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Kerosene-submerged jet electrochemical machining (Jet-ECM) has been proven to be an effective 

process to enhance the machining localization of Jet-ECM. However, this process can only show its 

best capabilities and advantages under appropriate electrochemical machining parameters. Its 

machining effects will be weakened when the workpiece surface is relatively large or electrolytic 

products generated during machining are quite more, which may cause the electrolyte and electrolytic 

products to accumulate on the workpiece surface, thereby affecting its mass transfer environment. 

Therefore, for further improving its process capabilities, it is necessary to eliminate the accumulation 

of electrolyte and electrolytic products on the workpiece surface. And thus, this paper focuses on 

optimizing its electrochemical machining parameters and investigating the surface effect and shape 

effect of the workpiece on its machining localization and machining accuracy experimentally and 

theoretically. It was found that the surface effect and shape effect of the workpiece has a significant 

influence on its machining localization and machining accuracy. And kerosene medium instead of air 

medium surrounding the electrolyte-jet can improve the machining localization of Jet-ECM. Besides, 

compared with traditional Jet-ECM, kerosene-submerged Jet-ECM can produce high accuracy 

microstructure with a smooth surface. Additionally, micro-sized features fabricated by Jet-ECM on the 

small surface flat workpiece and curved surface workpiece feature higher machining accuracy and 

better surface quality than the large surface flat workpiece.  

 

 

Keywords: Kerosene-submerged jet electrochemical machining; machining localization; machining 

accuracy; surface effect; shape effect 

 

 

1. INTRODUCTION 

Electrochemical machining (ECM) is a non-traditional machining technology, which can 

fabricate microstructures by anodically dissolving metallic workpiece material atom by atom. It 

demonstrates attractive application potential in manufacturing hard-to-cut metallic materials because 
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of its inherent advantages including almost no limitation in workpiece material mechanical 

performances, no wear of the cathode tool, no formation of the re-casted layer and cracks, and 

excellent surface quality, etc. Jet electrochemical machining (Jet-ECM) is a unique form of 

electrochemical machining process, which utilizes the electrolyte-jet as the cathode tool to 

electrochemically fabricate desired metallic microstructures cost-effectively and flexibly. In addition to 

the inherent advantages of ECM process, Jet-ECM process also features higher machining selectivity, 

larger material removal rate (MRR) and greater operating flexibility. 

Jet-ECM has been used to fabricate various micro-sized features including micro-dimple [1], 

micro-hole [2], micro-groove [3], 3D complex microstructure [4], and surface texture [5] by 

controlling the movement path of the electrolyte-jet and electrochemical machining parameters. 

However, the dimensional accuracy and surface quality of these machined microstructures are still 

undesirable to satisfy the requirements of engineering applications due to its relatively low machining 

localization. Therefore, further improving its machining localization has been a research focus, which 

has been intensively investigated by the researchers. Sen and Shan [6] studied the effect of machining 

parameters including machining voltage, electrolyte concentration and feed rate of the cathode nozzle 

on the radial overcut and taper of the hole manufactured by Jet-ECM, and they found that increasing 

the feed rate of the cathode nozzle can reduce them significantly, and thus improve its machining 

localization. Yu et al. [7] found that pulsed electrolyte-jet machining can reduce the machined holes’ 

taper and improve their surface quality, thereby improving its machining accuracy. Mitchell-Smith et 

al. [8] reported that the addition of sodium iodide (NaI) into the commonly used sodium nitrate 

(NaNO3) electrolyte enables to enhance the dimensional accuracy of the micro-dimples machined by 

Jet-ECM. Thanigaivelan et al. [9] found the use of acidified electrolyte can improve the machining 

localization of Jet-ECM since the acidified electrolyte can facilitate the removal of electrolytic 

products from the machining gap. However, the acidified electrolyte has the potential risk to cause an 

environmental pollution problem, which requires higher equipment development and maintenance 

costs. Therefore, this reduces, to some extent, the applicability of the Jet-ECM process. Zhang et al. 

[10] investigated the influence of the orientations of the jet on the machining accuracy of the Jet-ECM, 

and they found that Jet-ECM with a horizontal jet can obtain high accuracy microstructures with 

smooth surface quality.  

To better improve the machining localization and machining accuracy of Jet-ECM, scholars 

conducted a lot of theoretical research and exploration. Kozak et al. [11] presented a theoretical model 

to describe the distribution characteristic of electric field and studied the influence of variation of 

electrolyte conductivity on the process performance. Hackert and his co-workers [12, 13] conducted a 

series of numerical simulation studies on the Jet-ECM, and they found that a secondary electric contact 

phenomenon occurred between the anode workpiece and cathode nozzle caused by the reflected 

electrolyte, which can reduce its machining localization. Mitchell-Smith et al. [14] developed a two-

dimensional (2D) simulation model to analyze the effect of cathode nozzle tip shape on the profile of 

machined microstructures. Their later work [15] investigated the effect of the incident angle of the 

electrolyte-jet on the resultant geometric profile and surface finish of the machined groove. 

Furthermore, Wang et al. [16] examined the interrelation between the shape of the jet, machining 

parameters, and groove edges conditions in jet electrochemical milling grooves, and they demonstrated 
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stray corrosion on the grooves edges is able to be significant reduced by selecting an appropriate shape 

of the jet. 

Additionally, some non-traditional methods have been adopted to improve the machining 

localization and machining accuracy of the Jet-ECM. Rajurkar and Zhu [17] used an eccentric orbital 

movement of anode workpiece to improve the process stability of the Jet-ECM, thereby reducing the 

repetition error and improving its machining accuracy. Pajak and his co-workers [18, 19] demonstrated 

that applying the laser beam coaxially into the electrolyte-jet can improve the machining localization 

of Jet-ECM and enhance the surface quality of the machined area. Hackert et al. [20] utilized an 

additional jet of compressed air to remove the electrolyte and electrolytic products from the machining 

gap of Jet-ECM, which can reduce the stray current surrounding the nozzle, thereby improve its 

machining localization. After that, Goel and Pandey [21] verified that the addition of compressed air 

coaxially surrounding the electrolyte-jet is beneficial to further localize the electrolytic current, which 

reduces the overcut of the machined holes, and consequently improves its machining accuracy. 

Michell-Smith et al. [22] applied ultrasonic-assisted Jet-ECM to realize the fabrication of high-

accurate micro-sized features. Chen et al. [23] developed a process of conductive mask Jet-ECM to 

reduce the undercutting of the machined micro-dimples by optimizing the distribution of the electric 

field in the machining gap, which can improve the machining localization of Jet-ECM. Although the 

machining localization and machining accuracy of Jet-ECM has been improved significantly because 

of the abovementioned efforts adopted, the modified Jet-ECM processes are less desirable to satisfy 

the industrial applications owing to the complicated operating conditions or high process cost. 

Therefore, our group proposed kerosene-submerged Jet-ECM [24, 25], which has been proven as an 

effective process to considerably improve the machining localization of Jet-ECM in a relatively simple 

way. However, this process can only show its best capabilities and advantages under appropriate 

electrochemical machining parameters. In the application of this process, the machining effects of this 

process will be weakened when the workpiece surface is relatively large or the electrolytic products 

generated during the machining are quite more, which may cause the electrolyte and electrolytic 

products to accumulate on the workpiece surface, thereby affecting its mass transfer environment.  

Therefore, to further improve its process capability, it is necessary to eliminate the 

accumulation of electrolyte and electrolytic s products on the anode workpiece surface. Therefore, this 

paper focuses on optimizing the electrochemical machining parameters of the kerosene-submerged Jet-

ECM and investigating the influence of the surface effect and shape effect of the workpiece on the 

machining characteristics of kerosene-submerged Jet-ECM. In the following sections, the machining 

characteristics including machining localization and machining accuracy of kerosene-submerged Jet-

ECM are investigated experimentally and theoretically. The experiments were carried out on the 

workpiece with different surface and shapes, i.e., large surface flat workpiece, small surface flat 

workpiece and curved surface workpiece, illustrated in Figure 1.  
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       (a)                                                                        (b) 

 
(c) 

 

Figure 1. Schematic diagram of the kerosene-submerged Jet-ECM working in the three different cases. 

(a) Large surface flat workpiece. (b) Small surface flat workpiece. (c) Curved surface 

workpiece. 

 

 

 

2. FLOW FIELD AND ELECTRIC FIELD DISTRIBUTION CHARACTERISTICS OF THE 

KEROSENE-SUBMERGED Jet-ECM ON THE DIFFERENT WORKPIECE'S SURFACE 

AND SHAPE 

 

2.1. Physical model 

Figure 2 illustrates the schematic diagram of the developed 2D axisymmetric physical models 

for kerosene-submerged Jet-ECM and traditional Jet-ECM working on different workpiece's surfaces 

and shapes. Table 1 and Table 2 show the domain definitions and set boundaries conditions of the 

numerical simulations. Domains I and II denote the electrolyte (its compositions: 20 wt.% NaNO3 

aqueous solution) and the nozzle (its material is SUS 304 stainless steel), respectively. Domain Ⅲ 

denotes kerosene/air. Boundary 1 represents the electrolyte inlet. Boundaries 2 and 3 represent the 

electrolyte outlet. Boundary 4 is anode workpiece surface. Boundary 5 represents the initial interface 

of the electrolyte. Boundary 6 denotes the symmetry axis. And the other boundaries are wall 

boundaries.  
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(a)                                               (b) 

 
(C) 

 

Figure 2. Domain and boundary definitions of the physical models of the kerosene-submerged Jet-

ECM and the traditional Jet-ECM working on different workpiece's surface and shapes. (a) 

Large surface flat workpiece. (b) Small surface flat workpiece. (c) Curved surface workpiece. 

 

 

Table 1. Domain definitions of the physical models for the kerosene-submerged Jet-ECM and the 

traditional Jet-ECM. 

 

Domain definitions 
Domain 

number  
Property 

Fluid property I 20 wt.% NaNO3 solution 

Nozzle materials  II SUS 304 stainless steel 

Fluid property III Kerosene/air 

Initial values of the 

electrolyte 
I U init = 0, P init = 0  

Initial values of the 

kerosene   
III U init = 0, P init = 0  

Gravity I, III g r= 0, g z= -g 
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The electrolyte inlet of is assumed to be in the laminar state. Its input pressure of the electrolyte 

inlet is 1 MPa. The pressure of the electrolyte outlet is maintained to be zero. And the electrolyte 

conductivity is approximately 15 S/m, which was measured by the conductivity meter. 

To simplify the simulation calculation and enhance simulation convergence without loss of 

generality, some assumptions were made as follow: 

(i) Electrolyte is a continuous incompressible viscous fluid; 

(ii) The electrolyte temperature and conductivity remain constant, and its energy loss is ignored 

during the machining; 

(iii) Current efficiency is 100%; 

(iv) The mass transfer efficiency is high enough due to the electrolyte-jet flow velocity is very 

big, therefore, the concentration polarization effect is neglected. 

 

Table 2. Boundary conditions of the physical models of the kerosene-submerged Jet-ECM and the 

traditional Jet-ECM. 

 

Boundary conditions Boundary number Property 

Electrolyte inlet  1 
Laminar inflow, 

Φ=0, P input = 1 MPa 

Electrolyte outlet 2, 3 P outlet = 0 MPa  

Workpiece surface  4 No slip (V = 0) 

Initial interface  5  

Symmetry axis 6  

Wall Others No slip (V = 0) 

 

Since kerosene-submerged Jet-ECM and traditional Jet-ECM involves a typical two-phase fluid 

phenomenon and the level set method is commonly used to solve the movement and change problems 

of the double-phase interface or multiple-phase interface [26], it is introduced here to calculate the 

distribution characteristics of the flow field of kerosene-submerged Jet-ECM and traditional Jet-ECM 

on different workpiece's surface and shape. The level set function is a continuous function, which 

utilizes the level set variable Φ to describe the fluid phase type. For the kerosene-submerged Jet-ECM, 

0<Φ<0.5 and 0.5<Φ<1 represent the electrolyte phase and kerosene phase. And for the traditional Jet-

ECM, 0<Φ<0.5 and 0.5<Φ<1 represent the electrolyte phase and air phase. Especially, Φ=0.5 is 

typically regarded as kerosene-electrolyte interface or the air-electrolyte interface. The following 

equation is applied to characterize the convection of the reinitialized level set function: 

( ) ( )1 0u
t

 
     



    
+ +   − −   =          

                               (1) 

Here, u represents the flow velocity of kerosene-electrolyte interface or air-electrolyte 

interface, and γ represents initial flow velocity of kerosene-electrolyte interface or air-electrolyte 

interface; ε represents the thickness of kerosene-electrolyte interface or air-electrolyte interface.  

The secondary current distribution theory was employed to calculate the distribution of electric 

field of the model due to the concentration polarization is neglected. 
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2.2. Governing equations and boundary conditions 

The Navier-Stokes equation is applied to describe the transport of mass and momentum of the 

electrolyte, kerosene, air and the kerosene-electrolyte interface or air-electrolyte interface, which is 

expressed as follow： 

( )( )T

st

u
u u u u p F

t
 

 
+  −  + + = 

 
                                                     (2) 

                            
( ) 0u =

                                                                         
 (3) 

   

Here, p represents the pressure, Fst represents surface tension, which is calculated by formula 

(4). 

stF T= 
                                                                            (4) 

                               
( )( )TT I nn = −

                                                                        
(5)

 

Here, I denotes the unit matrix; n denotes interface normal, which can be calculated by formulas 

(6); σ denotes the surface tension coefficient (N/m); δ denotes delta function. It is not equal to zero only 

at their interface, which can be calculated approximately by the formulas (7).  

n





=


                                                                            
(6) 

                                  
( )6 1   = − 

                                                                      
(7)

 

Butler-Volmer equation, shown as formula (8), is selected to calculate the electric field 

distribution, because the electrochemical reactions are completely dominated by activation controlled 

current. 
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(8)

 
                                 eqE-Eη =                                                                        (9) 

Here, i denotes current density; i0 denotes exchange current density; η denotes overpotential; F 

denotes Faraday constant (96485 C/mol); αα denotes anodic transfer coefficient; αc denotes cathodic 

transfer coefficient; T denotes Kelvin Temperature; E denotes electrode potential; Eeq denotes 

equilibrium potential. 

The software of COMSOL Multiphysics (5.3 versions) is applied to calculate the coupled flow 

field and electric field distribution characteristics of kerosene-submerged Jet-ECM and traditional Jet-

ECM on the workpieces with different surface and shapes.  

 

 

2.3. Simulation results and discussion 

Figure 3 shows the distribution characteristics of the flow field of kerosene-submerged Jet-ECM 

working in three different cases. For comparative analysis, the flow field distribution characteristics of 

traditional Jet-ECM working in three different cases are also studied, shown in Figure 4. It was found 

that the reflection phenomenon of the electrolyte can be observed in both the kerosene-submerged Jet-

ECM and the traditional Jet-ECM, but its reflection behaviors are much different depending on the 

medium surrounding the impinging electrolyte-jet, which is similar to the reflection phenomenon of the 
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electrolyte simulated in our published paper [24]. When the surrounding medium is kerosene, the 

reflected electrolyte almost does not touch the outside wall of the nozzle regardless of the workpiece’s 

surface and shape. However, when the surrounding medium is air, the reflected electrolyte continuously 

touches the outside wall of the nozzle, which can lead to a secondary electric contact phenomenon at the 

edge of the micro-dimples. This resulted was also reported by Hackert et al. [13]. These differences 

reveal that, in the kerosene-submerged Jet-ECM, the occurrence of reflected electrolyte contacting the 

nozzle outside wall almost disappears, which is beneficial to reduce the secondary electric contact 

corrosion in the non-machined area. It was also discovered that, in the same surrounding medium, the 

reflection behaviors vary with the workpiece’s surface and shape. In the kerosene-submerged 

environment, the reflection angle gets smaller, from 48.8° to 41.7°, when the area of the workpiece 

surface impinged by the electrolyte-jet decreases, and it reduces to be the minimal (36.9°) when the 

electrolyte-jet impinges on the curved surface workpiece. In traditional Jet-ECM with an air ambient 

environment, a similar trend can be found, but the corresponding value of the reflection angle is 

slightly larger than the reflection angle in kerosene-submerged Jet-ECM. Besides, the phenomenon of 

the hydraulic jump disappears when electrolyte-jet impinges on the small surface flat workpiece and 

curved surface workpiece. The main reasons for these differences are: (i) The specific gravity of the 

kerosene is significantly larger than the air, which indicates that the kerosene has a much bigger 

impedance to the movement of the reflected electrolyte than the air. Therefore, the presence of the 

kerosene leads to a weaker reflection of the electrolyte in the kerosene-submerged case, which can 

reduce the secondary electric contact corrosion in the non-machined area of Jet-ECM; (ii) The efficient 

discharge of the impinged electrolyte-jet on the surface of the small surface flat workpiece and curved 

surface workpiece make the accumulation of the electrolyte on the workpiece surface disappear. These 

findings indicate that the kerosene-submerged environment can significantly reduce the possibility of 

the reflected electrolyte contacting with the outside wall of the cathode nozzle, thereby reducing the 

secondary electric current corrosion significantly. And the small surface flat workpiece and curved 

surface workpiece can promote the discharge of electrolyte and electrolytic products, which can create 

better mass transfer conditions for Jet-ECM.  

 

 

 

     
       (a)                                                                        (b) 
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(c) 

 

Figure 3. The distribution of flow field of kerosene-submerged Jet-ECM on the different workpiece's 

surface and shape. (a) Large surface flat workpiece. (b) Small surface flat workpiece. (c) 

Curved surface workpiece. 

 

 

     
(a)                                                                        (b) 

 
(c) 

 

Figure 4. The distribution of flow field of traditional Jet-ECM on different workpiece's surface and 

shape. (a) Large surface flat workpiece. (b) Small surface flat workpiece. (c) Curved surface 

workpiece. 
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Figure 5 and Figure 6 respectively show the distribution characteristics of the electric field of 

kerosene-submerged Jet-ECM and traditional Jet-ECM on the different workpiece's surface and shape. 

Generally, there is a significant difference in the electric field distribution between the kerosene-

submerged case and the air-submerged case on the same type of workpiece. It is found that compared 

with traditional Jet-ECM, the electric field distribution of kerosene-submerged Jet-ECM is more 

concentrated on the same type of workpiece due to the presence of kerosene medium. Besides, an evident 

variation takes place with the change of workpiece's surface and shape. The electric field distribution is 

more localized when the small surface flat workpiece and the curved surface workpiece are machined, 

which is closely relevant to the flow field distribution characteristics of the electrolyte-jet impinged on 

the workpiece surface. The electrolyte film on the small surface flat workpiece and curved surface 

workpiece is much thinner due to the electrolyte can be effectively removed from the small surface flat 

workpiece and the curved surface workpiece, which can increase the electrical resistance of the 

electrolyte film, and thus reducing the stray current of the non-machining area on the small surface flat 

workpiece and the curved surface workpiece. These findings can be further verified by the current 

density distribution on the anode workpiece surface, shown in Figure 7. The results show that compared 

with traditional Jet-ECM, an improved machining localization is able to be obtained in kerosene-

submerged case. Besides, a considerably reduced stray current is detected in kerosene-submerged Jet-

ECM. Additionally, compared with the large surface flat workpiece, Jet-ECM working on the small 

surface flat workpiece and curved surface workpiece enables to obtain a more localized current density 

distribution and a reduced stray current. 

 

       
(a)                                              (b)                                             (c) 

   

Figure 5. The electric field distribution of kerosene-submerged Jet-ECM on the different workpiece's 

surface and shape. (a) Large surface flat workpiece. (b) Small surface flat workpiece. (c) 

Curved surface workpiece. 
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(a)                                              (b)                                             (c) 

 

Figure 6. The electric field distribution of traditional Jet-ECM on different workpiece's surface and 

shape. (a) Large surface flat workpiece. (b) Small surface flat workpiece. (c) Curved surface 

workpiece. 

 

 

 

 
 

Figure 7. The distribution of current density on the anodic workpiece surface of kerosene-submerged 

Jet-ECM and traditional Jet-ECM on the different workpiece's surface and shape. 

 

In conclusion, the results show that the surface effect and shape effect of the workpiece and the type of 

the medium surrounding the electrolyte-jet have a great effect on the flow field distribution and electric field 

distribution of the Jet-ECM, and thus have a great influence on its machining localization and the resultant 

of the geometric profiles, machining accuracy and surface quality of the machined microstructures.  

 

 

3. EXPERIMENTAL 

To assess the real effect of the workpiece’s surface and shape on the machining characteristics 

of the kerosene-submerged Jet-ECM, experiments were carried out to fabricate micro-dimples as 

examples. The used setup had been described in detail in our published paper [24]. And 20wt.% 
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sodium nitrate (NaNO3) solution was applied. The input pressure of the electrolyte inlet was 1 MPa. 

The electrolyte temperature and kerosene temperature were 25 ℃. The inner diameter of the nozzle (its 

material is SUS304 stainless steel) was 170 μm. The machining gap between the anode workpiece 

surface and the cathode nozzle was 300 μm. SUS304 stainless steel plates with a diameter of 40 mm 

and a diameter of 0.8 mm (its thickness about 1 mm) were used as the large surface flat workpiece and 

small surface flat workpiece, respectively. And the outside wall of a SUS304 stainless steel pipe with a 

diameter of 48 mm was used as the curved surface workpiece. The machining voltage was 10 V-25 V 

with an increment of 5 V during machining. The machining time of the fabricated micro-dimple was 

15 s. The main experimental conditions and parameters were presented in Table 3.   

 

 

Table 3. The main experimental conditions and parameters for experimentation. 

 

Machining parameter Property or value 

Nozzle material SUS 304 stainless steel 

Nozzle diameter, μm 170 

Electrolyte NaNO3 solution 

Concentration, wt.% 20 

Electrolyte conductivity, S/m 15  

Workpiece material SUS 304 stainless steel 

The input pressure of the electrolyte-

jet, MPa   
1 

Machining gap, μm 300 

Machining voltage, V 10-25 

Electrolyte outlet pressure, MPa P = 0 

Machining time, s 15 

Temperature of the electrolyte, ℃  25 

Temperature of the kerosene, ℃ 25 

 

The scanning electron microscope (Merlin Compact, Carl Zeiss NTS GmbH Corp., 

Oberkochen, Germany) and the digital microscope (VHX-2000, Keyence Corp., Osaka, Japan) were 

applied to characterize the machined micro-dimples. 

Generally, overcut is inevitable during ECM due to the isotropic dissolution behavior of the 

metallic workpiece material. The etch factor (EF), representing the ratio of material removal depth, h, 

to the overcut length, (d-d0)/2, of the machined micro-dimple in the through-mask electrochemical 

machining [27], was introduced to assess the machining localization of Jet-ECM quantitatively, which 

is defined by the formula (10). 

                                 )( 0dd2h/EF −=                                                          
  (10)

 

Here, h denotes the micro-dimple's depth, d denotes the micro-dimple's diameter, and d0 

represents nozzle's inner diameter o used in the experiment. A larger etch factor (EF) means a higher 

machining localization.  

Additionally, the standard deviation of the diameter and depth of the machined micro-dimples 
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is introduced to assess the machining accuracy. The smaller the standard deviation of the diameter and 

the depth of the micro-dimples is, the better the geometric dimensional consistency and machining 

accuracy of the machined features are. 

 

 

4. RESULTS AND DISCUSSION 

4.1. Geometric dimensional of the machined micro-dimples 

Figure 8 shows the change trends of the diameter, depth and, etch factor (EF) of the micro-

dimples machined by kerosene-submerged Jet-ECM and traditional Jet-ECM on different workpiece's 

surface and shape with a varying machining voltage. It can be found that whether in kerosene-

submerged Jet-ECM or traditional Jet-ECM, the diameter, depth and EF of the fabricated micro-

dimples increase with increasing machining voltage, but their respective increment gradually 

decreases, which has the the same growth trend with the micro-dimple fabricated by Zhang et al. [10]. 

And their change trend is highly dependent on the workpiece's surface and shape used. Smaller micro-

dimples with bigger EF can be achieved when the electrolyte-jet impinges on the small surface flat 

workpiece and curved surface workpiece, while when the electrolyte-jet is working on the large 

surface flat workpiece, larger micro-dimples with smaller EF can be fabricated. This is due to the 

electrolyte and electrolytic products can be discharged smoothly on the small surface flat workpiece 

and curved surface workpiece, and thus leading to a better mass transfer environment and machining 

conditions. This fact of the smooth discharge of electrolyte and electrolytic products from the 

machining gap can improve the machining localization and machining accuracy of Jet-ECM has also 

been demonstrated by Thanigaivelan et al. [9] and Hackert et al. [20]. These experimental findings 

verified that the machining localization of kerosene-submerged Jet-ECM is considerably relevant to 

the workpiece’s surface and shape. Further, the influence of the workpiece's surface and shape on the 

diameter, depth, and EF (or machining localization) of the micro-dimples was also certificated in 

traditional Jet-ECM. 

 

     
(a)                                                                        (b) 
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(c) 

 

Figure 8. The variation of geometric dimensions of the micro-dimples produced on different 

workpiece's surface and shape with different machining voltage in kerosene-submerged Jet-

ECM and traditional Jet-ECM when the machining gap is 0.3 mm and machining time is 15 s. 

(a) Diameter. (b) Depth. (c) Etch factor, EF. 

 

In addition, it was found that the geometric dimensions of the machined micro-dimples are 

closely related to the medium surrounding the impinging electrolyte-jet. Compared with the air 

medium, the smaller and deeper micro-dimples can be achieved when the electrolyte-jet impinges on 

the small surface flat workpiece and curved surface workpiece in the kerosene medium, which means a 

bigger EF value can be achieved. Therefore, an improved machining localization can be achieved on 

the small surface flat workpiece and curved surface workpiece in kerosene-submerged Jet-ECM than 

traditional Jet-ECM. However, some differences existed on the large surface flat workpiece. When the 

electrolyte-jet impinges on the large surface flat workpiece in the kerosene medium, smaller and 

deeper micro-dimples can be obtained only at the low machining voltage than the air medium, which 

implies that a bigger EF value is achieved at the low machining voltage on the large surface flat 

workpiece in the kerosene medium. This has similar characteristics to the micro-dimples fabricated on 

the small surface flat workpiece and curved surface workpiece, which implies an improved machining 

localization can also be achieved on the large surface flat workpiece with the low machining voltage in 

kerosene-submerged Jet-ECM than in the traditional Jet-ECM. While at large machining voltage, the 

case is on the contrary. This is related to the workpiece’s surface and shape and the medium 

surrounding the electrolyte-jet. Since kerosene has a much bigger impedance to the movement of the 

reflected electrolyte, leading to a weaker reflection of the electrolyte in the kerosene-submerged case. 

On the small surface flat workpiece and curved surface workpiece or on the large surface flat 

workpiece with low machining voltage, the inhibition effect of kerosene on the stray current plays a 

major role in reducing stray corrosion. However, more electrolytic products will be generated on the 

large surface flat workpiece with large machining voltage and it is difficult to be discharged smoothly 

from the large surface flat workpiece and will accumulate on the large surface flat workpiece. At this 

time, the impedance effect of kerosene on the discharge of electrolytic products from the workpiece 

surface begin to dominate, which usually affects its distribution of  flow field and electric field, and 
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thus leading to a large overcut and reducing its machining localization. This indicates that the 

kerosene-submerged Jet-ECM is able to achieve higher machining localization under better mass 

transfer environment and electric field conditions. 

Figure 9 illustrates the variation trends of the standard deviation of diameter and depth of the 

micro-dimples machined on different workpiece's surface and shape by kerosene-submerged Jet-ECM 

and traditional Jet-ECM with different machining voltage. It was found that the standard deviation of 

the diameter and depth of the micro-dimples depends on the workpiece's surface and shape. Whether in 

kerosene-submerged Jet-ECM or traditional Jet-ECM, a smaller standard deviation of diameter and 

depth of the micro-dimples can be obtained when the electrolyte-jet impinges on the small surface flat 

workpiece and curved surface workpiece, which means the micro-dimples machined on the small 

surface flat workpiece and curved surface workpiece feature better machining accuracy and higher 

geometric shape consistency and reproducibility than that fabricated on the large surface flat 

workpiece.  

 

 

   
(a)                                                                        (b) 

 

Figure 9. The variation trends of the standard deviation of diameter and depth of the micro-dimples 

machined on the different workpiece's surface and shape by kerosene-submerged Jet-ECM and 

traditional Jet-ECM with different machining voltage when the machining gap is 0.3 mm and 

machining time is 15 s. (a) The standard deviation of the diameter. (b) The standard deviation 

of the depth. 

 

 

Besides, it was found that the standard deviation of the diameter and depth of the micro-

dimples is associated with the medium surrounding the electrolyte-jet. Compared with the air medium, 

the standard deviation of diameter and depth of the micro-dimples machined on the small surface flat 

workpiece and curved surface workpiece in the kerosene medium is smaller regardless of the 

machining voltage. And at small machining voltage, the standard deviation of diameter and depth of 

the micro-dimples machined on the large surface flat workpiece by the kerosene-submerged Jet-ECM 

is also smaller than those fabricated in the traditional Jet-ECM. However, only at big machining 
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voltage, the standard deviation of diameter and depth of the micro-dimples machined on the large 

surface flat workpiece by the kerosene-submerged Jet-ECM is larger than those fabricated in the 

traditional Jet-ECM. This is due to the collective effect of the workpiece’s surface and shape and the 

medium surrounding the electrolyte-jet. Therefore, this demonstrates that the machining accuracy of 

the micro-dimples machined by kerosene-submerged Jet-ECM on the small surface flat workpiece and 

curved surface workpiece or on the large surface flat workpiece with small machining voltage is higher 

than the traditional Jet-ECM.  

 

 

4.2. Surface morphologies of the fabricated micro-dimples 

Figure 10 displays the 3D geometric profiles and morphologies of the machined micro-dimples 

by kerosene-submerged Jet-ECM on the large surface flat workpiece, small surface flat workpiece and 

curved surface workpiece, when the machining voltage is 20 V. It can be found that the micro-dimples 

machined on the large surface flat workpiece by the kerosene-submerged Jet-ECM features a large 

chamfered entrance edge and a small slope angle of approximately 58.2°. While the micro-dimples 

fabricated on the small surface flat workpiece and curved surface workpiece feature a smaller 

chamfered entrance edge and a larger slope angle (for the former, the slope angle: 63.5°; for the latter, 

the slope angle: 60.8°). This result demonstrates that compared with the micro-dimples machined on 

the large surface flat workpiece, the micro-dimples machined on the small surface flat workpiece and 

curved surface workpiece yields a smaller overcut and a higher machining localization. This 

phenomenon further proves that the machining localization of the kerosene-submerged Jet-ECM is 

closely related to the workpiece's surface and shape. And the influence of the workpiece's surface and 

shape on the machining localization of the Jet-ECM can also be further demonstrated by the 3D 

geometric profiles and morphologies of the fabricated micro-dimples by the traditional Jet-ECM, 

shown in Figure 11. In traditional Jet-ECM, a similar trend of the slope angle can also be found, but 

the micro-dimples machined by traditional Jet-ECM displays a rounded entrance edge with a reduced 

slope angle when the micro-dimples machined on the same type of workpiece. This similar rounded 

edge phenomenon on the entrance of the micro-dimple is in a good agreement with the report of 

Hackert et al. [28]. This demonstrates that there is more stray corrosion at the entrance edge of the 

micro-dimples fabricated by traditional Jet-ECM. Therefore, this phenomenon proves that compared 

with traditional Jet-ECM, kerosene-submerged Jet-ECM can yield the micro-dimples with a smaller 

overcut and achieve higher machining localization. 

 

     
(a)                                                 (b) 
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(C) 

 

Figure 10. Geometric profiles and morphologies of the machined micro-dimples by kerosene-

submerged Jet-ECM on different workpiece's surface and shape with machining gap of 0.3 mm 

and machining time of 15 s when the machining voltage is 20 V. (a) Large surface flat 

workpiece. (b) Small surface flat workpiece. (c) Curved surface workpiece.  

 

 

     
(a)                                                (b) 

 
(C) 

 

Figure 11. Geometric profiles and morphologies of the machined micro-dimples by traditional Jet-

ECM on different workpiece's surface and shape with machining gap of 0.3 mm and machining 

time of 15 s when the machining voltage is 20 V. (a) Large surface flat workpiece. (b) Small 

surface flat workpiece. (c) Curved surface workpiece. 

 

Figure 12 illustrates the SEM images of the micro-dimples machined by kerosene-submerged 

Jet-ECM on the workpiece with different surfaces and shapes when the machining voltage is 20 V. It 

can be found that kerosene-submerged Jet-ECM can produce smoother surface on the small surface 

flat workpiece and curved surface workpiece than large surface flat workpiece. Besides, there is no 

obvious stray corrosion at the entrance of the fabricated micro-dimples and the non-machining areas 

surrounding the fabricated micro-dimple on the small surface flat workpiece and the curved surface 

workpiece, but the obvious stray corrosion phenomenon can be observed on a large surface flat 

workpiece. This phenomenon indicates that kerosene-submerged Jet-ECM working on the small 

surface flat workpiece and curved surface workpiece can fabricate micro-dimples with better surface 
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quality. This result related to the workpiece's surface and shape can also be further proved by the SEM 

images of the micro-dimples machined by traditional Jet-ECM on the workpiece with different 

surfaces and shapes, shown in Figure 13. Further, compared with the kerosene-submerged Jet-ECM, 

micro-dimples machined by the traditional Jet-ECM are coarser. Besides, more obvious stray corrosion 

can be observed at the entrance of the micro-dimples and the non-machining areas surrounding the 

micro-dimples machined in the traditional Jet-ECM when the micro-dimples fabricated on the same 

type of workpiece, which indicates that micro-dimples with better surface quality can be fabricate in 

the kerosene-submerged case. 

 

      
(a)                                             (b) 

 
(C) 

 

Figure 12. SEM images of the fabricated micro-dimples by kerosene-submerged Jet-ECM on different 

workpiece's surface and shape with machining gap of 0.3 mm and machining time of 15 s when 

the machining voltage is 20 V. (a) Large surface flat workpiece. (b) Small surface flat 

workpiece. (c) Curved surface workpiece. 

 

 

         
(a)                                             (b) 
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(C) 

 

Figure 13. SEM images of the machined micro-dimples by the traditional Jet-ECM on different 

workpiece's surface and shape with machining gap of 0.3 mm and machining time of 15 s when 

the machining voltage is 20 V. (a) Large surface flat workpiece. (b) Small surface flat 

workpiece. (c) Curved surface workpiece. 

 

In summary, the workpiece's surface and shape and the type of the medium surrounding the 

electrolyte-jet have a great effect on the machining localization and machining accuracy of Jet-ECM. 

Kerosene medium instead of the air medium surrounding the electrolyte-jet can improve the machining 

localization of Jet-ECM and enhance the machining accuracy and surface quality of the machined 

microstructures. And kerosene-submerged Jet-ECM working on the small surface flat workpiece and 

curved surface workpiece can achieve higher machining localization. Besides, high accuracy 

microstructure with smooth surface can be fabricated by Jet-ECM on the small surface flat workpiece 

and curved surface workpiece. 

 

5. CONCLUSIONS 

Although kerosene-submerged Jet-ECM has been proven as an effective process to enhance the 

machining localization of the Jet-ECM, the process can only show its best capabilities and advantages 

under appropriate electrochemical machining parameters. In the application of this process, its 

machining effects will be weakened when the workpiece surface is relatively large or the electrolytic 

products generated during the machining are quite more, which may cause the electrolyte and 

electrolytic products to accumulate on the workpiece surface, thereby affecting its mass transfer 

environment. Therefore, to further improve its process capability, it is necessary to eliminate the 

accumulation of electrolyte and electrolytic products on the workpiece. And thus, this paper focuses on 

optimizing the electrochemical machining parameters of the kerosene-submerged Jet-ECM and 

investigating the surface effect and shape effect of the workpiece on the machining localization and 

machining accuracy experimentally and theoretically. Numerical simulations were carried out to 

understand the machining characteristics and mechanisms of kerosene-submerged Jet-ECM on 

different workpiece's surface and shape. The conclusions are as follows: 

(1) The surface effect and shape effect of the workpiece and the type of the medium 

surrounding the electrolyte-jet have a significant influence on the machining localization of Jet-ECM. 

Kerosene medium instead of the air medium surrounding the electrolyte-jet can improve the machining 

localization of Jet-ECM. And kerosene-submerged Jet-ECM working on the small surface flat 
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workpiece and curved surface workpiece can achieve higher machining localization than the large 

surface flat workpiece.  

(2) In the kerosene-submerged Jet-ECM, high accuracy microstructure with better surface 

quality can be fabricated due to kerosene medium has a much bigger impedance to the movement of 

the reflected electrolyte, which can prevent the reflected electrolyte form contacting the outer wall of 

the nozzle, and thus reducing the stray electric field around the nozzle. 

(3) The implementation of the kerosene-submerged Jet-ECM on the small surface flat 

workpiece and curved surface workpiece is able to fabricate micro-sized features with higher 

machining accuracy and better surface quality than on the large surface flat workpiece since the 

electrolyte and electrolytic products can be discharged smoothly on the small surface flat workpiece 

and curved surface workpiece, and thus leading to a better mass transfer environment and machining 

conditions. 
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