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Accurate estimation of State of Charge (SOC) of wireless sensor network nodes is of great significance 

for wireless sensor network layout. A combination strategy method based on unscented particle filter 

using weight particle swarm optimization (PSO-UPF) algorithm is proposed to improve estimation 

accuracy. The particle filter (PF) algorithm is usually used to deal with nonlinear problems, easily 

falling into particle degeneration and particle shortage. The unscented particle filter (UPF) algorithm 

can overcome the shortcomings by using the unscented Kalman filter (UKF) to generate the 

importance density function. Meanwhile, the particle swarm optimization (PSO) algorithm could 

improve the resampling process to solve particle shortage. Thus, the combination strategy improves the 

importance density function and the resampling method simultaneously. With the simulation 

comparison of PF, UPF and PSO-UPF algorithms, the results show that the proposed algorithm has 

higher estimation accuracy with the root mean square error less than 1%. Furthermore, the proposed 

algorithm could achieve good accuracy with few particles, which could save running time and improve 

the estimate efficiency. 

 

 

Keywords: State of Charge; particle filter; unscented particle filter; linearly decreasing weight particle 

swarm optimization 

 

 

1. INTRODUCTION 

Wireless Sensor Network (WSN) is an advanced developing technology to monitor and record 

the physical or environmental conditions, such as temperature, wind, pollution levels, and so on [1]. 

The WSN is usually equipped with large number of nodes, which can communicate with each other 

using radio signals [2, 3]. The nodes are small size, low price, multi-function and eco-friendly which 

can meet the requirement of lithium battery [4]. WSN nodes can be placed randomly in every corner of 

monitoring area while the power supply and maintenance are significantly compromised by the harsh 
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environment [5]. It is important to monitor remaining energy in the battery and estimate battery life 

timely to reasonably plan the use of each node. To evaluate the performance of battery, it is highly 

desirable to estimate the real-time state of charge (SOC) of lithium battery [6, 7]. 

For the problem of nonlinear state estimation, the expression of posterior probability density 

can't be obtained directly, and only two kinds of approximate methods can be used [8-12]. Extended 

Kalman filter method is used to linearize the nonlinear model via Taylor equation calculation [13]. 

However, it probably results in Kalman filters divergence [14]. The other method is to approximate the 

posterior probability density distribution, i.e. UKF and PF [15-21]. For the UKF model, it can be used 

to deal with nonlinear transfer of mean and covariance to obtain high accuracy. PF approximates the 

posterior probability density distribution through the weight values of particles, and is suitable for 

nonlinear non-Gaussian model [22-25]. Nevertheless, it tends to eliminate particles with low weights 

due to particle depletion on basic of sequential importance sampling (SIS) algorithm. Until now 

scientists have made many efforts to solve the defects via modifying the importance density function 

and resampling process [26-29]. In Ref. [30-32], the UPF algorithm is proposed to overcome particle 

degeneration in a certain extent. However, the accuracy is significantly compromised by particle 

scarcity. Ahwiad group reported an enhanced mutation particle filtering (EMPF) to improve the 

performance of PF by generating mutated particles from prior particles to represent the high-likelihood 

area more sufficiently [33]. Genetic algorithm was introduced to increase the diversity of particles and 

improve smaller weight particles [34]. UPF is proposed on basic of linear optimization combination 

resampling (U-LOCR-PF) to solve coefficient of uncertain correlation step [35]. Then, Lin proposed 

PSOPF algorithm which combines particle swarm optimization (PSO) with PF algorithm to generate 

particles diversity [36]. However, it still exist some defects [37-42]. As mentioned above, new 

algorithms for accurate estimation of SOC are highly desired. 

The main contribution of this study is to present a linear decreasing weight particle swarm 

optimization algorithm on basic of the PF and UKF algorithm. UKF is used to sample particles and 

generate the importance density function of PF, effectively alleviate particle degeneration. PSO is 

introduced to improve the resampling process of UPF, which can increase the diversity of particles, 

enhance the calculation efficiency, and remit particle shortage problem to a certain extent. Thus, the 

combination strategy improves the importance density function and the resampling method.  

 

 

 

2. THEORY AND METHOD RESEARCH 

2.1. Improved equivalent circuit model 

Lithium battery equivalent modeling is the basis of SOC estimation, and the common 

equivalent circuit models include Rint model, RC model, Thevenin model and PNGV model. In this 

paper, the improved equivalent circuit model (IECM) is used as the equivalent circuit model of lithium 

battery to afford accurate estimation of SOC, which consists of ohmic internal resistance module, RC 

module and open circuit voltage module (shown in Fig. 1). The ohmic internal resistance is divided 
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into benchmark ohmic internal resistance and charge/discharge differential ohmic internal resistance to 

simulate the characteristic change of ohmic internal resistance of charging/discharging.  
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Figure 1. The improved equivalent circuit model 

 

Uoc represents the open circuit voltage of the battery. R0 represents the benchmark ohmic 

internal resistance. Rcd characterizes the internal resistances of Rc and Rd at the time of charge and 

discharge. Rp represents the polarization resistance and Cp represents the polarization capacitance. UL is 

the closed-circuit voltage when the battery is connected to the external circuit. According to 

Kirchhoff's law, the voltage and current expressions of the circuit can be obtained as: 
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Based on the definition of SOC, the equivalent circuit model is discretized. The operating 

current I is the input of the system, and the battery terminal voltage UL is the observation state. In order 

to get closer to the real condition, the process noise and observation noise of the system are added, and 

the state space equation after discretization is obtained as follows: 
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 ................................................ (2) 

The parameters [R0, Rd, Rc, Rp, Cp] need to be identified by the hybrid pulse power 

characterization (HPPC). The off-line parameter identification of the battery model is carried out in 

this paper.  

 

2.1. Particle filter 

Particle filtering algorithm is an approximate numerical solution method on basic of Bayesian 

estimation and Monte Carlo method. A series of sampling points (like ‘particles’) are used to represent 
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the state distribution, calculate discrete probability density functions, and replace the average of 

particles integral over continuous space in order to minimize square error. In practice for PF algorithm, 

the SIS method is introduced to obtain an approximate posterior probability density function. When PF 

is applied to SOC estimation of lithium battery, the state equation and observation equation are listed 

as below: 

1

,

( )

( )

k k k

L k k k

SOC f SOC

U h SOC





+ = +


 = +

  .......................................................................... (3) 

   𝑆𝑂𝐶𝑘+1 and 𝑆𝑂𝐶𝑘 represent the SOC value at current and previous time respectively, and the 

battery terminal voltage UL is the observation state. To understand the work mechanism of PF filter, 

the flow chart is shown in Fig. 2.  
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Figure 2. Flow diagram of the PF 

 

 

The main implementation steps are shown as below: 

Step1. Initialization: 

P(x0) is the prior probability distribution, and SOC initial particles are randomly generated. 

Step2. Importance sampling: Collecting sample set from the importance density function: 

( )( ) ( ) ( ) ( )

1 1: 1( | , ) : |i i i i i

k k k k k kSOC q x x y p x x− −  

Step3. Weight calculation and normalization: 

1 ( | )i i i

k k k kw w p y SOC−=   .......................................................................... (4) 
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Step4. Selection stage (resampling): Calculating effective particle numbers: 
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If Neff < Nth (Nth is the threshold of particle number), resampling is conducted to generate a new 

sample set, otherwise, turn to step5. 

Step5. Outputting the estimation: 

                        
1

M
i i

k k k

i

SOC w SOC
=

=   .......................................................................... (7) 

 

2.3. Unscented particle filter using linearly decreasing weight particle swarm optimization 

2.3.1. Unscented particle filter 

In PF algorithm, the particle degeneration is observed when the likelihood function is in a 

narrow state, or the observation probability is located at the tail of the prior distribution. To solve the 

drawbacks, it is significant to find an optimal importance density function to transfer sample points in 

prior distribution area to the maximum likelihood area, so as to improve effective particles and 

approximate to the posterior probability density function. As shown in Fig. 3, UPF method is 

introduced to solve the defects of PF. UKF algorithm is used to select importance density function on 

basic of the UT transformation. It is used to calculate the mean value and variance of the particle set , 

and further to sample and update the particles, increase the overlap between the number of particles 

and the likelihood distribution during sampling. Finally, it makes the selection of particles closer to the 

observation value interval, and improves the filtering accuracy. 
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Prior distribution
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Figure 3. Mechanism of UPF algorithm 
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2.3.2. Weight particle swarm optimization 

To overcome the lackage of particles in the resampling process, PSO is introduced into UPF 

through moving the particles globally during iteration process to search for and update the optimal 

particle position in the importance density function. So each particle could continuously move to the 

optimal position and approximate to the real value of the system, which solves the particle shortage 

phenomenon. The inertia weight coefficient ω is one of the important parameters that affect the 

performance of the PSO algorithm. The larger ω will increase the global search capability of the PSO, 

and the smaller one will increase the local search capability of the PSO. In this paper, linear decreasing 

weight is selected to update the inertial weight coefficient to balance the global and local search 

capabilities of particle swarm optimization. The main process of PSO-UPF is shown in Fig. 4: 
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Figure 4. Mechanism of PSO algorithm 

 

On the basis of lithium battery SOC estimation using PF, PSO-UPF algorithm is introduced to 

improve both the importance density function and the resampling process. The structure diagram of 

PSO-UPF algorithm is obtained in Fig. 5.  
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Figure 5. The structure of the UPF and PSO joint algorithm 
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The basic idea of the algorithm is: firstly, a group of SOC initial particles are generated 

according to the prior probability of the system state variable. Then UPF algorithm is taken to generate 

a new importance density function, and the output of UPF algorithm is taken as the input of PSO 

algorithm. The optimal estimation value is obtained to approach the current real SOC value through 

modification the original experience of conditional distribution. The optimal PSO-UPF algorithm is 

designed on the basic of following idea as shown in Fig. 6. 
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Figure 6. Flow diagram of the PSO-UPF 

 

The main implementation steps are shown as below: 

Step1. Initialization:  

p(x0) is the prior probability distribution, and SOC initial particles are randomly generated. 

Particle weight is 1/M, and the initial mean value and covariance of the particle set is produced.  

Step2. Importance sampling: 

(1) UKF algorithm is used to update the sample set; 

(2) Calculating the mean value and variance of the particle set obtained by UPF algorithm; 

(3) Sample new set of particles from the importance density function: 
( ) ( )
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Step4. Selection stage (resampling): Calculating effective particle numbers: 
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If Neff < Nth (Nth is the threshold of particle number), resampling is conducted to generate a new 

particle set, otherwise, turn to step 6. 

Step5. Particle swarm optimization: 

(1) Define the fitness function: 

2

,

1
exp[ (U ( , ) ]

2

i

L k k kfitness h SOC u
R

= − −   ........................................................................ (10) 

The value of the fitness function is essentially the weight of the particles to calculate the 

fitness. Then, it will choose the optimal values of the particle to update the position.  

(2) Take the sample set generated by UPF as the initial position of PSO. 

(3) Formula (12) is used to update the speed and position of each particle iteratively and 

calculate the fitness value of each particle. According to the fitness value, the local and global optimal 

values of the particle are updated to make the particle get closer to the real value. 
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ω is the inertia weight coefficient, c1, c2 is the learning factor, Ppbest is the local optimal value, 

Pgbest is the global optimal value. 

(4) When the maximum number of iterations is reached, the search is stopped.  

Step6. Outputting the estimation: 

1

M
i i

k k k

i

SOC w SOC
=

=    ........................................................................ (13) 

 

3. EXPERIMENTAL ANALYSIS 

3.1. Parameter identification results 

The parameters to be identified in this model include [R0, Rd, Rc, Rp, Cp]. HPPC is used in this 

experiment. In order to explain the mechanism of HPPC experiment, a single HPPC pulse experiment 

is taken for analysis.  

 



Int. J. Electrochem. Sci., Vol. 15, 2020 

  

10112 

0 20 40 60 80 100

3.8

3.9

4.0

4.1

4.2

4.3

U8(t8)

U7(t7)
U6(t6)

U5(t5)

 U

 I

t (s)

U
 (

V
)

-60

-40

-20

0

20

40

60

U4(t4)

U3(t3)

U2(t2)

 I
 (

A
)U1(t1)

 
 

Figure 7. HPPC experimental voltage 

 

 

As shown in Fig. 7, the voltage transient decreased which is caused by R0 from U1 to U2. Then 

the polarization capacitor Cp in the resistance-capacitance network is charged, showing that the voltage 

decreased slowly output a zero-input response from U2 to U3. The terminal voltage enhancement and 

decrease is attributed to ohmic internal resistance of lithium-ion batteries during pulse charging and 

discharging. Rd and Rc are used to represent the differences. The calculation formula of ohm internal 

resistance can be calculated by formula 14; 
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U1, U2, U3, U4, U7 and U8 are shown in Fig. 7. R0 represents the benchmark ohmic internal 

resistance, Rd is the discharge resistance, Rc is the charging resistance. The KVL circuit expression can 

be obtained by IECM. The parameters of each SOC point are identified by curve fitting to give the 

values of [R0, Rd, Rc, Rp, Cp]. Finally, the relationship between the identification parameters and SOC 

is measured by means of polynomial fitting (formula 15): 

0 (1 )
t

L OC cd pU U IR IR IR e 
−

= − − − −   (15) 

 

3.2. Simulation analysis 

To verify the feasibility of proposed PSO-PF algorithm for SOC estimation, the parameter 

function is identified to simulate the current change in the actual discharge process using Matlab 
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algorithm. The three algorithms of PF, UPF and PSO-UPF are measured to simulate from the three 

aspects of estimation accuracy, stability and running time for filter estimates in case of M = 20 and M 

= 100, respectively.  

 

 
Figure 8. The three algorithms of PF, UPF and PSO-UPF for filter estimates in case of M = 20 (a) and 

100 (d) of particles. The state deviation of three algorithms in case of M = 20 (b) and 100 (e) of 

particles. Posterior mean and real value analysis of PF, UPF and PSO-UPF under different M = 

20 (c) and 100 (f) of particles 

 

As shown in (Figs. 8a and 8d), it implied that all three algorithms provided the good filtering 

effect for SOC estimation. Moreover, it can be seen from the local amplification at time interval [800 

1000] that each estimation method can well follow the change of the real value, and estimation 

accuracy is better in presence of more numbers of particles.  

As shown in (Figs. 8b and 8e), the SOC estimation method based on PSO-UPF showed a 

significant improvement in estimation error compared with the other methods, and the estimation 

effect is more stable.  

As shown in (Figs.8c and 8f), the PSO-UPF algorithm showed the best performance of 

posterior mean, which showed that accurate simulation did not rely on particle number. However, both 

the UPF and PF showed scattered distribution of particle and large error in case of few particles. With 

the increase of particle number, they got closer to the real value. 

In order to evaluate the performance of the algorithm, the root mean square error (RMSE) and 

mean absolute error (MAE) of SOC estimation is defined though following formula: 
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N represents the running time of an experiment, 𝑆𝑂𝐶𝑘 represents the estimated value of SOC in 

step k, and 𝑆𝑂𝐶𝑟𝑒𝑎𝑙,𝑘 represents the real value size of SOC in step k. 

 

Table 1 and table 2 compared the performance and running time of the three algorithms under 

different particle numbers, respectively. 

 

 

Table 1. Performance comparison of three algorithms under different sample particle numbers 

 

Three kinds of 

algorithms 

Performance comparison of different sample particle Numbers 

Number of particles  M=20 Number of particles  M=100 

RMSE (%) MAE（%） RMSE (%) MAE（%） 

PF 1.87% 2.59% 1.27% 1.41% 

UPF 1.43% 1.46% 1.40% 1.35% 

PSO-UPF 1.27% 1.20% 0.94% 1.17% 

 

 

Table 2. Running time comparison of three algorithms under different sampling particle numbers 

 

Three kinds of 

algorithms 

Running time /s comparison of different sample particle Numbers 

Number of particles  M=20 Number of particles  M=100 

PF 0.001045 0.003003 

UPF 0.002821 0.009656 

PSO-UPF 0.007445 0.096748 

 

 

As shown in table 1, the RMSE and MAE of all the three algorithms decrease with the increase 

of the number of particles. The RMSE of PF and UPF algorithms indicated the accuracy is 

significantly improved depending on the number of particles. In the case of the same number of 

particles, PSO-UPF showed the highest accuracy and the best stability. The results confirmed that the 

selection of the particle number directly affected the accuracy of the filter.  

The RMSE of PSO-UPF algorithm is less than 1%. Compared with the PF algorithm [14], 

where the MAE and RMSE of SOC estimation are 2.3% and 3.1% respectively, which showed the 

lower accuracy. The literature [20]estimated the SOC of EKF, EPF, CPF and UPF algorithms, and 

concluded that the UPF algorithm has the highest accuracy under noisy environment, with the MAE of 

0.9%, but the accuracy of RMSE is not mentioned. There are a lot of improved algorithms around UPF. 

The paper[31] proposed GA-UPF algorithm, where the MAE is about 2%, and RMSE is about 0.9%. 



Int. J. Electrochem. Sci., Vol. 15, 2020 

  

10115 

This paper is based on PSO-UPF algorithm, where the MAE is 1.17%, and RMSE is 0.94%, which 

verified the feasibility of the algorithm.  

In the case of few particles, the difference between PF algorithm and real value is large. The 

estimation accuracy of the PSO-UPF algorithm is higher than the other methods and very close to the 

real state as the PSO-UPF algorithm could effectively improve particle behavior and optimize particle 

position when the number of particles was limited. The enhanced effect of each sampled particle can 

be well distributed around the true value. The PSO-UPF algorithm does not require a large particle 

number to achieve good accuracy, which can save the running time and improve the efficiency of the 

algorithm. 

 

 

 

4. CONCLUSIONS 

In conclusion, we designed the IECM method using PSO-UPF algorithms to evaluate 

estimation of SOC of lithium batteries. By virtue of PSO-UPF algorithms, the importance density 

function of PF is generated by UKF to optimize the position and weight of particles and increase the 

number of sampling particles during resampling process. Compared with the PF, PSO-UPF allowed 

UPF and PSO to remit problem of particle degeneration and particle scarcity. The HPPC is used to 

identify the parameters and obtain the relationship between the model parameters and the SOC of 

lithium batteries. In comparison to the performance of three algorithms, PSO-UPF algorithm revealed 

the highest estimation accuracy in case of few/large number of particles and best robustness in practice 

application. 
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