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Fuel cell/battery/supercapacitor hybrid vehicles have shown good prospects. Energy management 

strategies (EMSs) are proposed to solve the complex energy management issues associated with the fuel 

cells/batteries/supercapacitors of construction vehicles, and to optimised economy and performance. 

Here, we develop a multiobjective predictive EMS. In the predictive control framework, a non-

dominated sorting genetic algorithm (NSGA-Ⅱ) enhances fuel cell and battery durability while 

minimising economic cost. NSGA-II optimises cost functions in real-time and generates a Pareto front, 

the data of which are screened by fuzzy logic algorithm to obtain optimal control solutions. Simulations 

indicated the superior feasibility and effectiveness of our proposed EMS compared to conventional 

benchmarks. The EMS ensures that fuel cell/battery/supercapacitor hybrid construction vehicles not only 

receive adequate power under complex working conditions, but also reasonably distribute the power 

demand among fuel cells/batteries/supercapacitors; this extends the lifespan of these devices and ensures 

high efficiency. 

 

 

Keywords: fuel cell; hybrid system; energy management; model predictive control; multiobjective 

optimization.  

 

 

1. INTRODUCTION 

The extensive emissions of construction vehicles, including loaders, bulldozers, forklifts, 

scrapers, and excavators, are of concern. Given the global energy crisis and global warming, fuel cell 

vehicles (FCVs) are increasing in popularity because they exhibit efficient energy conversion and are 

environmentally friendly [1]. Fuel cell hybrid construction vehicles (FCHCVs) benefit from compact 

size, high energy conversion efficiency, zero pollution, and quiet operation [2]. Commercial fuel cells 

have many applications [3,4]. The global FCVs market is expected to reach US$24.81 billion by 2025 

[5]. FCHCVs exhibit remarkable potential. 
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The dynamic performance and lifetime of a fuel cell depend on the peak power demands and 

frequency of power variations. Fuel cells alone cannot recover energy. Thus, hybrid powertrains have 

been developed for vehicular applications. Fuel cells are linked to auxiliary energy storage systems 

(AESSs), which can be in the form of a battery pack, supercapacitor, or combination thereof [6]. 

Generally, batteries exhibit higher specific energy but lower specific power compared to supercapacitors 

[7,8]. A combination battery/supercapacitor, such as an AESS, is recommended for vehicular 

applications; such combination devices exploit the high energy density of batteries and supercapacitors 

[9]. If a supercapacitor is employed, battery power can be reduced, thus prolonging battery lifetime. 

Here, we discuss FCHCVs with AESSs equipped with batteries/supercapacitors. Given the different 

dynamics of the three power sources, an energy management strategy (EMS) is essential to coordinate 

the energy distribution, thus improving system performance and economy [10]. EMS development has 

become an important research topic. The working environment of a construction vehicle is complex; the 

loads change frequently and significantly, severely testing the EMS of the three energy sources.  

An FCHCV EMS operates under complex conditions. Research has turned from rule-based to 

optimisation-based EMSs [11]. Rule-based EMSs relying on design experience are often easy to 

implement [12]; optimisation theory-based strategies tend to be more complex but also more effective. 

Rule-based EMSs feature state machine [13], operation mode [14], sliding mode variable structure 

control [15], state machine strategy [16], and fuzzy logic control strategies [17,18]. Fuzzy control 

tolerates mathematical and data imprecision, and robust performance in terms of real-time FCHEV 

control [19]. The advantages of rule-based EMSs include the classification of operating models, the use 

of real-world engineering knowledge, and high static energy efficiency. Rule-based EMSs do not require 

precise performance data and are both robust and deductive, effectively and simply allocating power. 

However, rule-based EMSs rely heavily on operator experience, and do not necessarily optimise the 

global strategy. Thus, optimisation-based approaches have emerged including global and local 

algorithms. The former method involves convex optimisation [20], dynamic programming [21], heuristic 

dynamic programming [22], and genetic or other optimisation algorithms [23]. These EMSs aim to 

obtain optimal global strategies but impose a heavy computational burden and require a thorough 

knowledge of drive cycle features. However, real-time (local) EMSs including Pontryagin’s minimum 

principle (PMP) [24], the equivalent consumption minimisation strategy (ECMS) [25,26], or model 

predictive control (MPC) [27,28] do not require specific drive cycle data or impose a heavy calculation 

burden, but yield only local optimal real-time energy distributions. Many scholars used the PMP to 

develop near-optimal strategies for hybrid FCVs. However, the models do not work well in the real 

world. MPC-based EMSs have thus received a great deal of attention [29,30]. MPC based EMS has 

become research hotspot in vehicle energy management. We have explored MPC-based EMSs for 

FCHCVs, and achieved some significant results [31,32]. However, the EMSs of fuel 

cell/battery/supercapacitor hybrid system needs further study.   

The EMSs of FCVs must solve multiobjective optimisation problems (MOPs), minimise energy 

use and emissions, optimise power use, and maximise fuel cell and battery lifetimes. Genetic[33], 

particle swarm [34], and other optimisation algorithms have been used to derive multiple solutions to 

large MOPs simultaneously. An multiobjective optimization system delivers Pareto solutions or non-

dominated solutions [35]. Many authors have focused on multiobjective optimization controllers, using 
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multimodal strategies to develop multiobjective optimization, multi-population genetic and artificial fish 

swarm algorithms [36–38]. The non-dominated sorting genetic algorithm (NSGA) is an multiobjective 

optimization, and NSGA-II improves on the original it [39]. It is essential to minimise overshoot and the 

settling times of all MOP solutions. Conventional MPCs are improved by NSGA-II [40].  

The main contribution of this study is the energy management development for FCHCVs 

powered by fuel cells/batteries/supercapacitors hybrid system. According to the characteristics of the 

three power sources, appropriate energy management strategies are studied based on system 

mathematical model. EMSs can dynamically adjust the output of fuel cell/battery/supercapacitor, to 

reduce the hydrogen consumption of fuel cell, improve the system energy utilization and system 

efficiency, and improve the fuel cell and battery durability. The complex working conditions is one of 

the basic problems to be solved in the FCVs. It is important to study the influence of complex working 

conditions on the performance fuel cell and battery. The research has significance for various fuel cell 

hybrid system. To solve the complex power distribution of the three nonlinear power sources, a new 

predictive control framework-based energy management is proposed. The energy management is a 

complex multiobjective optimisation problem considering vehicle economy and performance at the same 

time. NSGA-II is used for optimisation of the multiobjective energy management problem, and generates 

a Pareto front to obtain optimal control solutions. Finally, this paper is as follows: the FCHCV model is 

established in Section 2. The predictive EMS is proposed in Section 3. Simulations are discussed in 

Section 4. Conclusions are Summarized in Section 5.  

 

 

 

2. PROBLEM STATEMENT 

2.1 The FCHCV 

We studied an FCHCV with a powertrain featuring a fuel cell/battery/supercapacitor (Figure. 1). 

FCHCV is powered by a fuel cell stack (FCS), a battery pack, and a supercapacitor module. The FCS is 

connected to the DC bus via a boost direct current (DC)/DC converter. The battery pack and 

supercapacitor module are connected via bidirectional DC/DC converters. One motor is used to drive 

the vehicle; The other motor drives the hydraulics used for bucket operation and steering.  

 
 

Figure 1. Topology of the FCHCV. 
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In Figure. 1, PD and PHS is the power of the traction and hydraulic system, respectively. PFCS, 

PBAT, and PSC denote the power of the FCS, the battery pack, and the supercapacitor module, respectively.  

 

2.2 Powertrain and hydraulic system models 

Below, we develop the FCHCV model. The principal FCHCV loads are the powertrain, hydraulic 

system, and vehicle electronic load PACC (which is random and treated as a constant 5 kW). In the real 

world, road conditions and bucket operation vary. The powertrain load calculation is based on dynamics, 

and the hydraulic load is derived using hydraulic principles. The model is simple: 
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where G is the overall quality, f and KA are coefficients, θ is the road grade, S is the front area, v 

is the speed, vw is the wind speed, and δ is a conversion factor for the rotating mass. pi, qi, ηi, and ni refer 

to the pressure, flow rate, efficiency, and rotational speed of a hydraulic pump; there are k hydraulic 

pumps. 

 

2.3 Fuel cell model 

The FCS used proton exchange membrane fuel cell (PEMFC) [41]. The dynamics of a single fuel 

cell are calculated as follows:  

-cell cell act ohmV E V V                                (3) 
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where Ecell denotes the electromotive potential, IFC is the FCS current, Vact are the losses caused 

by cell activation, and Vohm are the losses caused by cell internal resistance. T is the temperature, TC is 

the temperature offset. RC and F are gas constant and Faraday constant. PO2 and PH2 are the pressures at 

the interfaces of the cathodic and anodic catalytic layers respectively. E0 and kc are constants. α is the 

charge transfer coefficient, IFC is the fuel cell current in amperes, Scata is the catalyst layer section area, 

and I0 is the exchange current density.  

Finally, the electrical output power can be obtained as: 

FCS cell cell FCP N V I                                 (5) 
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where Ncell denotes the number of cells in the stack. mH2FC, MH2, and ne denote the hydrogen 

consumption, molar mass of hydrogen, and number of electrons, respectively. 

 

2.4 Battery model 

Batteries are widely used to store energy in electric vehicles [42]. In an EMS, the battery 

parameters must reflect the working status. Li-ion batteries are often used in high-performance vehicles. 

The cost of these batteries is falling and performance is improving; literature models are available [43]. 

We used a simple PNGV model [44,45]: 

BAT OCV BAT BAT PBATU U I R U                              (7) 

BAT BAT BATP U I                                 (8) 

BAT
BAT BATInit

BAT

I
SoC SoC dt

Q
                             (9) 

where SoCBAT denotes the battery state of charge (SoC). UOCV and UPBAT denote the ideal open-

circuit and polarisation voltages, respectively. IBAT and RBAT denote the load current and internal 

resistance, respectively.  

 

2.5 Supercapacitor model 

We used a supercapacitor to manage the power produced by, and demanded from, the FCS and 

battery; a supercapacitor provides high power density, fast charging, rapid power release, and a very 

long life cycle. In the absence of a supercapacitor, the FCS and battery would be required to manage the 

entire workload even at high peak power, thus degrading their lifespan or increasing their size and cost 

[46,47]. A supercapacitor delivers energy very rapidly, which is important if the power demand varies 

frequently. Many different models employing the RC circuit are available; we used the following 

equivalent supercapacitor model [48]: 
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where SoCSC denotes the supercapacitor SoC, and IBAT, USC, and RSC is the operating current, 

ideal open-circuit voltage, and internal resistance, respectively. USCmax denotes the maximum open-

circuit voltage.  

 

2.6 DC/DC convertor model 

Converters are important for energy management, regulating the output voltage and current. It is 

assumed that the time constants of the inductors within the DC/DC converters are much larger than the 
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switching period. Therefore, it is reasonable to use an equivalent static model of a DC/DC converter 

[49]: 

1
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where VIN and VOUT denote the input and output voltage, respectively. RL denotes the resistor of 

the inductor; L is the inductance and κDC is the output to input voltage ratio. IL and IOUT are the current 

through the inductor and output current of the converter, respectively. ηDC is the converter efficiency. 

 

 

3. DEVELOPMENT OF THE NSGA-II OPTIMISED MO-PREDICTIVE EMS 

3.1 EMS development 

An MPC has the advantages of rolling optimisation and feedback correction, and exhibits good 

dynamic control; an MPC is ideal for vehicle energy management[50–52]. On this basis, energy 

management is optimised in terms of low fuel consumption and emission levels. In this section, we 

develop a classical predictive EMS for an FCHCV based on MPC theory. The control framework is 

illustrated in Figure. 2.  

 

 

 
 

Figure 2. Control framework of the EMS. 

 

 

In the control framework as shown in Figure. 2, X=[{PBAT
*}CL, {PSC

*} CL], R={PLoad
*}PL. X is the 

system control variable, that is, the predictive controller gives the control variable sequences of battery 

power PBAT
* and supercapacitor power PSC

* in the control domain length CL. Y is the output of the system 

model, which contains many vehicle state parameters.  

The predicted parameter is the vehicle future power demand, which is the sum of vehicle 

electronic load, powertrain load, and hydraulic load. PLoad
* is the predicted power sequences in the 

prediction domain length PL, which is predicted using a neural network model on the basis of historical 

information as proposed in literature [2]. The input of the prediction model is the historical demand 
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power, and the output is the future power demand. The model predicts future power demand in real-

time. 

The proposed EMS aims to comprehensively improve FCHCV performance. Given the multiple 

optimisation objectives, the optimal control variables of the supercapacitor power and battery power are 

calculated using an multiobjective optimization algorithm. The control framework is essentially a rolling 

optimisation process based on MPC theory. The multiobjective optimization objectives of the EMS 

include minimisation of hydrogen consumption; establishment of reasonable SoC ranges for the battery 

and supercapacitor; avoidance of large currents and frequent current variations (to improve FCS 

durability); avoidance of deep SoC discharge and large currents (to prolong battery durability); and 

minimisation of real-time costs, as expressed mathematically below: 

 1 2min ,J J J                               (15) 
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2 2OSTOP ric H FC H FCC P k m                          (18) 

where J1 and J2 are the optimisation objectives. emH2 denotes the equivalent hydrogen 

consumption, Pric denotes the price of hydrogen, and kH2FC, w1, w2, w3, and w4 are coefficients. SoCBATmid 

and SoCSCmid represent the median SoCs of the battery and supercapacitor, respectively. 
FC  and

DC  is 

the average efficiency of the FCS and DC/DC converter, respectively. qH2 denotes the calorific value of 

hydrogen. In this study, the w1, w2, w3, and w4 are set as 1, 1, 0.00001, and 0.00001. These coefficients 

have a certain influence on the optimization results. However, they have little influence on the superiority 

and effectiveness of EMS evaluation. The coefficients can be adjusted according to the actual model 

parameters for different vehicles.  

When solving the EMS problem, several constraints must be observed: 
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where SoCBATmax, SoCBATmin, SoCSCmax, and SoCSCmin are the SoC constrains. IBATmax, IBATmin, ISCmax, 

and ISCmin are the currents constrains. PFCmax and PFCmin denote the limits of FCS power. PFClast denotes 

the FCS power at the last moment in time.  

Our predictive EMS is used to achieve two independent objectives. The first objective is real-

time cost reduction; this considers the costs of FCS hydrogen consumption, battery and supercapacitor 

(equivalent) hydrogen consumption, and FCS operation. This function reflects the real-time hydrogen 

consumption and operation costs of the FCHCV. The second objective function includes the SoC 

operating range, battery current, and FCS current constraints. By limiting the FCS power and power 

change rate, FCS durability is enhanced. By limiting the battery SoC (thus avoiding overcharging or 

undercharging), the operating range, and the working current, battery durability is improved. 

 

3.2 NSGA optimization algorithm 

As mentioned above, our EMS needs to solve an multiobjective optimization problem. It is nearly 

impossible to find a solution that optimises all objectives. Often, several conflicting objectives should 

be optimised; a multiobjective optimization yields a set of best solutions rather than the single solutions 

of traditional multiobjective optimization weighting and ε-constraint methods; these provide non-

dominated solutions or Pareto fronts [53]. Multiobjective global optimisation aims to obtain the Pareto 

front and then chooses a variety of solutions. A genetic algorithm can be adopted to this end. Many such 

algorithms can be used to solve multiobjective optimization problems in engineering [54,55]. Among 

the most popular of these algorithms is the global multiobjective optimization optimisation algorithm 

NSGA-II, which handles convergence and diversity metrics better than other topologies [56]. Unlike the 

traditional multiobjective optimization weighting and ε-constraint methods, NSGA-II cannot be affected 

by constraints or weights [57]. Therefore, we used NSGA-II to optimise our MPC-based EMS. Formula 

(15) presented the objective, and the control parameters were the optimisation (decision) variables. The 

optimisation problem was constrained by formula (19). The NSGA-II algorithm is elitist; the sharing 

function is replaced by the crowding distance and there is no need to specify a sharing parameter [36]. 

The pseudo-code of the optimization algorithm is shown in Algorithm 1. 

 

Algorithm 1. Pseudo-code for the optimization algorithm. 

 

Input: Population size N, probability of crossover and mutation, 

mutation strength 

Output: All the optimal solutions (Pareto front of solutions) 

Initialize population and iteration number 

while Termination criteria are not achieved 

repeat for each solution 

Perform genetic operations 

Evaluate fitneess 

Rank all solutions based on dominance 

Calculate crowding distance  

while Population size<N 

      Select solutions based on crowding distance 

end  

end 

return 
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After obtaining Pareto front, the optimal solution needs to be selected from the solution set. How 

to choose the optimal solution needs to be combined with the vehicle state. Different load and SoC 

condition require different tendentiousness between J1 and J2. Formula (20) is the selection principle 

used in this paper. It is important to set an appropriate weight to reflect the priority of the objectives 

properly. An optimal solution selection method based on fuzzy logic model is adopted to adjust the 

weight dynamically. The fuzzy logic model is shown in Figure.3. The inputs are the normalized load, 

battery SoC, and supercapacitor SoC; the output is the weight.  

        1 2, min , 1 ,BATopt SCopt Pa BAT SC Pa BAT SC num
P P J P P J P P             (20) 

where PBATopt and PSCopt denote the optimal battery and supercapacitor control power, 

respectively. J1Pa and J2Pa are the cost function values of the Pareto front solution set. num is the number 

of solution set.  

 

 
 

Figure 3. Structure of the fuzzy logic model for weight φ. 

 

 

 

3. RESULTS AND DISCUSSION 

Here, we describe EMS optimisation and simulation. We compared our EMS to other 

representative EMSs via simulation of a driving cycle of a ZL50 wheel loader (Figure. 4) [58]. Figure. 

4 describes the vehicle speed and hydraulic system pressures in the process of a V-shaped operation. 

The total operation time is about 90s, which includes five stages: approach the material; shovel; reverse; 

unload; reverse and return to the starting point. The FCHCV specifications are listed in Table 1. The 

predictive horizon length of the EMS is five steps, and the control horizon length is three steps (0.1 

s/step). Simulations were performed using MATLAB (MathWorks, Inc., Natick, MA, USA). 

 

Table 1. FCHCV specifications 

 

Specifications Value 

Vehicle mass 16800 kg 

Maximum speed 37 km/h 

FCS 100 kW 

Battery pack 400 V / 5.28 kWh 

Li-ion battery cell 2.2 Ah/ 3.2 V 

Supercapacitor pack 500V / 15.75F 

Supercapacitor cell 3000 F / 2.7 V 
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(a)                               (b) 

 

Figure 4. Representative driving cycle of FCHCV. (a) Vehicle speed; (b) Hydraulic system pressures. 

 

4.1 Optimization algorithm performance 

In this section, we discuss the optimisation achieved by NSGA-II, especially the speed of 

attainment of the Pareto front. NSGA-II parameters used in optimization are presented in Table 2 [59]. 

We explored whether the NSGA-II-derived Pareto front was optimal by evaluating the objective 

functions J1 and J2 in terms of the control parameters PBAT and PSC; the results of once calculation are 

shown in Figure. 5 (together with the Pareto front). It is evident that NSGA-II provided the optimal 

trade-off between the objectives. We prioritised J1, i.e. the cost of operation. We used the Pareto solution 

that achieved the priority cost and certain performance by weighting method [32].  

 

Table 2. NSGA-II parameters used in optimization 

 

Parameters Value 

Population size 50 

Selection 2 

Crossover 0.9 

Mutation Adaptive 

Pareto fraction 0.35 

Stop criteria 100 generations 

 
 

Figure 5. Optimization results of NSGA-II. 
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To evaluate the NSGA-II more deeply, the Pareto solutions of the proposed NSGA-II-optimized 

EMS are tested on a representative load fluctuation condition as shown in Figure.4 (10-20 s), where the 

load fluctuates between about 55-80 kW and takes about 10 s. The weighing between J1 and J2 needs 

testing. The Pareto solutions are tested in different emphasis on J1 and J2. Figure. 6 is informative to this 

end. For cost priority (J1 priority), the optimal solutions implement good J1 and J2 together. The battery 

contribution is strongly loaded at the initial stage and battery SoC fall quickly, whereas the 

supercapacitor charges so that the supercapacitor SoC reaches upper. After about 3 s, the supercapacitor 

provide the required power alone, and battery charges slowly to restore SoC balance. On the contrary, 

for SoC balance priority (J2 priority), the optimal solutions implement no better than the other two types. 

The battery charges quickly so that battery SoC can be balanced as soon as possible. For the balanced 

weight, it gives good performances between cost priority and SoC balance priority methods. Therefore, 

weight selection plays an important role in tuning parameter for the EMS.  

 

 
(a)                               (b) 

 

Figure 6. Optimization results of the EMS over load fluctuation condition. (a) Distribution of cost 

function corresponding to optimal solution; (b) Supercapacitor SoC and battery SoC. 

 

4.2 The EMS 

We compared our predictive EMS to frozen-time MPC (FMPC) and prescient MPC (PMPC) 

based EMSs as described in the literature [29] in the simulation. The former adopts the constant 

prediction. The latter is a typical benchmark algorithm that exploits a priori knowledge of future loads 

to optimally deal with the control problem. Simulations are performed using three representative driving 

cycles as shown in Figure. 4, and simulation results are shown in Figures. 7–11.  
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Figure 7. FCS power 

 
 

Figure 8. Battery power 

 

 
Figure 9. Battery SoC 
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Figure 10. Supercapacitor power 

 
 

Figure 11. Supercapacitor SoC 

 

 

Figure. 7 shows the FCS power. During the driving cycles, the FCS provided maximum power 

of 100 kW and minimum power of 10 kW. The FCS power is generally in the low power range. The 

peak power of FCS appears at heavy load conditions and lower battery/supercapacitor SoC conditions. 

The FCS power trajectories of FMPC and PMPC changes more frequently than that of proposed EMS. 

The FCS power of FMPC changes most frequently and fluctuates the most. This is because FMPC lacks 

prediction of working conditions, which leads to the difference between real demand power and 

predictive demand power (constant prediction). On contrast, PMPC exploits a priori knowledge of future 

conditions, which can fully deal with the change of operation conditions. Therefore, PMPC changes 

more than proposed EMS. It should be noted that the FCS power trajectory under the proposed EMS is 

less drastic, which means FCS durability can be effectively prolonged.  

Figures. 8-9 show the battery power and battery SoC. The power spanned from -96.7 to 96.5 kW, 

and battery SoC correspondingly spanned from approximately 0.382 to 0.8. The trajectories of FMPC 
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have the minimum fluctuation range, which are -74.8 to 65 kW power range and 0.523 to 0.8 SoC range. 

The battery power and battery SoC trajectories of the proposed EMS are similar to that of the PMPC. 

Figures. 10-11 show the supercapacitor power and supercapacitor SoC, respectively. It is similar to that 

of battery performance that the trajectories of FMPC have the maximum fluctuation range and PMPC 

have the minimum fluctuation range. The range of FMPC are -146.1 to 98.9 kW power range and 0.527 

to 0.8 SoC range, and the range of PMPC are -83.2 to 97.9 kW power range and 0.589 to 0.8 SoC range. 

Notably, the battery and supercapacitor trajectories are similar, with the proposed EMS between those 

of the others. In each cycle, the battery and supercapacitor SoC reach lower limits. The SoC of the power 

sources must be constrained especially during heavy load conditions for EMS development.  

Simulation results show that the equivalent hydrogen consumption of the FMPC, PMPC, and 

proposed EMS are 242.94 g, 230.7 g, and 232.16 g, respectively. The equivalent hydrogen consumption 

has already included the changes in battery and supercapacitor relative to the initial state. Therefore, the 

proposed EMS can effectively save 4.43 % hydrogen consumption compared with FMPC, and is quite 

close to PMPC.  

Seen as a whole, the proposed EMS excels FMPC and approximate to PMPC. Thus, the proposed 

EMS demonstrates good cost economy and SoC operating range, confirming its superiority. One of the 

advantages of the proposed EMS is the reduction in battery contribution and the increase of using 

supercapacitor. This advantage can be translated into an improvement in battery lifetime.   

 

 

 

4. CONCLUSIONS 

We developed an NSGA-II-optimised, multiobjective optimization predictive EMS for a fuel 

cell/battery/supercapacitor powered construction vehicle. Firstly, we described the FCHCV topology 

and modelled the power sources in detail. We then built an MOP model based on MPC theory. The 

predictive EMS sought to reduce costs and prolong fuel cell durability and battery lifetime. NSGA-II 

allows for trade-off between cost and performance. An NSGA-II-optimised multiobjective optimization 

system was used to generate a Pareto front and obtain optimal control solutions. The numerical results 

showed that NSGA-II yielded feasible solutions exhibiting a good spread that effectively converged to 

the non-dominated front. NSGA-II will aid the development of more complex MOPs. Finally, we 

employed a representative driving cycle to evaluate the effectiveness of our new EMS, using dynamic 

programming and weighted predictive EMSs as benchmarks. MATLAB simulations showed that our 

EMS reasonably distributed energy between different power sources, thus reducing costs and extending 

the power sources durability, and increasing system efficiency. Future research should focus on 

parameter optimisation and energy management of hybrid construction vehicles.  
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