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Remaining useful life (RUL) prediction is the core of prognostic and health management (PHM). 

Lithium-ion battery is an important power source in the new energy field. Predicting its RUL accurately 

has great significance to the development of new energy. Experiment shows, recovery phenomenon 

exists in the process of using lithium-ion battery and it will make a huge impact on the lithium-ion battery 

life. However, existing prediction method based on artificial intelligence can’t get the probability 

distribution function (PDF), and the PDF can reflect the uncertainty characteristics of the RUL, and can’t 

quantify the RUL prediction results. In view of this situation, based on statistical data-driven, this paper 

proposes a deterioration modeling and RUL prediction method that considers the effects of lithium-ion 

battery recovery phenomenon. Firstly, based on the definition of the first hitting time, a lithium-ion 

battery deterioration model considering the recovery effect is established. Then, considering the effect 

of recovery on the lithium-ion battery life, based on the lithium-ion battery deterioration model, the 

probability density functions of lithium-ion battery life and RUL under the influence of recovery are 

theoretically derived. Furthermore, the unknown parameters are estimated by maximum likelihood 

estimation method. Finally, using 18650 lithium-ion battery deterioration data and NASA public data 

set to prove the effectiveness of the method proposed in this paper. 
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1. INTRODUCTION 

Due to the development of new energy and the continuous exploration of human beings in the 

new energy field, electric vehicles (EV) are widely used in the daily life [1-3]. As the power resource of 

EV, lithium-ion batteries are the core of electric vehicle power systems. During the use of lithium-ion 
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batteries, their capability and health status will degenerate inevitably due to various operational factors 

[4]. During operation, some devices will undergo performance deterioration and eventually evolve into 

failure due to the combined effects of internal stress and the external environment. Such devices are 

generally referred to as random deterioration devices [5-9]. In practical applications, in the event of an 

accident resulting in the failure of a lithium-ion battery, the resulting property damage or even 

environmental damage is often immeasurable. For example, in April 2019, a Tesla Model S burned in 

Shanghai, China, directly causing the three nearby vehicles to burn together, causing a large amount of 

property damage. Therefore, for such random deterioration  device, if it can be in the early stage of its 

performance deterioration , especially when it has not caused any major hazard, according to the 

detecting information, people can timely discover the abnormality or quantitatively evaluate the health 

status of the device and predict the RUL of the device. According to RUL, it is important to determine 

the optimal timing for device maintenance, which has great significance for ensuring the operational 

safety, reliability and economy of the device.  

In recent years, with the continuous improvement of the reliability and safety requirements of 

key device, accurately estimating and predicting the probability of device failure in the future has 

become a hot issue for scholars all over the world [5, 7-9]. Engineering practice shows that PHM 

technology can reduce maintenance support costs, which is especially important in areas with high safety 

and reliability requirements such as new energy [10,11]. The core problem of PHM is the data obtained 

through state monitoring, predicting the RUL of the device, and determining the optimal maintenance 

timing of the device based on this information to achieve the lowest economic cost or the minimum 

device aging risk, and finally achieve state-based predictive maintenance and autonomous guarantee 

[12]. In this problem, predicting the RUL of the device through the state monitoring data of the device 

is the key to achieving health management. Scholars from various countries have given extensive 

attention to the study of RUL predictions and have made considerable progress in the past decade. In the 

literature [13] on PHM, Pecht proposed that the existing RUL prediction methods are divided into three 

categories: mechanism-based methods, data-driven methods, and fusion methods. Literature [14] 

proposed a fusion forecast method, which combines data-driven methods and fault physics methods to 

forecast the RUL of electronic device. This approach integrates advantages and overcomes the 

limitations of data-driven methods and fault physics methods, providing more accurate predictions. 

Literature [15] summarized the current research on data-driven methods. By analyzing the problems 

existing in the practical application of the on-board lithium-ion battery, the issues that need to be resolved 

in the future are determined. The existing research in literature [17] for most online RUL prediction was 

limited to the linear deterioration model. Under the framework of generalized nonlinear deterioration 

models with stochastic and deterministic parameters, a new RUL forecast method is proposed. Literature 

[18] described an enhanced particle filter (PF) method for predicting the lithium-ion battery RUL. Based 

on the enhanced PF, an online rolling bearing RUL prediction framework is designed, and a dynamic 

model of PF is constructed through a multi-stage autoregressive model. In literature [19], this paper 

develops a convex quadratic formula that combines the information in the degeneracy curve of the 

historical unit with the field sensing data of the operating unit to estimate the fault threshold of the 

specific unit at the site. By estimating the fault threshold of the operating unit more accurately in real 

time, the RUL can be predicted more accurately. Literature [20] proposed a comprehensive prediction 
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method to unify the time intervals of two health indicators (HI) types, battery equal discharge voltage 

and capacity difference series, and conduct direct and indirect RUL prediction for lithium-ion batteries. 

Literature [21] proposed a lithium-ion battery RUL forecast method by using ELM algorithm combined 

with improved PSO algorithm. Literature [22] used the heuristic Kalman algorithm (HKA) to optimize 

the input weights and biases of the ELM algorithm. The mean square error (MSE) obtained from the 

ELM is used as the cost function of the HKA algorithm, and the optimized particles in the HKA are used 

as the weights and biases of the ELM predictor. Literature [23] proposed a RUL forecast method based 

on random survival forest (RSF) to predict the reliability of lithium-ion battery. 

The lithium-ion battery data used in the experiments in the current literature are mostly obtained 

under continuous discharge. However, in daily life, lithium-ion batteries are non-continuous discharging. 

As using lithium-ion batteries, when the battery is in a pause state, the capacity recovery occurs. The 

lithium-ion battery recovery phenomenon can affect the life of lithium-ion batteries. Therefore, 

considering the lithium-ion battery recovery phenomenon for deterioration modeling, and further 

predicting lithium-ion battery RUL is an urgent problem to be solved. Literature [24] introduced a 

stochastic model of battery, which simulates the charge recovery phenomenon caused by lithium-ion 

battery discharge, and points out that the amount of charge recovered depends on the battery charge 

stage and the duration of the state of rest during discharge. Literature [25] highlighted the performance 

recovery phenomenon in the deterioration process of high-power lithium-ion batteries used in electric 

vehicles. However, neither the literature [24] nor the literature [25] deal with the prediction of the lithium-

ion battery RUL. Literature [26] proposed a new lithium-ion battery RUL forecast method by combining 

wavelet decomposition technique (WDT) and nonlinear autoregressive neural network (NARNN) 

model. However, this method can’t obtain the PDF and the PDF reflects the RUL uncertainty 

characteristics, and can’t quantify the uncertainty of the RUL forecast results. Therefore, this paper 

chooses to use the statistical data-driven method to forecast the lithium-ion battery RUL.  

The deterioration process of lithium-ion battery is a dynamic, complex and nonlinear 

electrochemical process [27]. When a lithium-ion battery is used, the capacity and RUL of the battery 

exhibit an irreversible tendency to gradually decrease over time. In addition, the lithium-ion battery 

capacity deterioration is accelerated in the late battery life, exhibiting nonlinear characteristics. 

Therefore, considering the influence of recovery phenomenon of lithium-ion battery and the lithium-ion 

battery deterioration nonlinear characteristics, a new lithium-ion battery RUL forecast method is 

proposed. The main contributions of this paper are as follows: 

(1) Based on the concept of FHT, considering the influence of recovery in modeling and adding the 

amount of recovery in the deterioration model, a nonlinear lithium-ion battery deterioration model 

considering the effect of recovery is proposed. 

(2) According to the lithium-ion battery deterioration model, the probability density functions of lithium-

ion battery life and RUL considering recovery effect is derived. 

(3) The lithium-ion battery deterioration experiment considering the recovery effect was designed, and 

the 18650 lithium-ion battery deterioration data required in the experimental part of this paper was 

obtained. 
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2. MODELING CONSIDERING RECOVERY PHENOMENON 

Based on the lithium-ion battery deterioration raw data, the lithium-ion battery RUL forecast 

problem under the influence of recovery phenomenon can be described by Fig 1. Where the abscissa is 

the number of cycles, and the ordinate is the amount of the lithium-ion battery deterioration  

( ) , 0X t t   as the cycle number increases.   is the failure threshold of the lithium battery and is 

generally determined by industry standards, reliability and accuracy requirements of the product. The 

value of   is generally 20%~30%. The curve in the Fig.1 is the lithium-ion battery deterioration path 

under the influence of recovery. T  is the failure time of the lithium-ion battery under the effect of 

recovery, that is, the life of the lithium-ion battery under the influence of recovery. The curve in the box 

is an enlarged view of the recovery process of the lithium-ion battery during the pause stage. 

 
Figure 1. Lithium-ion battery deterioration diagram considering recovery 

 

First hitting time, that is, the time required for the equipment deterioration to reach the failure 

threshold for the first time. Based on the concept of the FHT of the stochastic process [28], the life of 

the degraded device life T and the RUL kL  at time kt  are defined. The life T  and the RUL kL  at time 

kt can be expressed as 

  

 ( ) ( ) 0T inf t : X t X =      (1) 

 ( ) ( ) k k k k kL inf l : X l t X t= +   ω ω   (2) 

Where ( )0X  is the initial state of the lithium-ion battery, ( )kX t  is the amount of the lithium-

ion battery deterioration at time kt , and   is a pre-set threshold. 

 

 

 



Int. J. Electrochem. Sci., Vol. 15, 2020 

  

8678 

2.1 Modeling of lithium-ion battery deterioration process without considering recovery phenomenon 

The lithium-ion battery deterioration process is a nonlinear incremental process, which uses 

random process ( ) , 0X t t   to characterize the lithium-ion battery deterioration process. If the effect 

of the recovery process is not considered, through a deterioration process in which the deterioration path 

increases with time, the deterioration model of lithium-ion batteries at time t  is: 

 ( ) ( ) ( ) ( )
0

0 d
t

X t X ; B t    = + +   (3) 

Where ( );     is the nonlinear drift coefficient, if ( );     is a constant, then ( )X t  is linear 

deterioration  process.   is the diffusion coefficient. ( )B t  is the standard Brownian motion, and 

( ) ( )2~ 0,B t N  , used to characterize the random dynamics of the deterioration process [29].  

 

2.2 Modeling of lithium-ion battery deterioration process considering recovery phenomenon 

Considering the effect of the recovery process and using random process ( ) , 0Y t t   to 

characterize the lithium-ion battery deterioration process. Through a deterioration process in which the 

deterioration  path increases with time, the lithium-ion battery deterioration model at time t  is: 

 ( ) ( )Y t X t Z= +   (4) 

Where ( )Y t  is the total deterioration amount at the time t  , Z  is the total amount of recovery in 

the lithium-ion battery life cycle, and ( )2

1 1~ ,Z N   .  

 

 

3. RUL PREDICTION OF LITHIUM-ION BATTERY 

 

Based on the FHT concept, the PDF of deterioration device life T  and the RUL at the kt  time 

kL  are ( )Tf t  and ( )
kL kf l  . To solve the analytical expressions of ( )Tf t  and ( )

kL kf l , the following 

assumptions are given: 

Assumption 1. Based on equation (1), if the detecting device is operating normally at time t , the 

device does not have a failure event before time t . 

Assumption 2. If the potential deterioration process ( ) , 0X t t   reaches the failure threshold 

at t  time, the probability of ( ) , 0X t t   exceeds the failure threshold   before t  time is negligible. 

Based on Assumption 1 and Assumption 2, the conclusions are as follows: 

Theorem 1. [30] For the deterioration process described by equation (3), if ( );     is a 

continuous function of time t  at  )0, , based on Assumption 1 and Assumption 2, under the condition 

of given random parameters, the PDF of ( ) , 0X t t  exceeds failure threshold   can be expressed as: 

 ( )
( )

( )
( )2

1 1

22

B B

T

S t S t
f t t; exp

t tt
 



  
 + −  

   
  (5) 

Where ( ) ( )
0

1
= d

t

BS t ;     

 −
   . 
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3.1 RUL prediction of lithium-ion battery without considering recovery phenomenon 

The key to finding the lithium-ion battery life T  and the RUL kL  at time kt  is to derive the 

probability density function of T  and kL . Without considering the effect of lithium-ion battery recovery, 

according to Assumption 1, Assumption 2 and Theorem 1, the probability density functions of the 

lithium-ion battery life T  and the RUL kL  at time kt  are: 

 

( )
( ) ( ) ( )

( ) ( )

0

2 3

2

0

2

0 d + t t
=

2

0 d

2

t

T k

t

X ; ;
f t t

t

X ;

exp
t

 



      



    



− −


  − −    − 
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3.2 RUL prediction of lithium-ion battery considering recovery phenomenon 

Considering the effect of lithium-ion battery recovery, according to Assumption 1, Assumption 

2 and Theorem 1, the probability density functions of the lithium-ion battery life T  and the RUL kL  at 

time kt  are: 
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4. PARAMETER ESTIMATION 

In order to complete the estimation of the unknown parameters 
 ,

1
,

1
,  in the Equation (3) 

and Equation (4), it is assumed that there are N  devices under test, and the sampling time point of the 

n  th device under test is 
1 , ,n n

mt t , where m  represents the measured value of the n  th device, and

1, ,n N= . Therefore, based on the no recovery effect model the deterioration  path of the k  th sample 

point n

kt  of the n  th device can be written as follows: 

 ( ) ( ) ( ) ( )
0

0 d
ktn n n

k kY t X ; B t Z    = + + +   (10) 

Where 1, ,k m=  . Quote the intermediate variable ( ) ( )( ) 0n n n n n

k kR t X t X= −  , the specific 

implementation of ( )n n

kR t  is ( )n n

kr t , and the corresponding deterioration  data is 

 ( )= ( ), 1, , , 1, ,n n n n

k kR t r t n N k m= =  . So, the Equation (10) can be expressed as follows:  

 ( ) ( ) ( )
0

; d
n
ktn n n n

k kR t B t Z    = + +   (11) 

Further, let ( ), ,n n n

k mT t t


= , ( ) ( )( ), ,n n n n n

k mR r t r t


= , where ( )•  represents the transpose of a 

vector, and R  represents a collection of deterioration  data at this stage, consisting of , 1, ,nR n N= . 

According to the independent incremental properties of Equation (11) and the standard Brownian Motion 

(BM) process, it can be seen that 
nR  obeys the multidimensional normal distribution, and its covariance 

and mean are as follows: 

 ( ) 1;n n nT    = • +   (12) 

 2 2

1

n n

mQ I  = +   (13) 

Where  

 

1 1 1

1 2 2

1 2

n n n

n n n

n

n n n

m

t t t

t t t
Q

t t t

 
 
 =
 
 
  

  (14) 

And mI  is m -order identity matrix. 

Then, the log likelihood function of u ,  , 
1
 and 

1
corresponding to all test numbers R  is as 

follows:  
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 ( ) ( ) ( ) ( )
-1

1

1
ln ln 2 ln

2 2 2

N
n n n n n n

n

mN N
L R R  

=


= − −  − −  −   (15) 

Substituting the Equation (12), the Equation (13) and the Equation (14) into the Equation (15), 

by maximizing the Equation (15), the MATLAB multidimensional search method can be used to obtain 

 ,  , 
1
 and 

1
. The similar method of maximum likelihood estimation is detailed in the literature [31, 

32]. 

 

 

5. EXPERIMENTAL VERIFICATION 

 

In order to prove the the proposed method effective, this paper predicts the RUL of lithium-ion 

batteries by using the proposed method based on the 18650 lithium-ion battery deterioration 

experimental data and NASA public data.  

 

5.1 BTS battery detection system description 

The device for obtaining the 18650 lithium-ion battery data set used in this paper is the BTS 

battery detection system. The connection diagram of each part of the device is shown in Fig.2, and it 

consists of three parts. Part 1 is a host computer, which is to send commands to collect and store the 

acquired battery data collected by part 2 in real time. Part 2 is a lithium-ion battery detection device. Its 

role is to receive control commands from part 1 to control the charging and discharging of the channel. 

Moreover, it collects and transmits data such as current and voltage of the channel in real time. Part 3 

are lithium-ion batteries, the lithium-ion battery used in the experiment is Panasonic 18650B lithium-

ion battery, the specific parameters of the battery are shown in Table 1. 

 

 
 

 

Figure 2. The diagram of BTS battery detection system 
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Table 1. Lithium-ion battery details 

 

Items Specification 

Battery Type NCR18650B 

Capacity 3400 mAh 

Nominal Voltage 3.6 V 

Charging Voltage 4.2 V 

Discharging End Voltage 2.5 V 

Internal Resistance Less than 100 m  

Size 

Weight 

Length 65 mm; Diameter 18 mm 

Less than 48.5 g 

 

5.2 Lithium-ion battery deterioration process description 

In the use of lithium-ion batteries, there are roughly three states: charging state, discharging state 

and pausing state. When charging, the lithium-ion battery is first charging with constant current, and 

then charging with constant voltage. After the end of charging, the lithium-ion battery switches back and 

forth between the two states of discharging and pausing. The specific process used for lithium-ion battery 

can be found in literature [33]. As the lithium-ion battery deterioration cycle times number increases, 

the capacity of the lithium-ion battery gradually decreases. When the amount of the lithium-ion battery 

deterioration capacity reaches a preset failure threshold (20%~30%), it indicates that the lithium-ion 

battery has failed. If the lithium- ion battery does not meet the requirements for normal use, the lithium-

ion battery life is considered to be over. 

 

5.3 Acquisition of 18650 lithium-ion battery experimental data 

The data set used in the experiments in this paper is the deterioration data of 18650 lithium-ion 

battery. The flow chart of the deterioration data acquisition of lithium-ion battery is shown in Fig.3. The 

specific test procedure can be found in literature [33]. The specific experiment parameters of the 18650 

lithium-ion battery deterioration experiment are shown in Table 2. 

 

 

Table 2. The specific experiment parameters 

 

Items Specification 

Constant Current Charging Current 3.4 A (1 C) 

Charging End Voltage  4.2 V 

Constant Voltage Charging Voltage 4.2 V 

Charging End Current 0.34 A (0.1 C) 

Discharging Current 3.4 A (1 C) 

Discharging End Voltage 2.5 V 
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Figure 3. Flow chart of raw data acquisition of lithium-ion battery 

 

 

5.4 18650 lithium-ion battery deterioration data 

The lithium-ion battery deterioration data used in this experiment is the monitoring data of the 

same batch and same lithium-ion batteies at the same detection point. In the process of obtaining lithium-

ion battery deterioration data, the test environment (temperature, humidity, etc.) and lithium-ion battery 
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test time meet the test requirements, making the deterioration process relatively stable. The default 

failure threshold for lithium-ion battery deterioration is   = 0.2 (20%). When the lithium-ion battery 

capacity deterioration exceeds 20% of the rated capacity, it indicates that the lithium-ion battery has 

failed. In this paper, the first 200 data of two sets of deterioration data are used. Unit 1 is used to estimate 

parameters and Unit 2 is used for experimental verification. The specific deterioration path is shown in 

Fig.4. 

 

 

 
Figure 4. Deterioration  path of lithium battery (a) Deterioration  path is used to estimate parameters (b) 

Deterioration  path is used for experimental verification 

 

5.5 NASA public lithium-ion battery data 

The method proposed in this paper is applied to the lithium-ion battery data published by NASA's 

Ames Research Center [34], and the capacity deterioration of lithium-ion batteries is analyzed to prove 

the proposed method effective. The B18, B5, and B7 batteries were selected from the public data as the 

verification of the model and algorithm. This data set shows that 25% of the original capacity loss will 

cause the lithium-ion battery to lose its ability to provide the required power supply, so the failure 

threshold is set to 0.25. The original deterioration data is shown in Fig.5.  
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Figure 5. Deterioration path of lithium battery (NASA) 

 

5.6 Lithium-ion battery RUL prediction based on 18650 lithium-ion battery data 

As shown in Fig.4 (Unit 2), the lithium-ion batteries with recovery times of 2 min, 5 min, and 10 

min exceeded the failure threshold after 165, 184, and 187 cycles. Therefore, it can be considered that 

the life of the lithium-ion batteries having recovery time of 2 min, 5 min, and 10 min are 165, 184, and 

187 charge and discharge cycles. The method in [33] is defined as method 1, the method in [30] is 

defined as method 2, and the paper proposed method is defined as method 3. Three methods were used 

to forecast the lithium-ion battery RUL. The forecast results are shown in Table 3. From 60 cycles to 

120 cycles, one detection time point is set every 10 cycles, and there are 7 detection time points. The life 

PDF and RUL prediction values for each detection time are shown in Fig.6. According to Fig 6, the 

experimental results can be compared more intuitively and the experimental methods can be analyzed. 
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Figure 6. Comparison of RUL probability density estimation results by using three methods at each 

detection time based on three recovery time (a) Recovery time 2 min(method 1) (b) Recovery 

time 2 min(method 2) (c) Recovery time 2 min(method 3) (d) Recovery time 5 min(method 1) 

(e) Recovery time 5 min(method 2) (f) Recovery time 5 min(method 3) (g) Recovery time 10 

min(method 1) (h) Recovery time 10 min(method 2) (i) Recovery time 10 min(method 3) 

 

 

Table 3. Comparison of error between three prediction methods. (18650) 

 

Method 
Recovery 

Time/min  

Actual Life/ 

cycles 

Predictive   

Life/ cycles 

Absolute 

Error 

/cycles 

Relative 

Error 

Method 1 2 165 177 12 7.27% 

Method 2 2 165 144 21 12.7% 

Method 3 2 165 162 3 1.82% 

Method 1 5 184 199 15 8.15% 

Method 2 5 184 166 18 9.78% 

Method 3 5 184 175 9 4.81% 
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Method 1 10 187 161 26 13.9% 

Method 2 10 187 167 20 10.7% 

Method 3 10 187 191 4 2.14% 

 

5.7 Lithium-ion battery RUL prediction based on NASA public data 

It can be seen from the raw data shown in Fig 5 that the actual life of the three lithium-ion battery 

types of B18, B5 and B7 is 99 cycles, 126 cycles and 160 cycles. The method in literature [35] is defined 

as method 1, the method in literature [30] is defined as method 2, and the paper proposed method is 

defined as method 3. Three methods are used to forecast the lithium-ion battery RUL. The forecast 

results are shown in Table 4. 

 

Table 4. Comparison of error between three prediction methods. (NASA) 

 

Method 
Battery 

Type 

Actual Life/ 

cycles 

Predictive   

Life/ cycles 

Absolute 

Error 

/cycles 

Relative 

Error 

Method 1 B18 99 86 13 13.13% 

Method 2 B18 99 78 21 21.21% 

Method 3 B18 99 105 6 6.06% 

Method 1 B5 126 138 12 9.52% 

Method 2 B5 126 140 14 11.11% 

Method 3 B5 126 129 3 2.38% 

Method 1 B7 160 164 4 2.50% 

Method 2 B7 160 171 11 6.87% 

Method 3 B7 160 162 2 1.25% 

 

 

 

6. ERROR ANALYSIS 

In order to analyze the experimental results better, the experimental error of the experiments 

based on two data sets was analyzed to prove the proposed method effective. 
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6.1 RUL Prediction Error Analysis Based on 18650 Lithium-ion Battery 

Based on the 18650 lithium-ion battery deterioration data set, the RUL forecast error of the three 

methods at each detection time point is shown in Fig.7. The analysis error indicates that the error of 

using the method 1 and method 2 to forecast the lithium-ion battery RUL is bigger than the error of using 

the method 3 to forecast the lithium-ion battery RUL, indicating that the method 3 is more accurate for 

the RUL prediction.  

   

 

12

15

18

9 9

19

10

32

19

22
20

24

15

20

6

3
1

7
5

3

8

60 70 80 90 100 110 120

0

5

10

15

20

25

30

35

Detection Time/Cycles

2min

A
b

so
lu

te
 E

rr
o

r/
C

y
cl

es

 Method 1

 Method 2

 Method 3

(a)

17

13

15

29

11
12

5

23
22

15

23

26

22

26

12

9

4

11

9
8

4

60 70 80 90 100 110 120

0

5

10

15

20

25

30

5min

A
b

so
lu

te
 E

rr
o

r/
C

y
cl

es

Detection Time/Cycles

 Method 1

 Method 2

 Method 3

(b)



Int. J. Electrochem. Sci., Vol. 15, 2020 

  

8691 

  
Figure 7. Comparison of errors by using three methods at each detection time based on three recovery 

time (a) Recovery time 2 min errors (b) Recovery time 5 min errors (c) Recovery time 10 min 

errors 

 

6.2 RUL Prediction Error Analysis Based on NASA public data 

Based on the NASA public data set, the life prediction errors for the three lithium-ion battery 

types using three methods are shown in Fig.8. The analysis error shows that the error of using method 

1and method 2 is bigger than that of using method 3 to forecast the lithium-ion battery RUL, indicating 

that Method 3 is more accurate for RUL prediction. 

 
Figure 8. Comparison of errors by using three methods based on three lithium-ion battery types 
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7. CONCLUSION 

In this paper, the recovery phenomenon in the lithium-ion battery deterioration process is studied. 

The modeling of nonlinear deterioration process and the prediction of lithium-ion battery RUL are 

studied. A deterioration model considering the lithium-ion battery recovery effect and the forecast 

method of RUL are proposed. In this paper, the recovery phenomenon in the process of lithium-ion 

battery is analyzed. The deterioration modeling and RUL prediction method considering recovery are 

proposed. The effectiveness of the proposed method is proved by comparing the experimental results of 

two data sets. The main conclusions are as follows: 

(1) A nonlinear deterioration model is established, and the relevant RUL distribution is derived 

in the sense of FHT. It is found through analysis that if the drift coefficient is constant, it is a linear 

deterioration model, that is, the linear deterioration model and its first hitting time distribution are the 

model special cases used in this paper. Therefore, the model used in this paper is general. 

(2) In order to realize the parameter estimation of the deterioration model in this paper, 

considering that the real deterioration process is affected by recovery, this paper introduces the recovery 

influence on the observation data in the deterioration modeling and proposes a parameter estimation 

method considering recovery influence. 

(3) The lithium-ion battery RUL prediction this paper proposed method is applied to the 18650 

lithium-ion battery deterioration data set and NASA public data set. The experimental results prove the 

proposed method effective. 

In summary, this paper proposes a deterioration modeling and lithium-ion batteries RUL forecast 

method that consider recovery effects. Considering the effect of recovery, the deterioration experiment 

of lithium-ion battery was designed, and the deterioration data of lithium-ion battery considering the 

effect of recovery was obtained. The obtained data verified the proposed method effective. This paper 

can provide theoretical support for studying the lithium-ion battery recovery phenomenon in the field of 

electrochemistry, and help to study lithium-ion batteries better from the electrochemical direction, which 

has potential application value. 
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