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The cross groove and its array structure are widely used in the aviation industry and the friction surface 

texture. Due to its unique advantages, the electrochemical machining (ECM) has broad prospects in the 

processing of special-shaped holes and grooves. In this work, the planar ECM of a single cross groove 

was taken as the object, and a cathode with an internal waist-shaped cross groove structure was designed. 

Further, and a three-dimensional multi-physics field coupling model was established based on the 

turbulent bubble flow model by coupling the model of an electric field and fluid heat transfer. The model 

was used to solve and analyze the bubble rate, temperature, and current density distribution in the 

machining equilibrium state. Thereafter, the orthogonal experiments were carried out, and the results 

were obtained. From the results, it was observed the groove contour quality was good, the machining 

process was stable, and the applied voltage and feed speed had significantly influenced the machining 

accuracy. Finally, the experiment produced a cross groove with an average entrance width of 2.66 mm 

and a bottom width of 2.35 mm.  

 

 

Keywords: Cross groove; Electrochemical machining; Turbulent bubble flow; Multi-physical field 

coupling  

 

 

1. INTRODUCTION 

Micro-structures such as special-shaped grooves and holes are widely used in aviation, 

aerospace, weapons, and other equipment, such as cooling holes on engines, damping holes, grilles of 

stealth aircraft, and workpiece friction surface texture. Micro-structures are complex and mostly 

manufactured using refractory metal. They are usually manufactured using Electrical Discharge 

Machining (EDM), laser and Electrochemical Machining (ECM), etc [1-3]. 

ECM is a manufacturing technology in which material is removed based on the principle of 

electrochemical anode dissolution. Due to its unique manufacturing advantages, it has been successfully 
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applied in the manufacturing process of special-shaped holes and grooves. Based on the advancement of 

the computer-based multi-physical coupling simulation technology, simulation has been widely used in 

ECM which significantly shortens the development cycle [4-7]. 

Fang et al. [8, 9] established a blade multi-physical field coupling temperature model, based on 

the time average quasi-steady-state algorithm, and used the sequential coupling method to solve the high-

frequency pulse ECM temperature model. Chen et al. [10] conducted a multi-physical field coupling 

study based on the SST and Euler two-fluid model and compared the temperature field and contour 

changes when different physical fields were included. Deconinck et al. [11, 12] studied the changing 

process of metal ions in ECM based on the laminar flow and the multi-ion transport model. Klocke et 

al. [13] established a model for the ECM material removal process of the aero-engine parts. Fujisawa et 

al. [14] established a multi-physics model and predicted the ECM process. 

Many researchers simplified the object into a two-dimensional model, generate bubbles based on 

different models, and use an indirect coupling to conduct the multi-physics coupling simulation research. 

However, there is no report on the multi-field full-coupling simulation of three-dimensional models. 

Therefore, it is of great significance to carry out the multi-field full coupling study of the three-

dimensional model in order to improve the precision of the ECM. 

Many researchers have studied the ECM process on groove structures. Zhao et al. [15] designed 

a hollow sheet cathode structure with stiffeners at different angles and conducted the fluid-solid coupling 

analysis and the flow field analysis. Further, they used the vibration feed mode for the process, and 

finally, a deep and narrow groove structure with a length to width ratio of 11:1, and depth to width ratio 

of 9:1 was fabricated. Wang et al. [16] used the electrochemical machining to process a deep and narrow 

groove structure with a groove width ranging from 2.73 mm to 2.78 mm on the surface of TB6. He et al. 

[17] established a multi-physics coupling model for the ECM for machining  square holes in titanium 

alloy and discussed the influence of different process parameters on the hole quality. Zhang et al. [18] 

researched on the ECM process for machining of diamond-shaped holes, and the results showed that the 

cathode with a short arc through-hole flow channel had a the better flow field uniformity, and the side 

gap was between 0.2 mm and 0.25 mm. 

Presently, the research on the ECM of a groove has achieved certain results. However, there are 

only a few researches on the ECM of the cross groove and the multi-field coupling simulation. In this 

work, the tool cathode structure was designed for the ECM process of machining a plane cross groove, 

and the three-dimensional multi-field coupling simulation model was established based on the turbulent 

bubble flow. Further, the fully coupled transient solution and the analysis are performed. The self-

designed machining tooling was used for ECM experiments, which provided the theoretical and 

empirical support for studying the precision ECM of the cross grooves. 

 

2. PRINCIPLE OF THE CROSS GROOVE ECM 

Figure 1 shows the schematic diagram of the ECM principle of the cross groove. In this work, 

the length of the cross groove on the workpiece was greater than 10 mm and the width was lesser than 3 

mm. Due to the particularity of its structure, the tooling structure was complicated in conditions such as 
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when the reverse flow type was used, and when the flow field in the machining gap was extremely 

uneven when the side flow type was used to process the grooves. Therefore, in this work, the forward 

flow processing which is commonly used in the ECM of the slots and holes was adopted. In the forward 

flow ECM of the groove, the internal structure of the cathode is usually obtained using the method of 

biasing the theoretical contour inward. Further, in order to obtain a more uniform flow field in the 

machining gap, the waist-shaped cross groove was adopted in the cathode internal instead of the 

rectangular shaped cross groove. Moreover, and the internal groove size should be as large as possible.  

Zhao and Lv et al. [15] designed a cathode with a waist-shaped internal hole for the ECM of the 

single straight and curved groove. The length and the width of the cathode were 30 mm and 2 mm 

respectively, and the width of the internal groove was 0.6 mm. Fang et al. [19] pointed out that increasing 

the size of the cathode internal hole in the ECM can improve the uniformity of the flow field and the 

processing stability. Therefore, in this work, the groove width was chosen to be 1.6 mm in this paper, 

and the center distance between the two semicircular holes was taken as 8 mm. The cathode structure 

and its related dimensions are shown in Figure 1. 

 

 
 

Figure 1. Schematic diagram of the ECM of a cross groove. 

 

 

As shown in Figure 1, the electrolyte was pumped out of the electrolyte pool and passed through 

the filter. Further, is was flow into the cathode through the pipe and entered the machining gap between 

the cathode and the workpiece. Then it flew out from the machining side gap, and finally flew to the 

electrolyte cell. The tool cathode and the workpiece anode were applied with a processing voltage 

provided using a pulse power supply. The cathode was installed on the cathode fixture, and the cathode 

fixture was installed on the Z axis of the machine tool. Further, under the action of the feed controller, 

the tool cathode was fed linearly to the workpiece until the predetermined feed depth, and then returned 

to the origin of the machine tool. 
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While designing, tool cathodes of different structures also can be designed for various 

experiments, by changing the structure or the size of the hole or groove, and by changing the surface 

profile of the cathode outlet. 

 

 

3. SIMULATION MODEL AND ANALYSIS  

The derivation of the geometrical model, the electric field model, and the thermal model is briefly 

described below. 

 

3.1 The geometric model 

In this study, due to the symmetry of the cathode structure, and in order to reduce the calculation 

cost of the simulation, it was assumed that the machining is in equilibrium, and the four corners of the 

cross groove have the same forming law and they do not affect each other. This was assumed in order to 

consider a single corner of the cross groove as the research object, and then the half of a single corner 

was taken, and thereafter the one-eighth of the three-dimensional geometric model was established as 

shown in Figure 2(a). After the model was solved, the simulation results were symmetrically operated 

in order to obtain the entire cross groove ECM simulation results. 

 

 

 
 

Figure 2. The geometric model of cross groove ECM. (a) The one-eighth of the flow model; (b) The 

anode surface; (c) The electric field boundary 

 

 

In the Figure 2(a), the upper, lower, and bottom surface is the electrolyte inlet, electrolyte outlet, 

and the machining gap respectively, while Ω is the electrolyte area. In Figure 2(b), the anode surface in 

the model is denoted as A, the centerline is denoted as O1O2, where, O1 is the origin. Further, the O1O2 

direction is the positive direction, and its length is 5.2 mm. The machining gap Δb and the side gap Δs 
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are both set to 0.2 mm, and the outlet height H is equal to the processing depth of 1 mm. Furthermore, 

the electric field boundary setting is shown in Figure 2(c). 

 

3.2 The electric field model 

As shown in Figure 2(c), Γ1 denotes the anode boundary of the workpiece, Γ2 denotes the 

cathode boundary of the tool. 

The anode boundary: Γ1=U, The cathode boundary: Γ2=0, in equilibrium, the potential in the 

electrolyte satisfies, 

( ) 0      (1) 

Where,  is the electrolyte conductivity, and ϕ is the electric potential. 

Electrolyte inlet and outlet boundary: / 0n    

In the ECM, the electrolyte conductivity will be affected by the electrolyte temperature and 

bubble rate, and its change law can be expressed by the following formula [8]: 

0 0( ) [1 ( ( ) )][1 ( )]nx T x T x        (2) 

Where, 0 and T0 is the initial conductivity and temperature of the electrolyte; ξ is the temperature 

coefficient, taking 0.02; β is the bubble rate; n is the influence index of the bubble rate, taking n=2. The 

normal dissolution rate of the workpiece is: 

av i   (3) 

Where, i denotes the current density, ω denotes the volume electrochemical equivalent. η denotes 

the current efficiency. 

 

3.4 Gas-liquid two-phase flow model 

Multiphase flow models are usually divided into the separate multiphase flow model and the 

dispersed multiphase flow model. Among them, the dispersed multiphase flow model usually has four 

models: the bubble flow model, the mixed model, the Euler-Euler model, and the Euler-Lagrangian 

model. 

In the process of ECM, the electrolyte, and the hydrogen bubble generated by electrolysis, and 

the solid generated by anode dissolution form a three-phase mixture in the machining gap. Since the 

volume of the solid phase is relatively small, the flow field model in the gap can be simplified into a gas-

liquid two-phase fluid model, in which, liquid is the continuous phase and gas is the dispersed phase. 

Fang et al [9] used bubble flow model to simulate the bubbles generated near the cathode. Zhou et al 

[10] used the Euler-Euler model to simulate the gas phase volume fraction in the electrolyte.  

In this work, the turbulent bubble flow model in the dispersed multiphase flow model was used 

to solve and analyze the gas-liquid two-phase flow field. In order to improve the solving efficiency of 

the three-dimensional flow field model, the k-ε turbulent flow model and the auto wall treatment was 

used. 

In the turbulent bubble flow model, the liquid phase momentum equation, continuity equation 

and gas phase transport equation are respectively: 



Int. J. Electrochem. Sci., Vol. 16, 2021 

  

6 

1
1 1 1 1 1 1 1 1 1 1 1 1 1

2
Φ ( ) ( )

3

T

T

u
u u p u u u I g F

t
    
   

                 
  (4) 

   1 1 g g l l 1 g g =0gu u          (5) 
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t



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  


  (6) 

In which, the subscripts l and g represent the liquid and gas phases, lu  and 
gu  represent the 

velocity of the liquid and gas phases, l  and 
g  represent the density of the liquid and gas phases, l  

and 
g  represent the volume fraction of the liquid and gas phases, F represent the any additional volume 

force, 
lgm  represent the mass transfer rate from the liquid to the gas phase. 

When the flow field is turbulent, the bubble flow is similar to the single-phase turbulence model 

[20]. The turbulent source phase Sk  generated by bubbles is introduced into equation k and Equation ε, 

and which is: 

g 2 slipSk kC p u       (7) 

The velocity of gas in bubble flow and turbulent viscosity can be obtained: 

l slip l

l

g

g

g

Φ
u u u

Φ




     (8) 

2

T l

k
C 


   (9) 

When 0.01 1kC  , 1 1.92C  , the simulation results are in good agreement with the 

experimental results [21]. The relationship between hydrogen mass flux generated by cathode and local 

current density in ECM is: 

M
F

H2

ηi
N

2
   (10) 

Where, NH2 is hydrogen flux, M is molar mass of hydrogen, η is current efficiency, regardless of 

oxygen generation, take η=1. The model constants of turbulent bubble flow are shown in Table 1. 

 

Table 1. The turbulent bubble flow model simulation parameters. 

 

C1ε C2ε Cμ Cε Ck σk σε 

1.44 1.92 0.09 1.46 0.505 1 1.3 

 

3.5 Thermal model 

In the processing of ECM, the heat is mainly composed of the Joule heat of the electrolyte and 

the electrochemical reaction heat at the electrode boundary of the electrolyte. The resistance of tool 

cathode and workpiece anode is very small, so the Joule heat generated during the process of ECM can 

be ignored. Thus, the electrolyte temperature distribution in the gap can be described by the convection-

diffusion equation of the fluid [10]. 

l bulk( )p p t

T
c c u T k T Q

t
 


    


  (11) 
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bulk j rQ Q Q 
  (12) 

2( )jQ U 
  (13) 

r k kQ U i
  (14) 

Where, cp is the specific heat capacity of electrolyte at atmospheric pressure, kt is the thermal 

conductivity of electrolyte, Qbulk is the heat generated during the ECM process, Qj is the Joule heat, Qr 

is the reaction heat at the boundary, Uk is the overpotential, ik is the current density of the electrochemical 

boundary double layer. 

 

3.6 Multi-physical field coupling analysis and simulation process 

3.6.1 Multi-physical field coupling analysis 

The coupling among the multi-physical fields in the ECM process is a strong coupling. After 

making relevant assumptions, the model can be transformed into a weakly coupled problem for indirect 

solving, or can be solved directly in a fully coupled way. 

In the simulation work, the volume flux can be set in the turbulent bubble flow module to couple 

the electric field to generate bubbles. The convection term in the convection diffusion equation for fluid 

heat transfer is used to couple the effect of the flow field velocity on heat transfer. The heat source term 

is set to couple the electric field to generate Joule heat and the electrochemical boundary reaction heat. 

The conductivity equation of the electrolyte material domain is set to couple the relationship between 

the gas-liquid two-phase flow field, the electric field and the fluid heat transfer. 

In this work, it was assumed that the processing of ECM was entered the equilibrium state, and 

the anode geometric domain changed during the cathode feed were not considered. The solution was 

carried out by the fully coupled direct transient solution method. 

 

3.6.2 The simulation process 

The process of the multi-physical field coupling simulation solution of the cross groove ECM is 

shown in Figure 3. 
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Figure 3. Flow chart of multi-physical field coupling simulation solution. 

 

In Figure 3, the 3D geometric model was imported into the multi-physics simulation software 

COMSOL Multiphysics for solution. Then the turbulent bubble flow, electric field (primary current), 

fluid heat transfer modules were added. After the boundary conditions and meshing were set, the electric 

field was solved in a steady state to obtain the initial distribution of the electric field. The result was 

transferred as the initial value to the turbulent bubble flow, fluid heat transfer and current field for 

transient simultaneous solving. Finally, the temperature, gas volume fraction and current density were 

obtained.  

 

3.7 Simulation parameters 

The relevant initial values and process parameter settings in the simulation model are shown in  

Table 2. 

 

 

Table 2.  Physical properties of anode, cathode and electrolyte. 

 

Physical parameter Value 

Initial conductivity of electrolyte k0/(S/m) 7.2 

Electrolyte density ρ/(Kg/m3) 1070 

Specific heat capacity of electrolyte cp/[J/(kg·K)] 3730 

The initial temperature T0/(K) 298.15 

Entrance velocity vi/(m/s)  0.3 

Outlet pressure po/(MPa)  0 

Hydrogen molar mass MH2/(g/mol) 2 

Bubble size /(×10-3mm) 1 

Applied voltage U/(V) 16 

Processing time t /(s) 5 
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4. SIMULATION ANALYSIS AND RESULTS 

During analysis, the simulation parameters were set and the analysis was carried out. The bubble 

rate, temperature, electrolyte conductivity in the machining gap and the current density distribution on 

the anode surface A are shown in Figure 4. The current density on the centerline O1O2 is shown in Figure 

5. 

 

 
 

Figure 4. The simulation results. (a) Gas volume fraction; (b) temperature rise distribution; (c) 

electrolyte conductivity; (d) current density on anode surface A. 

 

From Figure 4(a), it is observed that the bubble rate on the anode surface A is very less which 

reaches the maximum value of about 1.1% at the exit of the edge, and it is almost zero at the centerline. 

This is due to the generation of the bubble near the cathode surface. Further, as the fluid flows to the 

side gap and the outlet, the amount of the diffusion to the anode surface is less. However, in the 

simulation, it was observed that the maximum bubble volume fraction near the cathode surface is about 

18%. The similar results were shown in the study conducted by Zhou et al.[10], in which the bubble rate 

at the outlet was about 0.23 and the outlet was set with backpressure. Moreover, the electrode length was 

taken as 50mm. 

Since the flow velocity in the bottom gap and the side gap reached about 3~4 m/s, the higher 

flow velocity rapidly results in electrolysis products and heat out of the gap, and the temperature rise on 

the anode surface was not obvious. As shown in Figure 4(b), it is observed that the maximum temperature 

rise is only about 3 K. 

Due to the combined effect of temperature rise and the hydrogen bubbles, it can be seen from 

Figure 4(c) that the maximum electrolyte conductivity on the anode surface is about 7.57 S/m, which is 

an increase of 5.1% from the initial value of 7.2 S/m (Figure 4(c)). Further, there is almost no change at 

the centerline. 

From Figure 4(d), it is observed that the current density distribution in the machining gap is 

uneven due to the uneven distribution of the electrical conductivity. It is also found that the current 

density value on the entire anode surface ranges from 3.4 A/cm2 to 55.3 A/cm2, with a large range of 

variation. 

The current density on O1O2 of the anode surface A is shown in Figure 5. From Figure 5, it is 

observed that the current density value at the centerline 0~4 mm is very less and reaches the maximum 

(a)  Gas volume fraction

(b)  Temperature rise (a) (b) 

(c)  Electrolyte conductivity

(d)  Current density (c) (d) 
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value near the edge of the cathode, and gradually decreases in the side gap. This is because the dissolution 

degree of the anode surface is proportional to the current density and the current efficiency. Therefore, 

the dissolution values on the anode surface are uneven. 

 

 

 
 

Figure 5. The current density on the centerline O1O2 of the anode surface A. 

 

5. ECM EXPERIMENT AND RESULT ANALYSIS 

The experiment preparation, parameter, and design of the experiment and the results of the 

orthogonal experiment and analysis are described below. 

 

5.1 Experiment preparation 

In order to further study and analyze the influence of the processing parameters of the ECM of 

the cross groove, based on the laboratory's ECM experiment system, the tooling fixture was designed 

and tested. The front and rear views of the cathode that was used for the experiment is shown in Figure 

6(a) and Figure 6(b), and the experimental device is shown in Figure 6(c). The cathode was made using 

a CNC machining center. The material of the cathode and the cathode fixture was brass, and the 

workpiece was a SS304 plate. 

As shown in Figure 6(c), the workpiece was fixed on the worktable of the ECM machine tool. 

The cathode, the cathode fixture, the connecting block and the Z-axis of the machine tool were fixed 

together. Further, a pressure gauge was installed at the entrance of the tooling fixture in order to observe 

the pressure of the electrolyte, and these parts were well sealed in order to prevent the leakage of the 

electrolyte. 
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(a) Front view of  cathode (b) Rear view of cathode

(c)  Experimental device

Z- axisConnecting 
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Pressure 
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Figure 6. Photographs of the cathode and the experimental device. 

 

5.2 Parameters and design of experiment 

 

The process parameter values that were used in the cross groove ECM experiment are shown in 

Table 3. The pulse power frequency was 40 kHz and the duty cycle can be adjusted. In Table 3, The 

pressure data refers to gauge pressure. The electrolyte used in the experiment was 8 wt% NaNO3, the 

initial temperature was 298.15 K, and the conductivity was 7.2 S/m. 

 

Table 3.  Main parameters of cross groove machining. 

 

Parameter value 

Peak voltage U/(V) 16~24 

Duty cycle 0.8 

Inlet pressure Pi/(MPa) 0.01~0.03 

Outlet pressure Po/(MPa) 0 

Feed velocity vc/(mm/min) 0.1~0.4 

Processing depth Ha/(mm) 1 

Initial machining gap Δ0/(mm) 0.2~0.5 

 

In order to study the influence of the parameters on the machining accuracy and stability, the best 

combination of the processing parameters for the ECM of the cross grooves was obtained. The design 

of the orthogonal experiment method was adopted using the orthogonal array, and the interaction of 

different factors was not considered. In this study, the four-factor three-level orthogonal table L9 (3
4) 

was selected, and four factors such as processing applied voltage, feed speed, electrolyte pressure and 

the initial machining gap were used as factors A, B, C and D. Each of the factors is designed with 3 

levels as shown in Table 4. 
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Table 4. Orthogonal experimental factors and levels. 

 

Processing 

Parameters 

Peak voltage 

/V 

Feed velocity 

/mm/min 

Electrolyte 

pressure /MPa 

Initial machining 

gap /mm 

Factor A B C D 

Level 1 16 0.2 0.01 0.5 

Level 2 20 0.3 0.02 0.35 

Level 3 24 0.4 0.03 0.2 

 

5.3 Orthogonal experiment results and discussions 

5.3.1 Experiment evaluation 

After the ECM, the average entrance and bottom width of the cross grooves were measured. The 

position of each measurement point is shown in Figure 7. The width values of the entrance and the 

bottom are represented by Bix and Box, and x is ranged from 1 to 12, each corner takes three points, each 

separated by 1mm. The average width of the entrance and bottom of the cross grooves values were 

denoted as Bi and Bo. 

 

 

 
 

Figure 7. Schematic diagram of cross groove width measurement. 

 

5.3.2 Orthogonal experiment results and discussions 

The orthogonal experiment was carried out in 9 combinations. The width values are shown in 

Table 5. Based on the experiment results observed in Table 5, the range analysis and variance analysis 

were performed. The order of influence on the entrance width of the cross groove was: A-B-C-D, and 

the range values were 0.211, 0.186, 0.181 and 0.107 respectively. The root mean square values were: 

0.078, 0.039, 0.026, and 0.01 respectively. Further, the order of the influence on the bottom width was: 

A-B-C-D, and the range values were 0.183, 0.083, 0.083, and 0.03, respectively. Moreover, the root 

mean square values were: 0.026, 0.006, 0.005 and 0.001.  
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According to the trend chart of factors and indicators, it was found that a better combination of 

process conditions is obtained using A1B3C3D2.  

 

Table 5. Orthogonal experimental results. 

 

 A B C D Bi (mm) BO (mm) 

1 1(16) 1(0.2) 1(0.1) 1(0.5) 2.94 2.49 

2 1 2(0.3) 2(0.2) 2(0.35) 2.73 2.43 

3 1 3(0.4) 3(0.3) 3(0.2) 2.66 2.35 

4 2(20) 1 2 3 2.94 2.54 

5 2 2 3 1 2.71 2.45 

6 2 3 1 2 2.77 2.48 

7 3(24) 1 3 2 2.95 2.59 

8 3 2 1 3 3.17 2.68 

9 3 3 2 1 2.84 2.54 

 

 

The average entrance and the bottom width of the cross groove during the optimized experiment 

were 2.64 mm and 2.46 mm respectively. Moreover, the result of width was very close to the result of 

the A1B3C3D3, however, the taper of the optimized groove wall was less. The photos of the cross grooves 

that were processed under the combination parameter of A1B3C3D3 and A1B3C3D2 are shown in Figure 

8(a) and Figure 8(b). The photographs that were taken with a microscope camera (Minmei Microscope 

Camera M50) are shown in Figure 8(c).  

In this work, the cross groove width and the side gap were similar to the results of Zhao's study 

[15]. In his study, the linear feed and vibration feed were adopted, the straight groove entrance width 

was ranged from 2.45 mm to 2.55 mm, the entrance side gap after the processing of ECM was about 0.2 

mm~0.3 mm [15-18,22]. 
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Figure 8. Cross groove photos after ECM. (a) A1B3C3D3; (b) A1B3C3D2; (c) A photograph taken by a 

microscope camera 

 

From Figure 8(a), it is observed that the groove dissolves relatively more at each of the corners, 

so that the contour shapes near each corner have certain fluctuations. In Figure 8(b), the convex structure 

in the middle of the workpiece is more obvious. The reason is that, during the ECM processing, the 

initial machining gap was bigger, and the anode surface receives a relatively smaller current density. 

Therefore, the less dissolution is obtained at the center. Further, a reasonable adjustment of processing 

parameters was found to achieve the purpose of improving the accuracy of the cross grooves. Moreover, 

when adjusting the process parameters, small gap processing should be adopted, and priority should be 

given to reducing the average voltage and increasing the feed velocity.  

Furthermore, it is noted that the convex structures in the middle of the cross grooves in the 

experiment are of different sizes. This phenomenon is also closely related to the cathode structure and 

the processing parameters. 

 

 

6. CONCLUSIONS  

In this work, a three-dimensional multi-physical field coupling model for the ECM of cross 

grooves based on turbulent bubble flow was established and was coupled with the electric field and the 

fluid heat transfer. Thereafter it was solved using a transient full coupling method. The simulation results 

showed that the bubble rate on the anode surface was only about 1%, the temperature rise was 3 K. 

Further, the electrolyte conductivity increased by about 5%, and the current density on the anode surface 

(a) (b) 

1mm 1mm

(c) 
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was extremely uneven. The orthogonal experiment results of the ECM of cross grooves showed that the 

machining process was stable and it was observed that the grooves had better contour shapes. Moreover, 

when the processing parameters such as the peak voltage, feed rate, electrolyte inlet pressure, and initial 

machining gap were 16 V, 0.4 mm/min, 0.03 MPa, and 0.2 mm respectively, the width of the entrance 

groove was 2.66 mm and the bottom width was 2.35 mm. Among the processing parameters, the average 

voltage and the feed speed had a significant influence on the groove width. 

Furthermore, it was found that the main reason for the convex structure at the center of the cross 

groove is attributed to the uneven current density. 
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