
 

Int. J. Electrochem. Sci., 15(2020) 5682 – 5697, doi: 10.20964/2020.06.09 

 

International Journal of 

ELECTROCHEMICAL 
SCIENCE 

www.electrochemsci.org 

 

 

Steady-State Substrate and Product Concentrations for Non-

Michaelis-Menten Kinetics in an Amperometric Biosensor –

Hyperbolic Function and PadéApproximants Method 

 
Karuppusamy Nirmala1, Balu Manimegalai2, Lakshmanan Rajendran2,* 

1 Department of Mathematics, Kalasalingam Academy of Research and Education, Srivilliputhur-

626126, Tamilnadu 
2 Department of Mathematics, AMET Deemed to be University, Kanathur, Chennai-603112. 
*E-mail: raj_sms@rediffmail.com 
 

Received: 27 January 2020/  Accepted: 30 March 2020  /  Published: 10 May 2020 

 

 

A theoretical model is presented for an amperometric biosensor with inhibition of the substrate. This 

model is based on the non-stationary diffusion equations  which contains a non-linear term connected 

to the enzymatic reaction of non-Michaelis-Menten kinetics. This paper describes the analytical 

representation of concentrations for steady-state conditions and for all parameter values. Hyperbolic 

function and Padé approximants method are used to evaluate the analytical expressions of 

concentration of   substrate, product, substrate flux and current. A comparison of our estimated 

analytical results with the numerical simulation and previous analytical results available is provided. 

This observed a good agreement. 
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1. INTRODUCTION 

Biosensors are analytical instruments that closely combine elements of biorecognition and a 

physical transducer to detect target compounds. An amperometric biosensor is a tool used in a solution 

to measure the concentration of a specific particular chemical or biochemical substances [1-7]. In 

biosensor, many enzymes are inhibited by their substrates. In the literature, the theoretical model has 

been widely applied as an essential tool to study and optimize the analytical characteristics of 

biosensors. Practical biosensors contain a multilayer enzyme membrane; Exploratory monolayer 

membrane-containing biosensors are widely used to study the biochemical behavior of biosensors. The 

inhibition of substrates is often considered a biochemical oddity and experimental annoyance.  
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To reduce the biosensor properties, the biosensor model was constructed with a substrate and 

product inhibition. Visuvasam et al. [8] discussed the non-steady state model of a biosensor based on 

microdisk enzymes where the enzyme reacts directly to the electrode itself and is based on a diffusion 

equation containing a non-linear term related to the enzymatic reaction kinetics of Michaelis-Menten. 

Dong et al. [9] and Lyons et al. [10] reported analytical expression for the steady-state current at a 

chemical sensor with a microdisk. The current at a microdisk biosensor where an enzyme is present in 

bulk solution has been described by Galceran and coworkers [11]. But there was no reported model for 

immobilized enzymes on the microdisk. Kirthiga et al. [12] discussed non-linear reaction-diffusion 

equations in a mono-enzymatic biosensor that includes a Michaelis – Menten kinetics equation.Rasi et 

al.[13] presented the estimated analytical expressions for the steady-state substrate and co-substrate 

concentration of different enzyme kinetics over amperometric biosensors. Manimozhi et al.[14] used 

the homotopy perturbation method (HPM) and the variational iteration method (VIM) to find a steady-

state substrate concentrations.Already the analytical expression for steady-state concentrations of 

substrate and product with substrate inhibition using the Adomian decomposition method was 

discussed by Anitha et al. [15]. Senthamarai et al. [16] evaluated  the non-steady state substrate 

concentration in the action of biosensor at mixed enzyme kinetics. In this paper, for all values of 

reaction/diffusion parameters, we have derived an analytical expression corresponding to the steady-

state concentrations of substrate, product, and current using the Hyperbolic function method, and Padé 

approximants method. Also, our analytical results are compared with numerical simulation. 

 

 

 

2. MATHEMATICAL FORMULATION OF THE PROBLEMS  

 
Figure 1. Schematic representation of biosensor. 

 

In the enzyme reaction, 

𝐸 + 𝑆 ↔  𝐸𝑆 →  𝐸 + 𝑃                          (1) 



Int. J. Electrochem. Sci., Vol. 15, 2020 

 

5684 

the substrate (S) binds to the enzyme (E) in order to form an enzyme-substrate complex ES. 

The substrate is converted to product (P) while it is part of this complex. The rate of the product's 

appearance depends on its substrate concentration. Figure.1 [15] illustrates the basic model used in this 

work and a definition of the coordinate system. 

For example, the simplest scheme of non-Michaelis-Menten kinetics may have been obtained 

by adding to the Michaelis-Menten scheme (Equation (1)), a stage of enzyme-substrate complex (ES) 

interaction with another substrate molecule (S) (Equation (2)) after the non-active complex (ESS) is 

generated as follows [6]: 

𝐸𝑆 + 𝑆 ↔  𝐸𝑆𝑆        (2) 

The steady-state non-linear differential equations for the substrate inhibition are  
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where 𝐷𝑠 , 𝐷𝑝 are the diffusion coefficients of the substrate and product in the enzyme layer. 

𝑠(𝑥) and   𝑝(𝑥) are the concentration of substrate and product in the enzyme layer. 𝑉𝑚𝑎𝑥 is the 

maximal enzymatic rate, 𝑘 𝑀 denotes the Michaelis-Menten constant and 𝑑 is the thickness of the 

enzyme layer.  The equations are resolved for the following boundary conditions [6]. 
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The current density I of the biosensor is expressed as follows: 
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The steady-state enzyme surface activity rate (𝑉𝑠), following the scheme (1,2) is defined by 
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At steady-state conditions, the substrate flux (𝐽𝑠) through the Nernst diffusion layer is equal to 

the enzymatic rate (𝑉𝑠) on the surface: 
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where 𝑠0 is the concentration of substrate in the bulk solution, 𝑠∗ is the concentration of 

substrate at 𝑥 = 𝑑 and 𝛿 is thickness of the diffusion layer. We introduce the set of dimensionless 

variables as follows: 
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where S(χ) and P(χ) indicate the dimensionless concentration of substrate and product 

respectively.
2

s and 
2

p denote the corresponding reaction diffusion parameters. 𝜒 represents the 

dimensionless distance. 𝛼 and β represents the saturation parameters. The governing non-linear 

reaction/diffusion equations (3) and (4) are expressed in the following non-dimensionless form: 
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The boundary conditions are given by:  
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( ) ( ) 01,00 ====  PP            (14) 

The dimensionless current is reduced to 
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3. ANALYTICAL EXPRESSION OF CONCENTRATION OF SUBSTRATE AND PRODUCT  

USING HYPERBOLIC FUNCTION METHOD 

The hyperbolic function method is used to obtain an approximate analytical expression for the 

steady-state concentrations of the substrate in an amperometric biosensor with substrate inhibition 

using the specified boundary conditions (equation (13)). He also proposed the exponential function 

method for solving the non-linear equations [17]. Our method is a special case of exponential function 

method. The analytical expression of the dimensionless concentration of the substrate is obtained using 

the hyperbolic function method (Appendix-A) as follows: 
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Then, the concentration of product can be obtained by using the relation (B4) (Appendix-B) as 

follows: 
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where, 
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The dimension current,  
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4. ANALYTICAL EXPRESSION OF CONCENTRATION OF SUBSTRATE AND PRODUCT  

USING PADÉ APPROXIMANTS METHOD 

In mathematics, the "best" approximation of a function by a rational function of the given order 

is a Padé approximants. Under this methodology, the approximation's power series correlates with the 

power series of the function it approximates. Henri Padé invented the method, but it goes back to 

Georg Frobenius, who introduced the idea and studied the features of rational power series 

approximations. More recently, Ji-Huan He solved the one-dimensional convection-diffusion equation 

and its fractional modification for E reaction arising in rotating disk electrodes [18] using this method. 

Also, He developed the Taylor series and Padé approximants solution for fractal Bratu-type equations 

arising in the electrospinning process [19] and lane-emden equation [20]. He also proposed the 

exponential function method for solving the non-linear equations [21]. Saravana Kumar et al. [22] 

discussed an E-reaction convection-diffusion equation in rotating disk electrodes and solved the 

equations using the Taylor series method and the Pade approximants method. The Padé approximants 

also gives the function a better approximants than truncating the Taylor series, and it may still perform 

where the Taylor series does not converge. Padé approximants are widely used in computer 

calculations for these purposes. The analytical expression of concentration of substrate and product are 

obtained using Padé approximants method (Appendix -C) for 𝛼 = 0.1, 𝛽 = 0.02, 𝜑𝑠
2 = 0.1, 𝜑𝑝

2 = 5 

and 9567737660.0=a  are as follows: 
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5. ESTIMATION OF PARAMETERS 

From the equation (3) we can get the steady-state surface rate (𝑉𝑠
∗) of enzyme activity as 

follows: 
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This equation can be rewritten as 
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This is of the form 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2. Fitting a second degree parabola curve using least 

square, we can find Michaelis-Menten constant ( )mk , maximal enzymatic rate ( )maxV  and thickness of 

the enzyme layer ( )d . 

 

 

 

6. NUMERICAL SIMULATION 

The non-linear differential equations (11) and (12) with the boundary conditions (13) and (14) 

are solved numerically by using the function pdex4 in Scilab/Matlab, numerical software. The 

analytical solutions (equations (16) and (17)) are compared with the numerical solutions in Figures.2-

3. The concentration of substrate by Padé approximants (equation (20)) and by Hyperbolic function 

method (equation (16)) are compared with a numerical solution in Figure.5. 

Table.1 and Table.2 represent the comparison between numerical and analytical results by Padé 

approximants and Hyperbolic function method. Also, the average relative errors are given in the 

respective tables. From Table.1and Table.2 it is confirmed that the Padé approximants method is the 

effective method for obtaining the analytical expressions for steady-state concentrations of substrate 

and product in an amperometric biosensor compared to the hyperbolic function method. Padé 

technique can be used in solving large scale of nonlinear differential equations in chemical sciences.  

 

 

Table 1. Comparison of numerical solution of concentration of substrate with the analytical 

solutionsby hyperbolic function method and Padé approximants method for 𝛼 = 0.1, 𝛽 = 0.02 

and for different values of 𝜑𝑠
2. 
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Table 2. Comparison of numerical solution of concentration of  product with the analytical solution by 

hyperbolic function method and Padé approximants method for 𝛼 = 0.1, 𝛽 = 0.02, 𝜑𝑠
2 = 5 

and for different values of 𝜑𝑝
2. 
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Table 3. Comparison of numerical solution of concentration of  substrate with our analytical results 

and the previous analytical results for 𝛼 = 5, 𝛽 = 2.5 and for different values of 𝜑𝑠
2. 
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Figure 2. Dimensionless concentration of substrate, 𝑆(𝜒)versus normalized distance,𝜒(a) ( a)for 𝛼 =
0.1, 𝛽 = 0.02 and for different values of  𝜑𝑠

2.(b) for 𝜑𝑠
2 = 1, 𝛽 = 0.02 and for different 

values of 𝛼. (c)for 𝜑𝑠
2 = 1, 𝛼 = 0.1and for different values of 𝛽. where green line represents 

the analytical result (equation 16) by hyperbolic function method, blue line represents the 

analytical result (equation 20) by Padé approximants method and red line represent the 

numerical method. 
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Figure 3. Dimensionless concentration of product, 𝑃(𝜒)versus normalized distance,𝜒 (a) for 𝛼 =
0.1, 𝛽 = 0.02, 𝜑𝑠

2 = 1 and for various value of 𝜑𝑝
2. (b)for 𝜑𝑠

2 = 0.1, 𝜑𝑝
2 = 10, 𝛽 = 1 and 

for various value of 𝛼.  (c)for 𝜑𝑠
2 = 0.1, 𝜑𝑝

2 = 1, 𝛼 = 0.1 and for various value of 𝛽.  (d)for 

𝛼 = 0.1, 𝛽 = 0.02, 𝜑𝑝
2 = 10 and for various value of 𝜑𝑠

2. where green line represents the 

analytical result (equation 17) by hyperbolic function method, blue line represents the 

analytical result (equation 21) by Padé approximants method and red line represent the 

numerical solution. 

 

 

 

7. RESULT AND DISCUSSION 

The nonlinear equations (11) and (12) are solved analytically using the Hyperbolic function 

method. Equations (16), (17) and (20), (21) are the simple and closed-form of analytical expressions 

for the concentration of substrate and product for different values of parameters such as substrate 

reaction-diffusion parameter (𝜑𝑠
2), product reaction-diffusion parameter (𝜑𝑝

2), and saturation 

parameters (𝛼 and 𝛽) respectively. The concentration of substrate and product depends upon the Thiele 

module and saturation parameters. The Thiele module, 𝜑𝑖
2 = 𝑉𝑚𝑎𝑥𝑑2 𝐷𝑖𝑘𝑚⁄  basically compares the 

enzyme reaction rate and the enzyme layer diffusion rate. If the Thiele module is small    (  𝜑𝑖
2 <

1),then the biosensor response predominates in enzyme kinetics. The total amount of active enzyme 

governs the overall kinetics. The response is under diffusion control, if the Thiele module is 
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large(𝜑𝑖
2 > 1), which is observed at high catalytic activity and active membrane thickness or low 

reaction rate constant or diffusion coefficient values. 

Figure.2a shows the concentration of substrate versus normalized distance for different values 

of a parameter. It is observed from this figure that the concentration of the substrate decreases when 

𝜑𝑠
2 increases. Figure.2band Figure.2c shows the concentration of substrate versus normalized distance 

for various values of parameters. It follows from these figures that the concentration of substrate 

increases when 𝛼 and 𝛽 increases. Figure.3a represents the concentration of product versus normalized 

distance for different values of parameters. It is observed from this figure that the concentration of 

product increases when 𝜑𝑝
2 increases. Figure.3b, Figure.3c,andFigure.3d shows that the concentration 

of product versus normalized distance for various values of parameters. It is observed from those 

figures that the concentration of the product decreases when𝛼, 𝛽 and 𝜑𝑠
2increases. It follows from the 

figures that the concentration of the substrate attains its maximum at 𝜒 = 1 and minimum at𝜒 = 0. 

Also, the concentration of the product attains its maximum at 𝜒 = 0.5and minimum at 𝜒 = 0and𝜒 = 1. 

In Table.3, our analytical result for the concentration substrate is compared with the previous 

analytical results [14,15]. From this Table, it is observed that the Padé approximants method is an 

effective method when compared to other methods (Hyperbolic function method, Homotopy 

perturbation method, Adomian decomposition method).Figure.4a represents the dimensionless current, 

Ψ for all values of parameters. Figure.4b represents the substrate flux (𝐽𝑠) versus for all values of 

parameters. From Figure.4a, it is observed that the value of the current increases when increases and 

reaches the maximum value and then decreases. The maximum value of the current depends on high 

enzyme activity and high substrate concentration. 

 

--------------------------------- 

 
 

Figure.4a Dimensionless current (Ψ) (equation (19)) versus 
𝑆∗

𝐾𝑚
 for 𝐷𝑠 = 𝐷𝑝 = 300 𝜇𝑚2 𝑠 ⁄ , 𝐾𝑚 =

100𝜇M, 𝐾𝑠 = 10𝜇M, 𝑑 = 20𝜇m and for different values of 𝑉𝑚𝑎𝑥.Figure.4b Substrate flux (𝐽𝑠) 

(equation (9)) versus 
𝑆∗

𝐾𝑚
 for , 𝐾𝑚 = 100𝜇M, 𝐾𝑠 = 10𝜇M, 𝑑 = 20𝜇𝑚  and for different values of 

𝑉𝑚𝑎𝑥. 
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7. CONCLUSION 

This paper discusses the modeling of the amperometric biosensor with substrate inhibition. The 

approximate analytical expression for the concentration of the substrate, product, and current is 

obtained. We have successfully used the hyperbolic function approach to construct solutions for 

nonlinear differential equations. Also, the approximate analytical expression for the concentration of 

the substrate, product is obtained using Padé approximants. The primary result of this work is to 

calculate the concentration of substrate, product, substrate flux, and current for all values of 

parameters. Our simple and closed-form of analytical results are validated by the numerical result.But 

this method is also readily computable.Consequently, considering the solution of nonlinear differential 

equations, the proposed approach is worthy of further research. Also, it may find new and interesting 

solutions for a given nonlinear system in physical and chemical sciences. 
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Nomenclature: 

 

Parameter Meaning Unit 

s  Concentration of Substrate 𝜇M 
p  Concentration of Product 𝜇M 

S  Dimensionless Concentration of Substrate None 

P  Dimensionless Concentration of Product None 

x  Distance 𝑐𝑚 

𝜒 Dimensionless Distance None 

𝑠∗ Concentration of substrate at dx =  𝜇M 

𝜑𝑠
2 Substrate reaction diffusion parameter None 

𝜑𝑝
2 Product reaction diffusion parameter None 

𝛼 Saturation Parameter None 

𝛽 Saturation Parameter None 

F Faraday constant (96485 C/mol) C/mol 

𝐷𝑠 Diffusion Coefficient of the substrate 𝜇𝑚2 𝑠⁄  

𝐷𝑝 Diffusion Coefficient of the product 𝜇𝑚2 𝑠⁄  

𝐾𝑚 Michaelis-Menten Constant 𝜇M 

𝐾𝑠 Inhibition Constant 𝜇M 

𝑉𝑚𝑎𝑥 Maximal enzymatic rate 𝜇𝑀 𝑠⁄  

d  Thickness of the enzyme layer 𝜇𝑚 

𝛿 Thickness of the diffusion layer 𝜇𝑚 

I Current density of the biosensor 𝜇𝐴 𝑐𝑚2⁄  

Ψ Dimensionless Current None 

𝐽𝑠 Substrate Flux 𝜇M 
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𝑛𝑒 Number of electrons involved in charge transfer at the electrode surface None 

 

APPENDIX A: 

 

Analytical solution of nonlinear equations (Eq.11 and Eq.12) using hyperbolic function method. 

By using hyperbolic function method, we can assume that the trail function of concentration of 

substrate (equation (11)) is the hyperbolic function of the form, 

( ) ( ) ( ) mBmAS sinhcosh 11 +=             (A1) 

Using the boundary conditions (equation (13) and (14)), we can obtain the constant 

( )m
A

cosh

1
1 = , 01 =B  

The function 𝑆(𝜒) becomes  

( )
( )
( )m

m
S

cosh

cosh 
 =               (A2) 

where, m is a constant. Also  

( )
( )m

mm

d

dS

cosh

sinh 


=              (A3) 

( )
( )m

mm

d

Sd

cosh

cosh2

2

2 


=               (A4) 

Next, we have to find the constant m by substituting the equations (A2) to (A4) in the equation (11), 

we get 

( )
( )

( )
( ) 2

22

cosh

cosh

cosh

cosh
1

mm

m

m

m s



 =








+








+            (A5) 

When χ = 1, the above equation becomes 

2

2

1
m

s =++               (A6) 

Hence, 





++
=

1

sm               (A7) 

Using the relation between 𝑆(𝜒) and 𝑃(𝜒)(equation (𝐵4)), we can obtain 𝑃(𝜒) 

( )
( )( )








−−+= 




 m

m
P

s

p
cosh1

cosh

1
)(

2

2

      (A8) 
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APPENDIX B: 

Relation between the concentration of substrate and product. 

Adding equations (11) and (12) we get,  

( ) ( )
0

222

2

=













+

ps

PS

d

d










             (B1) 

Integrating twice the above equation we get the following equation. 

( ) ( )
2122

CC
PS

ps

+=+ 







             (B2) 

From the above equation, we can obtain the dimensionless concentration of product in terms of 

concentration of substrate as follows: 

( )
( )









−+=

221

2

s

p

S
CCP






        

(B3) 

The constants 1C and 2C can be obtained using the boundary conditions given by the equations (13) 

and (14). Using the boundary condition (equation (13)), we get 
2

2 )0( sSC = and the boundary 

condition (equation (14)), we get ( ) 2

1 )0(1 sSC −= . 

Hence,













−+













 −
=

2222

2
)()0()0(1

)(
sssp

s SSS
P











           (B4) 

 

APPENDIX C: 

Analytical solution of nonlinear equation (Eq.11 and Eq.12) using Taylor series and Pade 

approximants method. 

Consider the Maclaurin series (Taylor's series at χ = 0) for dimensionless concentration of substrate,

( )S . 

( ) ( ) ( ) ( ) ( ) ( ) ........
!4

0''''
!3

0'''
!2

0''
!1

0'0
432

+++++=


 SSSSSS         (C1) 

Let us consider, ( ) aS =0  where a is constant. From the boundary conditions (equation(12)),we get

( ) 00' =S . From equation (11),  

( )
2

2

1
0''

aa

a
S s





++
=          (C2) 

( ) 00''' =S            (C3) 
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( )
( )

( )32

22

1

1
0''''

aa

aa
S s





++

−
=               (C4) 

( ) 00)5( =S                (C5) 

( )
( )

( )52

4224235

)6(

1

20751
0

aa

aaaaaaa
S s





++

+−−+−−
=     (C6) 

( ) 00)7( =S            (C7) 

( )
( )

( )72

362625442322226

)8(

1

127268739490201351
0

aa

aaaaaaaaaaa
S s





++

−−+++++−−−
=

            (C8) 

Consider, 

8

8

7

7

6

6

5

5

4

4

3

3

2

210)(  cccccccccS ++++++++    (C9) 

where, 

ac =0             (C10) 

01 =c             (C11) 

( )2

2

2
12 aa

a
c s





++
=           (C12) 

03 =c               (C13) 

( )
( )32

22

4

148

1

aa

aa
c s





++

−
=          (C14) 

05 =c               (C15) 

( )
( )52

4224235

6

134560

20751

aa

aaaaaaa
c s





++

+−−+−−
=      (C16) 

07 =c               (C17) 

( )
72

362625442322226

8
)1(1393459200

127268739490201351

aa

aaaaaaaaaaa
c s





++

−−+++++−−−
=

            

(C18) 

The Padé approximants is a rational fraction and is equal to Maclaurin series as follows: 

4

4

3

3

2

21

4

4

3

3

2

210

1
)(






bbbb

aaaaa
S

++++

++++
=          (C19) 

Substitute equation (C9) instead of )(S , we get 
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4

4

3

3

2

21

4

4

3

3

2

2108

8

7

7

6

6

5

5

4

4

3

3

2

210
1 




bbbb

aaaaa
ccccccccc

++++

++++
=++++++++  

               (C20) 

4

4

3

3

2

210

8

443526178

7

433425167

6

423324156

5

413223145

4

403122134

3

3021123

2

201121010

)(

)()()(

)()()()(







aaaaabcbcbcbcc

bcbcbcbccbcbcbcbccbcbcbcbcc

bcbcbcbccbcbcbccbcbccbccc

++++=++++

+++++++++++++++

+++++++++++++++

               (C21) 

Equating the coefficients of 87654320 ,,,,,,,,  , we get 

00 ac =
           

(C22) 

101 abcc =+
           

(C23) 

220112 abcbcc =++
          

(C24) 

33021123 abcbcbcc =+++
         

(C25) 

0413223145 =++++ bcbcbcbcc
        

(C26) 

0423324156 =++++ bcbcbcbcc
        

(C27) 

0433425167 =++++ bcbcbcbcc
        

(C28) 

0443526178 =++++ bcbcbcbcc
        

(C29) 

Since 0,0,0,0 7531 ==== cccc  

Solving equation (C26)and(C28),we get 01 =b and 03 =b . Solving equation (C27) and (C29), we get

26

2

4

4628

2
ccc

cccc
b

−

−
=  and 

62

2

2

84

2

6

4

)(

ccc

ccc
b

−

−
= . 

Hence, 














−

−
+















−

−
+==















−

−
+===
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2

2

84

2

6

26

2

4

4628

2443

26

2

4

4628

2210 ,0,,0,
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ccc
a

ccc

cccc
ccaa

ccc

cccc
acaaaa

 
Substituting the values of =iai , 0 to 4 and =jb j , 1 to 4 in equation (C19), we get 
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






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



−

−
++

=

ccc
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ccc

cccc

ccc

ccc
a

ccc

cccc
cc

ccc

cccc
aca

S   

          (C30) 

In order to find the unknown constant “a” we have to substitute the equations (C10)- (C18) in equation 

(C30) ,and using the boundary condition 1)1( =S  and substitute 1.0,02.0,1.0
2
=== s ,we get the 

unknown constant 9568.0=a .Hence, 

          
4322

422

101871.0108059.010

102664.04217.05677.9
)(






−−

−

+−

++
=S         (C31) 
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Using the relation between )(S and )(P in equation (B4) and using the above equation (C31) for

1.0,02.0,1.0
2
=== s and 5

2
=p we get, 

451087077.1241005895.81

551004331.4421024244.1331074179.1214719.216131.2
)(






−+−−

−+−−−−−
=P

 

             

(C32) 

Note: 

By equation (C30), for ,02.0,1.0 ==   

(i) 1
2
=s , the value of  6675.0=a . 

(ii) 5
2
=s , the value of  2203.0=a . 

(iii) 15
2
=s , the value of  .0447.0=a  
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