t U t IR IR e IR e                                      (4) 

where 1 1 1  RC , 2 2 2  R C . 

In the stage from C to E, the RC circuit is in the zero input state, and the battery voltage during the 

process of D to E is:
  

1 2

1 2

/ /

10 20

( ) ( ) ( ) ( )

( )   
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t ocv

t t

ocv

U t U t U t U t

U t U e U e
                                                (5) 

where 10U , and 20U  are the initial values of the battery transient voltage. 

By the MATLAB curve fitting tool, the coefficients of the above formula can be obtained, and the 

parameters of the battery model can be obtained as follows: 
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                                           (6) 

 

 

 

3. MODELING AND METHODOLOGY 

3.1. Feature construction 

According to the polarization phenomenon, the voltage relaxation curve can be obtained during the 

battery test. Hence, the response voltage data (including charging and discharging data) collected using 

HPPC test methods are used to construct the features. The test result is shown in Fig. 6. Fig. 6(a) is the 

current pulse, Fig. 6(b) is the voltage response, and Fig. 6(c) is the voltage relaxation curve. 

The hybrid pulse current was discharged at a current rate of 1 C and charged at a current rate of 1 

C during the battery HPPC test, followed by current rates of 2 C and 3 C, respectively. The duration of the 

current pulse in Fig. 6(a) is 10 s, the relaxation time is 30 s, and the amplitudes are 1 C, 2 C and 3 C. 

Moreover, there is a relaxation time after each pulse charge and discharge. The battery response voltage 

diagram in Fig. 6(b) can be obtained by HPPC in the battery pulse test, and the voltage relaxation curve 

diagram in Fig. 6(c) can then be acquired from the charge and discharge response voltage. 
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The battery ECM parameters 0R , 1R , 1C , 2R , and 2C  can then be obtained by the MATLAB 

curve fitting tool to fit the relaxation curve, and from which the characteristics F1-F5 can be extracted, as 

described in Section 2.4. The reason for choosing this curve to construct the feature is the relaxation curve 

is obtained when the battery state is stable, which can ensure the accuracy of the constructed features. 

Moreover, Ouyang et al. proposed a battery pack ISC detection method by identifying the battery 

differential model parameters in the literature [4]. By analyzing of the battery ECM model, they found that 

the OCV and resistance of the ISC battery were abnormal. Therefore, according to the relaxation curve in 

the open-circuit state of the battery, the parameters of the battery ECM model are fitted, and the features 

of the data samples are constructed. 
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Figure 6. The schematic of the current pulse test 

 

3.2. Features extraction 

Feature selection has a large influence on the performance of the machine learning (ML) model, 

but continuously increasing the features of the model will not accordingly improve the performance of the 

model. Of course, the final performance of the model depends largely on the number of features and their 

construction methods. Therefore, to study the relationship between sample features and battery ISC, grey 

correlation analysis (GRA) is used for complete feature selection [31]. Based on grey system theory, the 

relationship degree is measured according to the similarity between factors. Hence, GRA supplies a 

quantitative measure of system evolution and is suitable for dynamic process analysis (DPA). The 

calculation process is as follows: 
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(1): The reference sequence { ( ) | 1,2,..., } Y y k k n  is constructed, where ( ) ( )y k ISC k , the 

comparative sequence { ( )}i iX x k , here i iX F ; 

(2): The data is preprocessed; 

(3): The relational coefficients are calculated: 

min max | ( ) ( ) | max max | ( ) ( ) |
( )

| ( ) ( ) | max max | ( ) ( ) |






  


  

i i
i k i k

i

i i
i k

y k x k y k x k
k

y k x k y k x k
                          (7) 

where   is the identification coefficient, (0,1)  

(4): The relational grade r  is calculated: 

1
( ( ))


 

n

i ii
r mean k                                                       (8) 

Redundant items may exist in the selected sample features, but the features obtained after the 

correlation grade calculation will not affect the final battery ISC prediction results. The relationship 

between the obtained sample features and the battery ISC according to the calculation steps of the above 

GRA is shown in Table 1. When the value of the relation grade is equal to 1.0, the relationship degree is 

the largest. Therefore, there is a high correlation between the extracted sample features and battery ISC, 

which indicates that feature selection can ensure that the RFC model can accurately predict battery ISC 

state. 

 

Table 1. The relational between features Fi and SoH 

 

Feature F1 F2 F3 F4 F5 

Grades 0.8255 0.8032 0.7962 0.8238 0.8216 

 

3.3. ISC prediction by RFC 

Breiman proposed the random forest (RF) algorithm in 2001[32]. The RF model generates a large 

number of decision trees (DTs) that pose as regression or classification tools, and the output of the RF is 

the mean of the output of all of the DTs. In a nonparametric model, DTs are still named classification and 

regression trees (CARTs), which is a statistical model developed by Breiman et al. [33]. Each DT 

constituted by a decision node and a leaf node. The decision node evaluates the sample of each input 

through the test function and then passes it to variety branches according to the sample characteristics. In 

the process of learning, the DT grows based on the sample data. 

Let X  be an input vector with m  features, and Y  be an output scalar. Then, the training set 

including n  observations can be revealed as follows: 

1 1 2 2{( , ), ( , ),...( , )}, ,  m

n n nS x y x y x y X R Y R                                    (9) 

In the process of model training, the input data fed to the model are split at each node, so the 

parameters of the split function need to be optimized to fit the data set nS . In the first step, the decision 

tree should be optimally split, where the splitting process will start from the root node, each node obtains 

new input data, and then this step is repeated until the terminal leaf is hit. Finally, when the maximum 
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number of levels is reached, the growth of the tree should be stopped, and a estimation function ˆ( , )nh X S  

is realized based on the data set nS . 

The random forest classifier (RFC) is an extension of CART technology. Each tree in the RF will 

randomly grow a subset of estimators, and the RF will construct multiple unrelated DT during the training 

process. The RF uses the basic classifier ( , )kh X  with an L-tree structure, where k  is a set of 

autocephaly and uniformly distributed random vectors. The RFC model is an integrated method that 

combines all generated DTs through bagging or bootstrap aggregation algorithms (BAAs). This technique 

is able to use with lots of regression methods to reduce the variance associated with predictions. The 

process of RF randomly collecting samples is called the boot procedure, which is acquired by randomly 

selecting n  observation values from the data set nS  and replacing them, and the probability of each 

observation value being selected is 1/ n . To construct a set 
1

1
ˆ ( , )

nh X S ,…, ˆ ( , )q

q nh X S  of q  prediction 

trees, the definition is as shown in the following formula, and a bagging algorithm is used to select multiple 

bootstrap samples 
1( ,..., ) q

n nS S . 

ˆˆ ( , ) i

i i nY h X S                                                                 (10) 

where 1,...,i q . The integration generates q  outputs corresponding to each tree, and the 

aggregation is carried out by averaging the outputs of all of the DTs. Therefore, the output estimated 

value Y  can be gained by the following formula: 

1 1

1 ˆˆ ˆsgn( ( , )) 1,2,...,

 
   

k k l

l ni i
Y Y h X S l q

k
                                   (11) 

where Ŷ  is the output of the l - th  tree, 1,2,...,l q . The skeleton of the RFC model for ISC 

prediction is shown in the figure below. 
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Figure 7. Schematic diagram of the RFC model for battery ISC prediction 
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3.4. Hyperparameter optimization of RFC model 

Ensemble learning is currently a very popular class of machine learning (ML) methods that 

conforms the modeling results of whole models by construct several models on datasets. RF is composed 

of randomly generated DT and is a representative integration algorithm. By integrating multiple weak 

classifiers, the overall model has higher accuracy and better generalization performance. A distinctive 

advantage of the RF is the using of “out-of-bag” (OoB) data to estimate the generalization error. In the 

construction of DTs, random back extraction is used.  

The OoB is a data set that is not adopted in the model training for the current tree. This ensemble 

estimation of generalization error proposes the precision of the DT classification and at the same time helps 

to quantify the significance of the sample features. The OoB estimation calculates the classification of each 

sample by the DT when it is an OoB sample. The majority vote is used as the classification result of the 

data sample. The ratio of the number of misclassifications to the whole number of samples is introduced 

as the OoB misclassification rate of the RF. The RF generalization error of an unbiased estimate is able to 

evaluate internally, in other words, the error of an unbiased estimate can be established during the 

generation process. 

The basic theory of the GS method is to divide the grid over a specific range, and use the value of 

the optimal number of DTs and the number of leaves of the RF tree to traverse all points in the network. 

Combined with the OoB error method, the accuracy of the model classification can be verified by the 

training set under this parameter value. Finally, the most accurate parameters are determined as the best 

model parameters. 

 

 

 

4. ANALYSIS OF EXPERIMENTAL 

This section introduces the experimental analysis, which includes data description and collection, 

training and testing of the RFC model, verification and results of the RFC model. 

 

4.1. Data description 

 
 

Figure 8. The experimental setup of the test platform 

 

The experimental platform for battery testing and data acquisition is shown in Fig. 8. The test 

platform consists of an LiB, temperature control box, battery test system and user test computer. After 
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the battery is placed in the temperature control box, the battery test system is connected by the 

temperature control box, and the battery test system is connected with the power supply and PC. Finally, 

the computer obtains the test data to complete the battery test experiment. The 18650 LiB used in the 

experiment has a cycle life between 1000 and 1500 cycles. Other relevant parameters of the battery are 

listed in Table 2. 

For normal battery samples, the battery aging test and HPPC test are as described in section 3. The 

battery sample data collection process is as follows: after the battery aging test, the battery sample data are 

collected using the HPPC test at 5%, 10%, 15%, 20%, and 25% depth of discharge (DoD). In the test 

experiment, the sampling time was set to 1 second, a total of 12 batteries were tested, and a total of 60 data 

samples were collected for model training. For batteries in the ISC state, a total of 5 battery samples were 

tested. The data were collected 12 times, each time according to the HPPC method. A total of 60 samples 

of batteries in the ISC state were collected. In the data sample, three random samplings (20/each time) 

were performed, and 3 test sets were constructed for model verification. 

 

 

Table 2. Cell parameters 

 

Brand name 
Battery 

weight 

Nominal 

capacity 

Nominal 

voltage 

Charge/discharge 

cutoff voltage 

Sanyo 45 g 2.4 Ah 3.7 V 4.2 V/3.0 V 

 

4.2. Model training 

The experiment was performed in Windows 8.0 by MATLAB 2015 and MATLAB TreeBagger 

[34]. In order to prevent multiple dimensions of raw sample data from affecting model training, data 

preprocessing must be performed to dispel this effect, and then improve the convergence rate during model 

training. In this paper, the minimum-maximum normalization method is used, as shown below. 

' ( ) / ( )  x x xx x min max min                                                    (12) 

where x  and 'x  are the raw data value and scaled data value, respectively, and xmax  and xmin  

are the maximum and minimum values of the sample, respectively. 

The adaptive assessment plays an essential role. In this paper, the OoB error method on the number 

of optimal DTs is used to evaluate the performance of RFC models. The RFC model is trained by using 

different numbers of DTs according to the GS principle, and the corresponding OoB error is obtained. 

According to the convergence of the OoB error, an optimal number of decision trees are finally selected. 

The OoB error analysis and convergence diagram of model training is shown in Fig.9. 
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Figure 9. OoB error of RFC model training 

 

 

According to the above OoB error analysis diagram, it can be concluded that when the number of 

DTs is near 100, 110, and 120, the training error of the model is the smallest, reaching 0.08. When the 

number of DTs increases, the accuracy of the model is improved accordingly. However, after more than 

100, the OoB error changes very little, and the performance of the model does not improve with the 

increase in the number of DTs. On the other hand, when the number of DTs increases, the computational 

overhead is increased. Therefore, the number of DTs selected in this paper is 100. The OoB error can be 

used as an unbiased estimate of the generalization error of the RFC model, and its results are equivalent to 

k-fold cross validation (CV). Therefore, the use of the RFC model to predict the battery ISC without CV 

can ensure that the model has good generalization. 

 

4.3. Performance metrics 

To evaluate the prediction performance of the RFC model for battery ISC, three performance 

metrics are introduced in this paper: prediction precision, recall rate and f-score. The prediction precision 

is a measure of the accuracy of the identification model to judge the unknown sample as positive. The 

recall rate is a measure of the accuracy of all positive samples in the data set. Generally, it is difficult to 

take into account both high precision and high recall rate, so the f-score is adopted to evaluate the precision 

and recall rate synthetically. The specific definitions of each metric are shown below. 




TP
precision

TP FP
                                                         (13) 




TP
recall

TP FN
                                                         (14) 

2- (1 )



 

 

precision recall
f score

precision recall
                               (15) 

where TP is the number of true positive samples, FP is the number of false-positive samples, TN 

is the number of true negative samples, and FN is the number of false-negative samples. Parameter   

is used to control the weight of the precision and recall rate. In general, the value is equal to 1.0, and the 

importance of the two metrics is the same. 
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4.4. Model validation 

To verify the comprehensive performance of the RFC model, the model needs to be trained and 

tested. First, the battery ISC prediction model is trained by the training dataset. Then, three random test 

sets are used to verify the trained model. For accurate validation of the RFC prediction models, the test 

data sets used for the models are different from the training data sets. 

 

 

Table 3. The statistics of the test results for ISC prediction 

 

Test set precision recall f-score 

No. 1 0.9646 0.8410 0.9099 

No. 2 0.9285 0.7805 0.8481 

No. 3 0.9384 0.9384 0.9384 

Average 0.9526  0.8533  0.8988  

 

The statistics in the table above show that the RFC model tested on the No. 2 test set produces the 

worst prediction results, and its precision, recall and f-score are 0.9285, 0.7805 and 0.8481, respectively. 

The RFC model tested on the No. 3 test set obtained better prediction results. Its precision, recall and f-

score were 0.9384, 0.9384 and 0.9384, respectively, which obviously outstrip the prediction accuracy of 

the test results from the No. 2 test set. The prediction result of the RFC model tested on the No. 1 data set 

is an ideal test result. 

These test results confirmed the comprehensive performance of the RFC model. Although the RFC 

model tested on dataset No. 2 did not obtain satisfactory prediction results, fortunately, the other two tests 

both obtained high-precision ISC battery predictions. In particular, for the RFC model, the average value 

of the prediction results is obtained on the entire test set, showing clearly that the trained model own good 

robustness and generalization ability. Through the HPPC test method, sample data of the normal battery 

and the battery with the ISC state are collected. When constructing the sample features, normal and 

abnormal class sample features can be obtained, which ensures that the classifier can achieve high 

accuracy. 

 

 

 

5. DISCUSSION 

5.1. The influence of feature selection on the RFC model 

To verify the accuracy of the sample feature selection, five RFC models are trained by the data set 

without one feature each time, and then three test sets are used to test the models. Table 4 lists the prediction 

results of each model. When the data set without F2 features is used to train the model, the prediction 

results are obviously very poor, the average precision is as low as 0.8718, and the average recall rate, and 
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f-core are 0.9070 and 0.8864, respectively. Moreover, when using a dataset without F3 features to train the 

model, it will also produce unsatisfactory prediction results. The average values of its ISC prediction 

precision, recall rate and f-core are 0.9122, 0.8776 and 0.8944, respectively. The remaining three models, 

that is, the models not trained with F1, F4 and F5 features, produced relatively better prediction results 

compared with other models, but they were also inferior to the models trained with all five input variables. 

In short, all of the selected input variables will have an impact on the battery ISC prediction, and are 

essential for the ISC prediction model. 

 

 

Table 4. The statistical of test results for ISC estimation 

 

Minus 

feature   
Test set precision recall f-score 

F1 

Test 1 0.9656 0.8331 0.9053 

Test 2 0.9243 0.7688 0.8395 

Test 3 0.9384 0.9384 0.9384 

Average 0.9512 0.8468 0.8944 

F2 

Test 1 0.9243 0.8660 0.8942 

Test 2 0.7557 0.9196 0.8297 

Test 3 0.9354 0.9354 0.9354 

Average 0.8718 0.9070 0.8864 

F3 

Test 1 0.9322 0.8799 0.9053 

Test 2 0.8660 0.8145 0.8395 

Test 3 0.9384 0.9384 0.9384 

Average 0.9122 0.8776 0.8944 

F4 

Test 1 1.0000 0.8331 0.9053 

Test 2 0.9243 0.7688 0.8395 

Test 3 0.9384 0.9384 0.9384 

Average 0.9512 0.8468 0.8944 

F5 

Test 1 1.0000 0.8331 0.9053 

Test 2 0.9243 0.7688 0.8395 

Test 3 0.9354 0.9354 0.9354 

Average 0.9402 0.8458 0.8934 

 

5.2. The influence of hyperparameter on the RFC model 

The RFC model is very easy to use, and only one parameter needs to be adjusted: the number of 

DT nTree. The parameter nTree is the number of DTs used in the RFC model, indicating how many sample 

subsets there are. A larger nTree means that more DTs are used for classification in the RFC model, which 

easily leads to overfitting. When the value of nTree is smaller, fewer DTs are used for classification in the 

RFC model, and the model is not easy to fit and may be underfit. Therefore, when the parameter nTree is 

too large or too small, the generalization ability of the model may not be ideal. As shown in Fig. 10, when 

nTree is greater than 90, the three indicators of prediction precision, recall rate and f-core tend to stabilize, 

and the classification accuracy value on test set 1 reaches the maximum value of 100%. 
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Figure 10. The relationship between the parameter nTree and performance metrics 

 

The optimal number of DT nTree has the greatest impact on the RFC model. Of course, the model 

has other parameters, but the impact is small. For example, the maximum depth of the DT indicates the 

maximum depth that the DT can grow when the RFC model is constructed. If set to none, the DT will not 

control the depth of the subtree when constructing the optimal prediction model. When the model has a 

large sample size and many features, limiting the maximum depth can be considered to prevent excessive 

computer overhead. When the model sample size is small, there is no need to limit the maximum depth. 

 

5.3. Comparison with other ISC detection methods 

The research is based on symmetrical loop circuit topology to detect the internal short circuit in a 

battery pack connected in parallel [35]. The internal short circuit is judged based on number theory and 

circuit topology. The recursive least squares (RLS) algorithm can be used to lock the faulty unit online, 

and an ISC state with a resistance of less than 10 Ω can be detected within 15 s. Another work developed 

a lumped thermal evolution model (TEM) based on the battery equivalent circuit model (ECM) [36]. An 

extreme learning machine (ELM) is used to synthesize multiple scattered configuration TEM/ECM 

submodels to approximate the distribution characteristics of actual batteries. Multiple types of correlation 

vector machines (RVM) are used to distinguish the battery ISC states. The experimental results verify the 

reliability of the model structure, the level misjudgment rate is 14.59%, and the state misjudgment rate is 

as low as 3.13%. In [37], the author proposed an early ISC detection method based on the state of charge 

(SOC) correlation, which can be used for the online detection of battery ISC under dynamic conditions. 

The SOC of each battery is estimated through an extended Kalman filter (EKF), and a moving window is 

used to calculate the correlation coefficients for adjacent batteries to ensure the accuracy and stability of 

the estimation. Experimental results show that the method is fast and accurate, and can detect the early ISC 

of 100 Ω online under dynamic conditions within 20.4 hours. The research presented in [38] proposes a 

novel and accurate algorithm based on a model that can detect the soft ISCr state of the battery online 

regardless of the load current. The battery equivalent circuit model with ISCr state is used to extract the 

open circuit voltage of the battery, thereby obtaining the enhanced relationship between the open circuit 

voltage and the charging state. The research results show that the relative error of the estimated failure 

index does not exceed 6.4%. This paper uses the HPPC test method to collect the voltage response curves 

of normal batteries and ISC state batteries as sample data, and then constructs sample feature variables F1-

F5 to train the RFC model. The test precision, average recall rate and f score are 0.9526, 0.8533 and 0.8988, 

respectively. The experimental results show that this method can achieve high-precision battery ISC 
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prediction. In the [35], symmetric loop circuit topology is mainly used to detect the battery ISC state. In 

the [36] and [38], the prediction of the battery ISC state is based on the battery ECM, which is highly 

dependent on the battery model. In the [37], it is necessary to use the EKF to obtain the battery SOC, which 

easily increases the estimation error. 

 

 

 

6. CONCLUSIONS 

The HPPC method is used to test normal batteries and ISC batteries, and the voltage response curve 

of the batteries is collected as the data sample. Then, the RFC model is trained by the data sample to predict 

the battery ISC. Based on the above research, the following conclusions can be drawn. 

First, the HPPC test method is used to collect the partial voltage response curve as sample data. 

This nonintrusive and nondamaging method only takes several minutes to complete, and is easy to 

implement in engineering. The parameters 
0R , 

1R , 
1C , 

2R , and 
2C  of the second-order RC battery ECM 

are acquired by using the MATLAB curve fitting tool to fit the relaxation curve in the sample data, which 

constitutes the feature variables F1-F5 of the sample. To configure the RFC model, only one parameter, 

nTree, needs to be tuned, because the other parameters have little effect on the performance of the model. 

As shown in Fig. 10, when the parameter nTree is greater than 90, the test precision, recall rate, and f-score 

are stable between 0.8 and 1.0, and the classification accuracy reaches the maximum value of 97.46%. By 

analyzing the influence of the parameter nTree on the performance of the RFC model, the parameters of 

the RFC model can be determined. Third, the trained RFC model is verified by the three random test data 

sets. The average values of the test precision, recall and f-score are 0.9526, 0.8533, and 0.8988, 

respectively. Experimental results show that this method achieves high-precision battery ISC prediction.  
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