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Microbial fuel cell (MFC) is a promising technology for wastewater treatment with simultaneous 

bioenergy production. To improve the power generation efficiency of MFCs, maximum power point 

tracking control is a good choice. Three kinds of Q-Learning-based maximum power point tracking 

control scheme based on ε-greedy exploration, Boltzmann exploration and greedy policy are proposed 

for MFCs. The results show that the maximum power point tracking control based on Q-Learning has 

better power tracking capabilities than perturbation and observation method. With the introduction of Q-

Learning based on greedy policy, the time required for MFC to stabilize at the maximum power point is 

greatly shortened by setting the action list of Q-Learning reasonably. In this case, the whole process 

from start-up to stabilization at the maximum power point was 42.9% faster than that of MFC using ε-

greedy exploration, and 50% faster than that of MFC using Boltzmann exploration. Q-Learning 

algorithm based on greedy policy is an effective method to realize MPPT in MFC system. 

 

 

Keywords: greedy policy; maximum power point tracking; microbial fuel cell; perturbation and 

observation; Q-Learning 

 

1. INTRODUCTION 

The global energy crisis caused by the depletion of fossil fuels is escalating due to the rapid 

increase in demand. At the same time, the environmental pollution caused by burning fossil fuels is not 

to be underestimated. Developing renewable energy is an effective way to solve energy crisis and 

environmental pollution. Microbial fuel cell (MFC) is a promising technology for wastewater treatment 

with simultaneous bioenergy production [1-3]. The greatest advantage of MFCs is that they convert the 

chemical energy of pollutants into electrical energy directly and generate almost no pollutants in the 
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power generation process. The application of MFC will solve the problem of environmental pollution 

and energy crisis for mankind at the same time [4]. 

Although there have been some reports of MFC implementation of various applications [5], there 

are still a lot of challenges in the successful application of MFC in real environment. Compared to other 

alternative energy systems such as solar and wind, MFC is a low power system due to its thermodynamic 

limitation [6]. Various physical, chemical and biological approaches have been explored to improve 

electricity generation [7]. For example, through the development and modification of electrode material 

[8], exchange membrane [9] and cathode catalyst [10], the power generation capacity of MFC can be 

improved. However, from the user's point of view, once the MFC construction is completed, such 

methods are often not feasible. In this case, using advanced control method to further improve the 

performance of MFC is an alternative way [11].  

 To improve the power generation performance of MFCs, some maximum power point tracking 

(MPPT) technologies have been proposed in literatures. Among all the conventional MPPT, perturbation 

and observation (P/O) method is the most widely used algorithm because of its simplicity and robustness. 

The P/O method works by creating a perturbation and observing its effect [12]. By comparing the 

previous output power with the current output power, it is straightforward to decide the direction of next 

step that would increase the power towards MPP [13]. 

In the last decade, there have been some studies on power control of MFCs using P/O method. 

P/O method was used in a single chamber air-breathing cathode MFC to optimize energy harvesting, 

and laboratory tests confirmed that it can provide stable long-term power production [14]. Park et al [15] 

proposed an integrated control system for solid anolyte MFC that can perform real-time MPPT with P/O 

algorithm. Study results also demonstrated that P/O based MPPT was able to reduce the start-up time 

and minimize the internal resistance of MFC, so that the energy loss related with anode and cathode can 

be reduced [16], and noticeable improvement in MFC performance was observed [17]. Compared with 

other methods, P/O method is simpler to tune [18]. However, the steady-state fluctuation caused by the 

P/O algorithm is usually very serious, so it is difficult to make the MFC accurately stable at the maximum 

power point, and it will deviate from the maximum power point when it is disturbed. In addition, the 

P/O method may converge to a local optimal power point rather than its actual maximum power point, 

which violates the original intention of maximum power tracking control [19]. 

Reinforcement Learning is a machine learning method that uses behaviors received from the 

environment to learn behavioral strategies. It emerges as a powerful data-driven method for solving 

complex control problems. Reinforcement Learning technology have been used in some recent studies 

to solve MPPT problems in some new energy systems such as wind energy conversion systems [20,21], 

photovoltaic array [22,23] and hybrid electric vehicle [24-26]. 

This work aims to apply Reinforcement Learning algorithm to MFC system to realize MPPT 

control. Three kinds of Q-Learning-based MPPT (QLMPPT) were proposed for MFCs and the control 

effects were compared with those of MFCs with the conventional P/O algorithm and an improved P/O 

algorithm.  

The remainder of the paper was organized as follows. In Section 2, the mathematical formulation 

of the two-chamber MFC was introduced. A detailed implementation of QLMPPT was proposed in 

Section 3. Results and discussion were presented in Section 4. Conclusion and future research directions 
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were addressed in Section 5. 

 

2. MODELLING OF MICROBIAL FUEL CELL 

Modeling and simulation are effective ways to deeply understand the operation process and 

verify the effectiveness of optimal control schemes of MFC [27]. Electricity generation in MFCs has 

been modelled by a few researchers. Pinto et al proposed a two-population model describing the 

competition of anodophilic and methanogenic microbial populations for a common substrate in a single-

chamber MFC [28]. Picioreanu et al proposed a computational model for MFCs based on redox 

mediators with several populations of suspended and attached biofilm microorganisms and multiple 

dissolved chemical species [29]. Marcus et al developed a model describing the biofilm as a conductive 

solid matrix, which is based on that microbe can allow direct transfer of the electrode [30]. All the models 

discussed above so far are limited to the analysis of a single electrode (anode) of a MFC. It is important 

to develop coupled models that include the phenomena occurring at both anode and cathode. Esfandyari 

et al proposed a dynamic model for two-chamber batch MFC with pure culture of Shewanella based on 

the direct transfer of electron, which was described based on Marcus‘s model [31]. Zeng et al developed 

a model to simulate both steady and dynamic behavior of a two-chamber continuous MFC by integrating 

biochemical reactions, Butler–Volmer expressions and mass/charge balances [32]. Zeng's model, which 

includes key physical quantities such as voltage, power density and fuel concentration, is a 

comprehensive model for the reaction process of MFCs. therefore, this model was used to describe MFCs 

in this research. 

In the anode compartment, acetate is oxidized under anoxic conditions by the reaction of an eight-

electron transfer which can be described as: 

 

( )2 2 22
CH O 2H O 2CO 8H 8e+ −+ → + +                                                 (1) 

 

In the cathode compartment, the reduction of dissolved oxygen can be described as: 

 

2 2O 4e 2H O 4OH− −+ + →                                                           (2) 

The reaction rates of the anode and cathode chamber can be described by Butler-Volmer 

expression as: 
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where F denotes the Faraday constant; R denotes the gas constant; T denotes the operating 

temperature; CAC denotes the concentrations of acetate in the anode compartment; X denotes the 

concentrations of biomass in the anode compartment; 
2OC  denotes the iissoleed xxygen Dix  
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concentration in the cathode compartment; ηa and ηc are the anodic oeer potential and the cathodic oeer 

potential, respectieely; α and β are the charge transfer coefficients of the anodic reaction and the cathodic 

reaction, respectieely; 0

1k and 0

2k  are the rate constants of the anodic reaction and the cathodic reaction 

at standard conditions; KAC is the half eelocity rate constant for acetate; 
2OK is the half eelocity rate 

constant for ix. 

Assuming both the anode chamber and the cathode chamber can be regarded as continuous 

stirring tank reactors (CSTRs), the mass balance equations of the four components (acetate, dissolved 

CO2, hydrogen ion and biomass) in the anode can be described as: 
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The mass balance equations in the cathode can be described as: 
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where NM is the flux of M+ ions transferred from the anode chamber to cathode chamber through 

the proton exchange membrane, which can be derived by: 

 

c
M

f3600
=

i
N

F
                                                                  (12) 

 

The charge balance equations at the anode and cathode can be described as: 
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In the aboee equation, the subscripts ‘a’, ‘c’, and ‘in’ stand for the anode, the cathode and the 

feed flow, respectively; V denotes the volume of the reaction chamber; Q denotes the feed flow rate; Am 

is the cross-section area of membrane; fx denotes the reciprocal of the wash-out fraction; Yac denotes the 

bacterial yield; Kdec denotes the decay constant for acetate utilizers; CM denotes the concentration of M+ 

ions, and ifc denotes the current density. 

Ignoring the ohmic drops in the current collectors and electric connections, the internal resistance 

of MFC is only related to the membrane and the solution, then the output voltage Ufc of MFC can be 

expressed as: 

afc fc

m
0 cell

a c m q
 

 
= − + − + 

 

dd
U U i

k k
                                                 (15) 

Based on the above mathematical model of MFC, a simulation model of a dual-chamber MFC 

was established in MATLAB/Simulink, which can be used to simulate the operating state of MFCs under 

various conditions. The main parameters of the MFC model used in this work are shown in Table 1, 

which were derived from Zeng's model. 

The output power of MFC varies with the reaction conditions. However, many studies have found 

that no matter how the reaction conditions change, there is always a peak point on the power curve of 

MFC, and the peak point is the maximum power point. As shown in Figure 1, the maximum power point 

of MFC which was used in this experiment was about 2.1 mW·m-2. According to the relevant circuit 

knowledge, this maximum power point can be achieved when the external resistance is equal to the 

internal resistance. When the internal and external resistances are not equal, MFC will lead to about 50% 

energy loss [33, 34]. So, MPPT is one of the best techniques to dynamically extract maximum possible 

power from MFC and decrease energy loss. 

 

 

Figure 1. Power density varying with external resistance 
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Table 1. Parameters of MFC model 

 

Symbol Description Unit Value 

F Faraday’s constant C·mol-1 96485.4 

R Gas constant J·mol-1·K-1 8.3144 

T Temperature K 303 

km Electrical conductivity of membrane Ω-1·m-1 17 

dm Thickness of membrane m 1.778×10-4 

kaq Electrical conductivity of the aqueous solution  Ω-1·m-1 5 

dcell Distance between anode and cathode in the cell m 2.2×10-2 

Ca Capacitance of anode F·m-2 4×102 

Cc Capacitance of cathode F·m-2 5×102 

Va Volume of anode compartment m3 5.5×10-5 

Vc Volume of cathode compartment m3 5.5×10-5 

Am Area of membrane m2 5×10-4 

Yac Bacterial yield Dimensionle

ss 

0.05 

Kdec Decay constant for acetate utilizers h-1 8.33×10-4 

fx Reciprocal of wash-out fraction Dimensionle

ss 

10 

Qa Flow rate of fuel feed to anode m3·h-1 2.25×10-5 

Qc Flow rate feeding to cathode compartment m3·h-1 1.11×10-3 

C
in 

AC Concentration of acetate in the influent of anode compartment mol·m-3 1.56 

C
in 

CO2 Concentration of CO2 in the influent of anode compartment mol·m-3 0 

Xin Concentration of bacteria in the influent of anode compartment mol·m-3 0 

C
in 

H  Concentration of H+ in the influent of anode compartment mol·m-3 0 

C
in 

O2 Concentration of dissolved O2 in the influent of cathode 

compartment 

mol·m-3 0.3125 

C
in 

M Concentration of M+ in the influent of cathode compartment mol·m-3 0 

C
in 

OH Concentration of OH- in the influent of cathode compartment mol·m-3 0 

U0 Cell open circuit potential V 0.77 
0

1k  Forward rate constant of anode reaction at standard condition  mol·m-2·h-1 0.207 
0

2k  Forward rate constant of cathode reaction at standard condition mol·m-4·h-1 3.288×10-5 

KAC Half velocity rate for acetate mol·m-2 0.592 

2OK  Half velocity rate for dissolved oxygen mol·m-2 0.004 

α Charge transfer coefficient of anode Dimensionle

ss 

0.051 

β Charge transfer coefficient of cathode Dimensionle

ss 

0.063 

 

3. REINFORCEMENT LEARNING-BASED MPPT 

3.1 Introduction of Q-Learning 

Reinforcement Learning is a machine learning method to understand and automate goal-directed 

learning and decision making. Reinforcement Learning was designed to infer closed-loop policies for 
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stochastic optimal control problems from a sample of trajectories gathered from interaction with the real 

system or from simulations [35]. Generally, a basic Reinforcement Learning architecture is composed 

of two essential elements: an agent and an environment. The optimized controller called as agent is not 

told which actions a to take, but instead must discover which actions yield the most reward r in the future 

by directly interacting with the current state s of the controlled object called as environment. Expectation 

of total reward is defined by an action-value function Q(s,a), which estimates how good it is for the 

agent to perform a given action a in a given state s. 

Q-Learning is one of the most popular algorithms that perform Reinforcement Learning, and it 

is a typical model independent algorithm. The core of the Q-Learning algorithm is a value iteration 

update of the value function. Under the Q-Learning algorithm, the goal is to achieve the goal state and 

obtain the highest income. Once the goal state is reached, the final income remains unchanged. The Q-

value for each state-action pair is initially chosen by the designer and later, it is updated each time an 

action is executed and a reward is received, based on the following expression: 

( ) ( ) ( ) ( )1, = , max , ,k k k ka k kk kQ s a Q s a r Q s a Q s a  ++ + −                                  (16) 

where, rk is the reward given at time t, γ is the discount factor determining the current reward to 

be received in the future updates, α is the learning rate which is selected by a tradeoff between speed and 

coverage. At each episode of update, the agent observes the current state sk and select an action at 

according to the policy. Then the subsequent state st+1 is observed with a reward rk given by the 

environment, the current action-value function Q(sk, ak) and the maximum value maxaQ(sk+1,a) of the 

next state sk+1 will be used to update the Q function according to Equation (16). 

The state, which describes the conditions of the system, is critical to the performance of Q-Learning. 

 

3.2 Parameters of Q-Learning 

3.2.1. State Space 

Only if the state space S, action list A and reward function r=f(sk, ak sk+1,) are all well set, the Q 

learning algorithm can make MFC track the MPP accurately and quickly. When defining a state space, 

many aspects need to be considered. Considering that electrical signals are easy to measure, voltage and 

current of MFC are used as states. However, a continuous state space is usually difficult to handle. On 

the other hand, too sparse state space may lead to misjudgment of state, resulting in insufficient decision-

making capabilities, oscillations between states, and non-optimal policies. Therefore, the voltage and 

current were normalized by using open circuit voltage and short circuit current. The voltage was 

discretized into 6 states between 0 to 0.6 V with equal interval. To improve the tracking speed, when the 

current is less than or equal to 4 mA, all are set to one state, and current which is more than 4 mA and 

less than 12 mA will be discretized into 9 states with equal interval. 

 

3.2.2. Action List 

Boost converter was used to adjust the equivalent resistor of the external resistance to affect the 

produced power. Therefore, duty cycle increment was selected as actions. Actions varied between 0 and 

1 according to the duty cycle. To keep the proposed method efficient, the action list contained 3 actions. 
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The initialized table Q(s,a) has zero action-values. The first action is executed by default. As long as the 

first action is positive, the output duty cycle will increase all the time without oscillation, so the tracking 

speed will be accelerated. Positive and negative increment are needed to ensure the algorithm can track 

in different direction. After finding the MPP, a zero increment is needed to avoid oscillation in states. 

Since the power density is low when the MFC is started, a positive increment of duty cycle is 

required to ensure that the operating point will move towards the MPP, so the first one of the action list 

is set to a positive value. With an original blank action value table that all Q(s,a) at state s was equal to 

0, the algorithm chose the first index of actions, and made a increment of duty cycle. It can make the 

tracing process move in the same direction with no need to explore all the states with all the actions. 

Besides, according to Figure.1, there is only one MPP of an MFC, so this setting can save a lot of time 

without lose the accuracy. Therefore, the actions list was defined as: A = [0.1 -0.1 0]. 

 

3.2.3. Reward Function  

For each applied action, the system reacts and performs a state transition to generate a response 

that is monitored as a return to the environment. Rewards are needed to include positive and negative 

value to ensure that the impact of the action is always proportional to the power change. When power 

increment is positive, the corresponding reward is positive; on the contrary, when the power increment 

is negative, the corresponding reward is negative. When the MFC is stable at the MPP, the reward 

becomes zero because the power change is neither positive nor negative. The reward was defined as: 

2

2

*10    0.0005 mW m

0               0.0005 mW m  

P P
r

P

−

−

    
= 

  
                                             (17) 

Finally, the parameters used to update Equation (16) need to be selected. Here α is set to 0.001, 

and γ is set to 1. Figure 2 shows the flowchart of the proposed algorithm. 

 
Figure 2. Flowchart of the proposed algorithm 
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3.3 Structure of Control System 

Based on the proposed Q-Learning algorithm, a maximum power tracking control system of 

MFC was constructed, as shown in Figure 3. 

 

 

Figure 3. Scheme of the QLMPPT Control system of MFC 

 

3.4 Convergence of the Learning Algorithm 

The convergence of the Q-Learning algorithm has been proved by Watkins [36]. Here the MFC 

system was analyzed to illustrate the effectiveness of this algorithm. The MFC is a deterministic system, 

which means that when the controller executed action a(k) in the state s(k), it would move to the state 

s(k+1) and receive a reward r(k) from the environment definitely. This whole process would not be 

random. Therefore, for an MFC with a single maximum power point, when the controller succeeded to 

explore the maximum power at the first time, assuming that this state was s, no matter the controller 

executed action a1(a1=0.1) or action a2 (a2= -0.1), a negative reward would be given. Only if the 

controller executed action a3 (a3=0), a zero reward would be given. When the controller explored all the 

actions in state s and then returned to state s again, it would only executed action (0) and kept stable at 

this state s, which was also the maximum power. 

 

4. SIMULATION AND VERIFICATION 

To evaluate the effects of the proposed QLMPPT control method, simulations of MFC system 

with seeeral different operating conditions were performed in MATLAB. ε-greedy, greedy policy and 

Boltzmann methods were respectively used to select action in the Q-Learning. 

 

4.1 MPPT Control Based on P/O and Improved P/O 

The proposed Q-Learning based controllers were compared with the conventional MPPT method 

based on P x. In coneentional P x, each duty cycle change was fixed and equal to a predetermined offset 
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Δd. The direction of duty cycle change depends on the sign of power increment. iue to the influence of 

process dynamics, it is important to wait for a steady state after each duty cycle change. The flowchart 

of the P/O algorithm was presented in Figure 4. 

 

Figure 4. Flowchart of the P/O algorithm 

 

In the simulation experiments, the MFC system was started with a fixed duty cycle of  . . After 

running for 2  hours, MFC completed the startup process and the MPPT algorithm began to work. A 

load with a resistance of     Ω was linked to the Boost coneerter, and the load changes to      Ω at     

h. The sampling time of current and eoltage was set to 2  hours, and the calculation period of the 

algorithm was also set to 2  hours. 

Figure   shows the power density curee of MFC with coneentional P x algorithm. MFC was 

started up with starting duty cycle, which was set at  .  . After    hours, the P x algorithm began to 

work. iue to the large dynamic progress of MFC, the MPP was reached after     hours, the steady 

power density was about 2.  m ·m 2. Large oscillation can be seen in the curee. This is because a fixed 

duty cycle and large duty cycle change were used in the P x algorithm. After sudden change of load 

resistance at     h, the P x algorithm cannot track the MPP again thus the produced power density 

oscillated at  .  m ·m 2. 

In eiew of the aboee problems, an improeed P x algorithm was proposed, the flowchart of the 

improeed P x algorithm was shown in Figure   and the power density curee of MFC with the improeed 

P x algorithm was shown in Figure 7. The setting of the simulation was same as the P x algorithm until 

the oscillation occurred. After the oscillation was detected, the step size of the duty cycle was decreased 

following with a logarithmic function. After 4   hours’ back and forth settlement, MPP was reached 

without any oscillation, which means that the improeed P x algorithm can greatly improee the stability 

of power tracking. Howeeer, when the load changed, the improeed P x algorithm made the output power 

density of MFC stable at another point rather than its actual MPP, which means that the P x algorithm 

failed to track the actual maximum power point when the load changed. 
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Figure 5. Power density curee of MFC with general P x algorithm 

 

 
Figure 6. Flowchart of the improeed P x algorithm 

 

4.2 MPPT Control Based on Q-Learning 

MPPT based on Q-Learning was then implemented in the MFC system. Besides the greedy 

policy, two other types of action selection policies based on Boltzmann exploration and ε-greedy 

exploration were still used in MPPT so as to find the more appropriate approach. 
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Figure 7. Power density curee of MFC with improeed P x algorithm 

 

4.2.1. MPPT Based on Q-Le  ning wi h ε-greedy Exploration 

ε-greedy exploration is the most widely used exploration method in reinforcement learning. The 

power density curve of MFC with Q-Learning based on ε-greedy exploration was shown in Figure 8. In 

this method, a random number between   and   was generated. If this number was larger than ε which 

is also a number in (0,1), the action was selected randomly; otherwise, the action was selected using a 

greedy policy. In this way, it took about 350 h from starting the MFC to tracking to the MPP and 

stabilizing. When the load resistance changed at 800 h, it took about 400 h to re-track the MPP. However, 

the output power density could not keep stable at the MPP but fluctuated near the MPP. The main reason 

for this result is that a fixed ε Dε  .9  was used in this method, it still has probability to choose a random 

action even though the MFC has reached the MPP, so the output power density could not keep stable at 

the MPP. 

 

 

Figure 8. Power density curee of MFC with Q Learning based on ε greedy exploration 
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4.2.2. MPPT Based on Q-Learning with Boltzmann Exploration 

The power density curee of MFC with Q Learning based on Boltzmann exploration was shown 

in Figure 9. In this algorithm, an action   in a state   was chosen with a probability pD , i  according to 

the action ealue  D ,  i  as: 

( , )/

( , )/
( , )




=


i

i

i

Q s a

i Q s a

a

e
p s a

e
                                                        D    

where τ is a positive parameter which controls the randomness of the exploration. A higher τ 

makes the selection of action more random. Here we set τ to 0.05. 

 

 

Figure 9. Power density curee of MFC with Q Learning based on Boltzmann exploration 

 

It can be seen from Figure 9 that the Q Learning algorithm based on Boltzmann exploration made 

the MFC stable at the actual MPP after 4   h, which was longer than that of using ε greedy exploration. 

 hen suffer a sudden change of load resistance at     h, the method of Q Learning based on Boltzmann 

exploration made the MFC re stabilize at the MPP in about     h, which was faster and more stable than 

that of using the ε greedy exploration. For this method, to make the tracking faster, a relatieely smaller 

fixed parameter τ should be chosen, while less exploration may make a steady error. 

 

4.2.3. MPPT Based on Q-Learning with greedy policy Exploration 

The power density curve of MFC using greedy policy to choose action was shown in Figure 10. 

After the MFC was started, the algorithm adjusted the duty cycle in one direction as we expected. After 

exploring all the states with action a1 (a1=0.1), the sign of the change in duty cycle inversed and 

continued to update the state value table with action a2 (a2=-0.1). When the MPP was reached, both 

action a1 and action a2 made the reward negative, then action a3 (a3=0) was selected and the duty cycle 

remained constant so that the output power remained at the MPP.  

The whole process from startup to stabilization at MPP took about 200 h, which was 42.9% faster 

than that of MFC with Q-Learning based on ε-greedy exploration, and 50% faster than that of MFC with 
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Q-Learning based on Boltzmann exploration. When the load resistance changed at 800 h, the power 

density fluctuated greatly, which was because a sudden change of load resistance caused the algorithm 

to re-explore; but after a period of adjustment, the output power density could still return to the actual 

MPP and stabilized. It took about 160 h from the time the load disturbance occurred to the time the 

power density of MFC was stabilized at the MPP again, which was 11.1% faster than that of MFC with 

Q-Learning based on Boltzmann exploration. Compared with the method of Q-Learning based on ε-

greedy exploration and Q-Learning based on Boltzmann exploration, the method of Q-Learning based 

on greedy policy has faster response time and better stability. 

 

 

Figure 10. Power density curee of MFC with Q Learning based on greedy policy 

 

5. CONCLUSION 

The general P/O algorithm cannot track the MPP of MFC accurately but make the output power 

of MFC oscillate greatly near the MPP, and MPPT with general P/O algorithm cannot be retraced to the 

MPP in case of load change. The improved P/O algorithm can make MFC reach the MPP without 

oscillation after a period of adjustment, but it still cannot return to the actual MPP when encountering 

load disturbance. While the reinforcement learning algorithm can solve the problems existing in the P/O 

algorithm. The method of Q-Learning based on greedy policy or Boltzmann exploration can make the 

MFC stable at MPP with a short time even though a sudden change of load occurs. Considering the 

action selection policies of Q-Learning algorithms, greedy policy seems to be more suitable. The Q-

Learning algorithm based on the greedy policy can make the output power of MFC track to its MPP and 

keep stable at a faster speed and can also return to the actual MPP and stabilize at the fastest speed when 

encountering load disturbance. On the other hand, greedy algorithm does not have an adjustment 

parameter but the other two methods have, which also makes it more convenient and feasible. Therefore, 

Q-Learning algorithm based on greedy policy is an effective method to realize MPPT control in MFC 

system. 
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