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In recent years, the rapid development of the electric vehicle industry has led to the requirement of Li-

ion batteries (LIBs) with a higher energy density and better safety. Therefore, solid-state lithium batteries 

with the above advantages have attracted a lot of attention. However, solving the interfacial problem 

between cathodes and the solid-state electrolyte has become a major challenge in the practical 

application of solid-state lithium-ion batteries. In this article, ETPTA (trimethylolpropane ethoxylate 

triacrylate)-PEG (poly(ethylene glycol)) is introduced onto the surface of LiNi0.8Co0.1Mn0.1O2 cathode 

materials by ultraviolet irradiation. TEM and FTIR analyses reflect the existence of the composite 

coating layer. Electrochemical tests reveal that the coated material has better cycle stability (capacity 

retention remains 84% after 100 cycles), lower interfacial impedance and higher rate capabilities (34 

mA h g-1 at 2 C). These results reflect the fact that the coating layer plays a significant role in improving 

the interfacial contact between the cathode and solid-state electrolyte and suppressing surface side 

reactions. 
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1. INTRODUCTION 

Today, the massive consumption of fossil energy and the excessive emission of greenhouse gases 

has made our environment increasingly worse. According to statistics, nearly 25% of carbon dioxide 

emissions originate from vehicles running on fossil fuels.[1] To solve this problem, the electric vehicle 

industry is promoted throughout the world. Almost all electric vehicles currently rely on LIBs;[2] to 

achieve the requirements of an electric vehicle, LIBs must have a higher energy density, good rate 
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performance, excellent cycle stability and safety.[3] Replacement of the liquid electrolyte with a solid-

state electrolyte is proposed to meet these requirements. In comparison with the traditional liquid 

electrolyte, the solid-state electrolyte has a higher voltage platform and excellent safety performance; 

besides, the solid-state electrolyte can suppress the growth of lithium dendrites.[4-6] However, the 

utilization of the solid-state electrolyte also results in interfacial problems between the electrode and 

solid-state electrolyte, which has a strong impact on the performance of all-solid-state lithium batteries 

(ASSLBs).[7] Therefore, ameliorating interfacial problems is the key to promoting the 

commercialization of ASSLBs. 

Interfacial problems include two aspects, on one hand, because point contact is the major way in 

which contact is made between a cathode and solid-state electrolyte and also because a poor physical 

contact may occur at the interface during circulation, voids will be created between the cathode and 

solid-state electrolyte, resulting in increased interfacial resistance, which will greatly affect the 

performance of ASSLBs.[8] On the other hand, interfacial side reactions can occur at the interface.[9] A 

wide variety of research has noted that a sudden drop of electric potential (φ) across the interface between 

the cathode and solid-state electrolyte will promote side reactions; these side reactions will lead to the 

formation of insulating phases, structural changes in the cathode or decomposition of the solid-state 

electrolyte;[10,11] besides, these side reactions may consume lithium-ions, causing irreversible capacity 

loss.[12] 

LiNi1−x−yCoxMnyO2 (NCM) has attracted wide attention because of its low cost, high operating 

voltage, and high capacity.[13] However, when a Ni-rich NCM cathode directly contacts the solid-state 

electrolyte, the volume expansion/shrinkage of the cathode materials upon lithiation/delithiation can 

make the cathode lose contact with the solid-state electrolyte, which will cause an increase in interfacial 

resistance.[14] In addition, there is an abundance of Ni4+ ions and other metal ions on the surface of Ni-

rich NCM cathode materials, which may catalyse some side reactions,[15] causing decomposition of the 

solid-state electrolyte and the formation of insulating phases at the interface. For example, when using 

Li7La3Zr2O12 (LLZO) as the solid-state electrolyte, LLZO may release oxygen and lithium, which can 

react with NCM and form an insulating substance.[16] Therefore, it is very important to improve the 

interfacial problems.  

Surface coating is a promising strategy to resolve interfacial problems. Metal oxides (Al2O3, 

TiO2, MgO),[17-19] fluorides (CoF2, AlF3),[20,21] phosphates (AlPO4, Li3PO4),[22,23] the solid-state 

electrolyte (Li3xLa2/3-xTiO3, Li1.3Al0.3Ti1.7(PO4)3) and conducting polymers (PEO, PANI) have been 

generally introduced onto the surface of NCM to suppress interfacial side reactions and ameliorate 

structural stability.[24-27] For example, Choi coated NCM with Li1+xAlxTi2-x(PO4)3 (LATP) to improve 

the lithium-ion conductivity at the interface and protect the cathode from electrolyte attack. After 

coating, the discharge capacity at 0.1 C increased by approximately 12 mA h g-1; furthermore, the 

capacity retention remained at 98% after 100 cycles.[28] Zhang used a Li3xLa2/3-xTiO3 (LLTO) coating 

layer to protect the cathode from being corroded by the electrolyte; the initial coulombic efficiency 

reached 86.3% with a 7 wt % LLTO coating.[29] Except for inorganic solid-state electrolytes, 

researchers have also coated NCM with a polymer solid-state electrolyte; for example, Wang coated 

LiNi0.6Mn0.2Co0.2O2 (NCM622) with poly(acrylonitrile-co-butadiene) to improve the physical contact 

and electrochemical properties. The coated NCM showed an excellent rate performance; the coated 
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NCM showed a discharge capacity of 3 C at 99 mA h g-1 and still worked at 5 C. In addition, the capacity 

retention of the coated cathode can reached 75% after 400 cycles at 2 C.[30] 

In this paper, we coated NCM with a combination of ETPTA and PEG (2000). Figure 1 shows 

how the coating layer can improve the interfacial problem between LiNi0.8Co0.1Mn0.1O2 and the solid-

state electrolyte. On one hand, how the coating layer can improve the physical contact at the interface 

due to its softness, which turns a point contact into a surface contact. On the other hand, the coating layer 

can also suppress interfacial reaction to maintain a low resistance, which has a strong impact on cycle 

performance. In the composite coating layer, the C=O and –C-O groups in ETPTA can help accelerate 

the diffusion of Li+, and also, PEG is a good ionic conductor for the polymer. After coating, the NCM 

cathode material exhibits a favourable electrochemical performance with a better cycling stability (84% 

for coated NCM material, 64% for NCM material), lower impedance and improved rate capability (34 

mA h g-1 at 2 C). 

 

 
Figure 1. Schematic illustration of interfacial problems and the coating layer to improve the interfacial 

problem. 

 

 

 

2. EXPERIMENTAL SECTION 

The pristine material LiNi0.8Co0.1Mn0.1O2 was purchased from Beijing Easpring Material 

Technology Ltd. Trimethylolpropane ethoxylate triacrylate (ETPTA) and 2-Hydroxy-2-

methylpropiophenone (HMPP) was purchased from Aladdin, and PEG (2000) was purchased from 

Beijing J&K Scientific Ltd. 

First, 0.084 g ETPTA and 0.036 g PEG were dissolved in 20 ml 1-methyl-2-pyrrolidinone (NMP) 

and vigorously stirred for 2 h. Then, 2 g NCM powders and 2 wt % HMPP (related to weight of ETPTA) 

were added to the solution and vigorously stirred for 6 h to ensure an even dispersion. The solution was 

then stirred for 2 h under ultraviolet irradiation to obtain the coating layer. Finally, the powders were 

obtained by vacuum distillation and dried in vacuum for 12 h at 80 ºC.  

The morphology and appearance of the samples were investigated by scanning electron 

microscopy (SEM, Quanta 650 FEG) with an accelerating voltage of 20 kV. The interface situation for 

the samples was characterized using transmission electron microscopy (TEM,Tecnai G2 Spirit TWIN). 

The X-ray diffraction (XRD) patterns were measured with Cu Kα radiation at a scan speed of 4°min-1. 
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Fourier transform infrared (FTIR) absorption spectra were recorded in the wavenumber range of 500-

4000 cm−1 using an FTIR microspectroscopy (Frontier Mid-IR FTIR).  

The electrochemical properties were evaluated with CR2040 coin cells assembled in an argon-

filled glovebox (H2O, O2 < 0.1 ppm). All of the experiments were carried out in all-solid-state cells using 

metallic lithium as the anode, the NCM@ETPTA-PEG material and NCM material as the cathode, and 

the PDOL gel electrolyte as the separator and the solid-state electrolyte. The cathode was synthesized 

by coating a mixture of the active material, super P and polyvinylidene fluoride (PVdF) binder (8:1:1 in 

weight) in N-methylpyrrolidone (NMP) solvent on Al foil. Then, the working electrodes were dried 

under vacuum for 12 h at 120 ºC. The active mass loading was approximately 2 mg cm-2. The cells were 

tested in the voltage range of 2.5-4.3 V versus Li+/Li using a battery testing system (Land CT2001A, 

China). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed 

using an electrochemical workstation (CHI660E). All the tests were conducted under room temperature. 

 

 

 

3. RESULT AND DISCUSSION 

3.1 Structure and composition 

 

 
 

Figure 2. SEM images of (a,b) NCM, (c,d) NCM@ETPTA-PEG samples. 

 

The morphology and appearance of the samples were investigated using SEM measurement. 

Figure 2a-d shows SEM images of the pristine NCM and NCM@ETPTA-PEG particles with a diameter 
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of approximately 12 µm. As observed from Figure 2b,d, the pristine NCM and polymer-coated NCM 

particles were spherical particles consisting of small primary particles, which means that the coating 

layer did not change the morphology of the pristine material. Compared with the pristine NCM powder, 

it can be observed in Figure 2c that the surface of NCM@ETPTA−PEG was covered with a continuous 

film. The existence of a coating layer on the surface of the material was determined by TEM. As shown 

in Figure 3b, the NCM material is covered with a ETPTA-PEG coating layer, and the thickness of the 

coating layer is approximately 20-25 nm. By comparison with the pristine NCM material, no lattice 

fringes for ETPTA-PEG were observed, which indicates that the ETPTA-PEG coating layer was 

amorphous. 

 

 

 
 

Figure 3. TEM images of (a) NCM, (b) NCM@ETPTA-PEG samples. 

 

 
Figure 4. XRD patterns for the NCM and NCM@ETPTA-PEG samples. 
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The crystal structures of pristine NCM and NCM@ETPTA-PEG were compared using XRD. As 

observed from Figure 4, the XRD patterns of both samples are all well in accordance with a hexagonal 

α-NaFeO2 layered structure (R3/m) without the presence of impurities. The clear splitting of the 

(006)/(102) and (108)/(110) peaks indicate that the samples exhibit a well-ordered crystal structure.[31] 

In addition, it has been demonstrated that NCM has low cation disorder when the value of I(003)/I(104) 

> 1.20;[32] in this work, the NCM sample had an I(003)/I(104) value of 1.40, which reflects the fact that 

the NCM material has a low cation mixed effect. The comparison shown in Figure 4 indicates there are 

no new diffraction peaks exhibit in the pattern measured for NCM@ETPTA-PEG, which means that the 

ETPTA-PEG coating layer is amorphous. These results confirm that the surface treatment of NCM with 

ETPTA-PEG has no obvious effect on the crystal structure of pristine NCM material. 

 
 

Figure 5. FTIR spectra for the (a) ETPTA, (b) PEG, (c) NCM, (d)NCM@ETPTA-PEG samples. 

 

 

FTIR was applied to confirm the presence of the ETPTA-PEG coating layer on the surface of 

NCM. Figure 5 displays the FTIR results for (a) ETPTA, (b) PEG, (c) NCM, (d) NCM@ETPTA-PEG. 

Compared with ETPTA monomers, the peak at 1731 cm-1 and the disappearance of the C=C stretching 

vibration (in the range of 1610-1680 cm-1) in the spectra for NCM@ETPTA-PEG confirm monomers 

complete polymeriziation and the existence of ETPTA.[33] In addition, the typical peaks at 1120 cm-1 

can be attributed to the stretching vibration of -C-O in O=C-O groups. According to a previous report, -

C-O and C=O groups can help accelerate the diffusion of Li+.[34] The stretching vibration of 

−CH2−−CH2− and the stretching vibration of OH− in PEG are confirmed by the observation of peaks 
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located at 1486 cm−1, 2890 cm−1, and 3423 cm−1. These results demonstrated that the NCM material was 

coated by ETPTA−PEG polymers (the FTIR spectra for NCM and NCM@ETPTA-PEG is also shown 

in Figure S1). 

 

3.2 Electrochemical properties 

 

 
 

Figure 6. CV profiles for (a) NCM and (c) NCM@ETPTA-PEG; (b) and (d) are the corresponding linear 

fitting  

 

 

To study the electrochemical performance and lithium transfer kinetics, cyclic voltammetry (CV) 
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peak is related to the reversibility of the cyclic process;[35] the ∆V values for NCM and NCM@ETPTA-

PEG were 6.28×10-3 V and 2.77×10-3 V, respectively. The low ∆V for NCM@ETPTA-PEG indicates 

that the coating layer can reduce the polarization of NCM. Figure 6a,c shows the CV for NCM and 
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NCM@ETPTA-PEG at different scan rates. The CV profiles at different scan rates can be used to obtain 

the diffusion coefficients for Li+ by using the Randles–Sevcik equation:[36] 

2

1

2

1

2

3

51069.2 CADnI p =  

where Ip is the peak current intensity (A) of the CV profiles, n is the number of electrons involved 

in the redox reactions, D is the diffusion coefficient of the lithium ions (cm2 S−1), C (C=n/Na/V) is the 

concentration of lithium ions in NCM material (mol cm−3), and ν is the scan rate (V s−1). 

The linear relationships between Ip (A) and the square root of ν (V s−1) is shown in Figure 6c,d 

(the form in the profiles of the corresponding linear fitting curves is shown in Figure S2) and the Li+ 

diffusion coefficients for NCM and NCM@ETPTA-PEG are calculated to be 9.352×10-10 and 9.861×10-

10, respectively, with little difference in Li+ diffusion. The possible reasons for the improved diffusion 

coefficients can be ascribed to the suppression of surface side reactions and improved physical contact 

due to the use of the coating layer. The result from the CV test indicated that the ETPTA-PEG coating 

layer has a positive impact on enhancing the electrochemical performance of the NCM material. 
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Figure 7. Charge/discharge profiles for (a) NCM and (b) NCM@ETPTA-PEG. The dQ/dV profiles for 

(c,e) NCM and (d,f) NCM@ETPTA-PEG in the first twenty cycles. Redox peaks for (g) NCM 

and (h) NCM@ETPTA-PEG in the first twenty cycles. 
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potential of the NCM@ETPTA-PEG cathode decreases from 3.94 V to 3.75 V during the first to 

twentieth cycle. For the trends of the reduction potentials for NCM and NCM@ETPTA-PEG during the 

cyclic process, although there is no obvious difference between them, the reduction potential of the 

coated material is higher than that of the uncoated material. The reduction potential of NCM@ETPTA-

PEG and pristine NCM was 3.71 V and 3.66 V, respectively. The difference in the redox potential of 

NCM and NCM@ETPTA-PEG reveals the change in the voltage polarization during the cycles, which 

can indicate that the ETPTA-PEG coating layer can contribute to the decrease in polarization and 

maintain it at a low level; these results are in accordance with the CV tests. 

 

 
 

Figure 8. (a)Cycle performance of NCM and NCM@ETPTA-PEG under 0.2C. Rate performance of (b) 

NCM and NCM@ETPTA-PEG at different current densities. 
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from 128.4 mA h g−1 to 34.2 mA h g−1. The significant improvement in the rate performance suggests 

that the ETPTA-PEG coating layer can accelerate Li-ion diffusion and maintain structure stability, which 

is in accordance with the previous discussion. 
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Figure 9. EIS plots for the (a) NCM and (b) NCM@ETPTA-PEG electrodes. 
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mA h g−1 at 1 C, 34.2 mA h g−1 at 2 C) than pristine NCM material. These results illustrate the fact that 

the composite coating layer helps suppress surface side reactions and improves physical contact at the 

interface. Therefore, the simple strategy of surface modification presented in this work may be a 

promising strategy to enhance the electrochemical performance of Ni-rich cathode materials, which can 

promote the practical application of solid-state lithium batteries. 
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