Short Communication

Characterization and Electrochemical Properties of 10 mol% Lutetium-Doped BaCO₃ and its Composite Electrolyte for Intermediate Temperature Fuel Cells

De-Qian Huang^{1,3,*}, Yu-Jie Cao^{1,3}, Peng Sun^{1,2}, Nan Wang^{1,2}, Jing-Jing Zhu^{1,2}, Xiu-Ru Li^{1,3}, Ya-Ru Chen^{1,3}, Hai Wu^{1,3}, Hong Zhang^{1,3}, Liang-Quan Sheng^{1,3*}

¹ School of Chemistry and Material Engineering, Fuyang Normal University, Anhui, Fuyang, 236037, P. R. China
² Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of The Environment, Fuyang Anhui 236037, P. R. China
³Engineering Research Centre of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang 236037, P. R. China
*E-mail: <u>huangdeqian@163.com</u>, <u>Shenglq@fynu.edu.cn</u>

Received: 12 February 2020 / Accepted: 7 April 2020 / Published: 10 May 2020

In this study, $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ was prepared by a sol-gel method. Subsequently, it was combined with molten carbonates and chlorides to synthesize $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ -(Na/K)Cl-(K/Li)₂CO₃ composite electrolyte. Structural characterizations and intermediate temperature electrochemical properties of $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ and $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ -(Na/K)Cl-(K/Li)₂CO₃ were investigated at 400–700 °C. X-ray diffraction showed that the main structure of $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ -(Na/K)Cl-(K/Li)₂CO₃ was $BaCeO_3$ phase. The highest conductivity of $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ -(Na/K)Cl-(K/Li)₂CO₃ was 6.8×10^{-2} S·cm⁻¹ at 700 °C.

Keywords: Defects; Electrolytes; Fuel cell; Conductivity; Composite

1. INTRODUCTION

Solid oxide fuel cells (SOFCs), as an efficient and clean energy technology, have good application prospects [1–7]. The performances and applications of SOFCs are often determined by the dense electrolytes with ionic conductivities [8–13]. Iwahara et al. found that Ba(Sr)CeO₃-based oxides have excellent protonic conduction at high temperatures (600–1000 °C) [14]. Trivalent rare earth cation-doped BaCeO₃ has been widely studied [15–23]. For example, Guo et al. synthesized BaCe_{1-x}Y_xO_{3- α} by

a microemulsion method and studied the protonic conduction at 300–600 °C [20]. Because the ionic radius of Lu^{3+} is close to that of Ce⁴⁺, investigation of Lu^{3+} -doped BaCeO₃ is particularly necessary.

Over the past 20 years, the designs of new oxygen ion-proton and oxygen ion-inorganic salt composite electrolyte materials have been widely studied [24–31]. Meng et al. synthesized $Ce_{0.9}Gd_{0.1}O_{1.95}$ -LiCl-SrCl₂ composite electrolyte [24]. Liu et al. studied intermediate-temperature SOFC performance of BaCe_{0.7}In_{0.3}O_{3-δ}-Gd_{0.1}Ce_{0.9}O_{2-δ} composite electrolyte [26]. Huang et al. investigated conductivity, morphology and SOFC performance of BaCe_{0.7}Zr_{0.1}Y_{0.2}O_{3-α}- (Na/Li)₂CO₃ composite electrolyte [31]. Our previous reports studied Yb³⁺-doped BaCeO₃-(Na/K)Cl and BaCe_{0.9}Er_{0.1}O_{3-α}-K₂SO₄-BaSO₄ composite electrolytes [32–33]. However, up to now, there has been no report about barium cerate-compound inorganic salts.

In this study, $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ was synthesized via a sol-gel method. Then, it was combined with compound inorganic salts to prepare $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ -(Na/K)Cl-(K/Li)₂CO₃ composite electrolyte. Structural characterizations and intermediate temperature electrochemical properties of the samples were investigated.

2. EXPERIMENTAL

2.1. Materials Synthesis and Sintering

BaCe_{0.9}Lu_{0.1}O_{3- α} was prepared by a sol-gel method with Lu₂O₃ (0.9948 g), Ba(CH₃COO)₂ (12.7711 g), Ce(NH₄)₂(NO₃)₆ (24.6699 g) and citric acid as raw materials. Firstly, Lu₂O₃ was added to a small amount of nitric acid and heated to 90 °C for dissolution. Ba(CH₃COO)₂, Ce(NH₄)₂(NO₃)₆ and citric acid were successively added for heating and dissolving. The solution was heated until it was viscous and burnt to obtain the primary powder. The powder was sintered at 1250 °C and 1550 °C for 5 h, respectively, to obtain BaCe_{0.9}Lu_{0.1}O_{3- α}. NaCl-KCl (1:1 mole ratio) and Li₂CO₃-K₂CO₃ (68:32 mole ratio) were mixed and heated once to form a solid solution. The mixtures of BaCe_{0.9}Lu_{0.1}O_{3- α}, NaCl-KCl and Li₂CO₃-K₂CO₃ (weight ratio 7:2:1) were heated at 750 °C for 1 h to obtain BaCe_{0.9}Lu_{0.1}O_{3- α}-(Na/K)Cl-(K/Li)₂CO₃ (BCLu-(Na/K)Cl-(K/Li)₂CO₃) composite electrolyte.

2.2 Instrumentation

The structures of BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$} and BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$ -(Na/K)Cl-(K/Li)₂CO₃ were measured by Raman spectrometer(iHR550) and X-ray diffraction (XRD, X-D-3, China). The morphologies of the samples were characterized by scanning electron microscope (SEM, Sigma 500). In order to test the AC impedances of the samples, Ag-Pd paste was coated on both sides of BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$} and BaCe_{0.9}Lu_{0.1}O_{3- α}-(Na/K)Cl-(K/Li)₂CO₃. The thickness and area of the samples were 1.0mm and 0.5 cm², respectively. The test temperature range was 400–700 °C with a CHI660E electrochemical analyzer (Chenhua, Shanghai). The relationship between conductivity and *p*O₂ was measured at 700 °C with different proportions of dry nitrogen, oxygen and hydrogen.}

3. RESULTS AND DISCUSSION

3.1 Characterization of BaCe_{0.9}Lu_{0.1}O_{3-α} and BaCe_{0.9}Lu_{0.1}O_{3-α}-(Na/K)Cl-(K/Li)₂CO₃.

Fig. 1 shows the Raman spectra of BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$ and BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$ -(Na/K)Cl-(K/Li)₂CO₃. The vibration peak displayed at 130 cm⁻¹ may be attributed to the stretching mode of the carbonate ion [23]. The vibrations near 310–360 cm⁻¹ belong to the halide vibration and the characteristic peak is 358 cm⁻¹. The bands at 471 cm⁻¹ and 673 cm⁻¹ belong to the Ce-O F_{2g} mode and O_h vibrational mode, respectively [34]. The results show that BaCe_{0.9}Lu_{0.1}O_{3- α}-(Na/K)Cl-(K/Li)₂CO₃ contains barium cerate, carbonate and chloride groups.}}

Figure 1. Raman spectra of $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ and $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ -(Na/K)Cl-(K/Li)₂CO₃ (BCLu-(Na/K)Cl-(K/Li)₂CO₃).

Fig. 2 shows XRD patterns of BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$ and BaCe_{0.9}Lu_{0.1}O_{3- α}-(Na/K)Cl- (K/Li)₂CO₃. The diffraction peaks of BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$ agree with Han and Guo et al. [15, 20]. For BaCe_{0.9}Lu_{0.1}O_{3- α}-(Na/K)Cl-(K/Li)₂CO₃, the extra peaks are obvious and come from crystalline KCl, (Li-K)₂CO₃ and NaCl respectively [28–29, 32]. Combined with the results of Fig. 1, there is no reaction between BaCe_{0.9}Lu_{0.1}O_{3- α} and (Na/K)Cl-(K/Li)₂CO₃ after being heated at 750 °C.}}

The external and cross-sectional SEM diagrams of $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ and $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ -(Na/K)Cl-(K/Li)₂CO₃ are shown in Fig. 3. It can be seen from Fig. 3(a, b) that the grains of $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ are not fully fused. It can be considered that the sintering temperature (1550 °C) did not reach the temperature for fully forming the grain boundary. There are very few non-penetrating holes in Fig. 3(b). Fig. 3(c, d) show that the molten chlorides and carbonates fill the holes between $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ particles, therefore, densifying the composite after the process of heating [28–31].

Figure 2. XRD diagrams of $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ and $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ -(Na/K)Cl-(K/Li)₂CO₃ (BCLu-(Na/K)Cl-(K/Li)₂CO₃).

Figure 3. The external and cross-sectional SEM diagrams of $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ (a,b) and $BaCe_{0.9}Lu_{0.1}O_{3-\alpha}$ (n/k)Cl-(K/Li)₂CO₃ (c,d).

3.2 Conductivity of BaCe0.9Lu0.1O3-a and BaCe0.9Lu0.1O3-a-(Na/K)Cl-(K/Li)2CO3

Fig. 4 shows the log (σ T) ~ 1000 T⁻¹ plots of BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$ and BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$ -(Na/K)Cl-(K/Li)₂CO₃ from 400 °C to 700 °C. From Fig. 4, it can be seen that the horizontal and vertical coordinates of the curves are basically linear. The conductivity of BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}} reaches the maximum value of 9.5×10⁻³ S·cm⁻¹ at 700 °C. Gui et al. reported that the conductivity of BaZr_{0.3}Ce_{0.5}Y_{0.2}O_{3-<math>\delta$} supplemented with 2 mol% Bi₂O₃ was 1.04×10⁻² S·cm⁻¹ at 700 °C [35]. The results show that the conductivity of BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$} is equivalent to the value reported in the literature. The conductivities of BaCe_{0.9}Lu_{0.1}O_{3- α}-(Na/K)Cl-(K/Li)₂CO₃ are higher than that of BaCe_{0.9}Lu_{0.1}O_{3- α} in the temperature range of 400–700 °C. The maximum conductivity of BaCe_{0.9}Lu_{0.1}O_{3- α}-(Na/K)Cl-(K/Li)₂CO₃ is 6.8×10⁻² S·cm⁻¹ at 700 °C. It can be considered that molten inorganic salts can further promote the long range orderly ability of conducting ions between the interface and the bulk phase of BaCe_{0.9}Lu_{0.1}O_{3- α}-(Na/K)Cl-(K/Li)₂CO₃ [25].}}</sub>

Figure 4. log (σ T) ~ 1000 T⁻¹ plots of BaCe_{0.9}Lu_{0.1}O_{3- α} and BaCe_{0.9}Lu_{0.1}O_{3- α}-(Na/K)Cl-(K/Li)₂CO₃ (BCLu-(Na/K)Cl-(K/Li)₂CO₃) at 400–700 °C.

Fig. 5 shows the relationship between conductivity and pO_2 of BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$ and BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$ -(Na/K)Cl-(K/Li)₂CO₃ at 700 °C. The relationship between conductivity and pO_2 is usually measured to study the sample's ionic conduction. Lyagaeva et al. found that BaCe_{0.5}Zr_{0.3}Y_{0.2-x}Yb_xO_{3- $\alpha}$ was a pure ionic conductor at 600 °C [18]. In Fig. 5, the conductivities in nitrogen, oxygen and hydrogen under different pO_2 are almost the same, which shows that BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$ and BaCe_{0.9}Lu_{0.1}O_{3- α}-(Na/K)Cl-(K/Li)₂CO₃ show ionic conduction at 700 °C.}}}}

Figure 5. The log $\sigma \sim \log (pO_2)$ plots of BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$ and BaCe_{0.9}Lu_{0.1}O_{3- α}-(Na/K)Cl-(K/Li)₂CO₃ (BCLu-(Na/K)Cl-(K/Li)₂CO₃) at 700 °C.}

4. CONCLUSIONS

In this study, molten carbonates and chlorides were combined with BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$ to synthesize a new composite electrolyte, BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$ -(Na/K)Cl-(K/Li)₂CO₃. The Raman spectrometer results showed that BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$ -(Na/K)Cl-(K/Li)₂CO₃ contained barium cerate, carbonate and chloride groups. The SEM diagrams showed that the molten chlorides and carbonates filled and densified the composite. The relationship between conductivity and *p*O₂ showed that BaCe_{0.9}Lu_{0.1}O_{3- $\alpha}$ -(Na/K)Cl-(K/Li)₂CO₃ were ionic conductors at 700 °C.}}}}

ACKNOWLEDGEMENTS

This work is supported by Fuyang Municipal Government - Fuyang Normal College Horizontal Cooperation Major Project (XDHX201701) and Key Project (XDHX2016009), Innovation Team of Modern Analytical Technologies (kytd201701), Innovation and Entrepreneurship Program for college students of Anhui Province (S201910371028), and State Key Laboratory of Analytical Chemistry for Life Science (SKLACLS1712).

CONFLICTS OF INTEREST None

References

- 1. L. Bi, S.P. Shafi, E.H. Da'as and E. Traversa, Small, 14 (2018) 1801231.
- 2. C. Bernuy-Lopez, L. Rioja-Monllor, T. Nakamura, S. Ricote, R. O'Hayre, K. Amezawa, M. Einarsrud and T. Grande, *Materials*, 11 (2018) 196.
- 3. Y.P. Xia, Z.Z. Jin, H.Q. Wang, Z.Gong, H.L. Lv, R.R. Peng, W. Liu and L. Bi, *J. Mater. Chem. A*, 7 (2019) 16136.
- 4. Y. Tian, Z. Lü, X. Guo and P. Wu, Int. J. Electrochem. Sci., 14 (2019) 1093.

- 5. X. Xu, L. Bi and X.S. Zhao, J. Membrane Sci., 558 (2018) 17.
- 6. A.A. Solovyev, S.V. Rabotkin, A.V. Shipilova and I.V. Ionov, *Int. J. Electrochem. Sci.*, 14 (2019) 575.
- X. Xu, H.Q. Wang, J.M. Ma, W.Y. Liu, X.F. Wang, M. Fronzi and L. Bi, J. Mater. Chem. A, 7 (2019) 18792.
- 8. H. Jiang and F. Zhang, Int. J. Electrochem. Sci., 15 (2020) 959.
- 9. J.M. Ma, Z.T. Tao, H.N. Kou, M. Fronzi and L. Bi, Ceram. Int., 46 (2020) 4000.
- 10. H. Dai, H. Kou, Z. Tao, K. Liu, M. Xue, Q. Zhang and L. Bi, Ceram. Int., 46 (2020) 6987.
- 11. E. H. Da'as, L. Bi, S. Boulfrad and E. Traversa, Sci. China Mater., 61 (2018) 57.
- 12. J.-W. Ju, D.-M. Huan, Y.-X. Zhang, C.-R. Xia and G.-L. Cui, Rare Met., 37 (2018) 734.
- 13. Y. N. Chen, T. Tian, Z. H. Wan, F. Wu, J. T. Tan and M. Pan, *Int. J. Electrochem. Sci.*, 13 (2018) 3827.
- 14. H. Iwahara, T. Esaka, H. Uchida and N. Maeda, Solid State Ionics, 3/4 (1981) 359.
- 15. Y. Han, R. Du, C. Wang, H. Zhai, F. Wu and H. Wang, Int. J. Electrochem. Sci., 14 (2019) 7695.
- 16. N. Danilov, E. Pikalova, J. Lyagaeva, B. Antonov, D. Medvedev, A. Demin and P. Tsiakaras, J. *Power Sources*, 366 (2017) 161.
- 17. J. Xiao, L. Chen, H. Yuan, L. Ji, C. Xiong, J. Ma and X. Zhu, Mater. Lett., 189 (2017) 192.
- 18. J. Lyagaeva, G. Vdovin, L. Hakimova, D. Medvedev, A. Demin and P. Tsiakaras, *Electrochim. Acta*, 251 (2017) 554.
- 19. G. S. Reddy and R. Bauri, J. Alloy Compd., 688 (2016) 1039.
- 20. Y. Guo, B. Liu, Q. Yang, C. Chen, W. Wang and G. Ma, Electrochem. Commun., 11 (2009) 153.
- 21. J.M. Sailaja, K.V. Babu, N. Murali and V. Veeraiah, J. Adv. Res., 8 (2017) 169.
- 22. J. Song, B. Meng and X. Tan, Ceram. Int., 42 (2016) 13278.
- J.M. Sailaja, N. Murali, S.J. Margarette, T.W. Mammo and V. Veeraiah, *Results Phys.*, 8 (2018) 128.
- Q. X. Fu, S. W. Zha, W. Zhang, D. K. Peng, G. Y. Meng and B. Zhu. Intermediate temperature fuel cells based on doped Ceria-LiCl-SrCl₂ composite electrolyte. *J. Power Sources*, 104 (2002) 73–78.
- 25. B. Zhu, S. Li and B.E. Mellander, *Electrochem. Commun.*, 10 (2008) 302.
- 26. F. Liu, J. Dang, J. Hou, J. Qian, Z. Zhu, Z. Wang and W. Liu, J. Alloy Compd., 639 (2015) 252.
- 27. A.I.B. Rondao, S.G. Patricio, F.M.L. Figueiredo and F.M.B. Marques, *Int. J. Hydrogen Energy*, 39 (2014) 5460.
- 28. N.C.T. Martins, S. Rajesh and F.M.B. Marques, Mater. Res. Bull., 70 (2015) 449.
- 29. K.-Y. Park, T.-H. Lee, J.-T. Kim, N. Lee, Y. Seo, S.-J. Song and J.-Y. Park, *J. Alloy Compd.*, 585 (2014) 103.
- 30. K.-Y. Park, T.-H. Lee, S. Jo, J. Yang, S.-J. Song, H.-T. Lim, J.H. Kim and J.-Y. Park, *J. Power Sources*, 336 (2016) 437.
- 31. Y. Hei, J. Huang, C. Wang and Z. Mao, Int. J. Hydrogen Energy, 39 (2014) 14328.
- 32. X. Jiang, F. Wu and H. Wang, Materials, 12 (2019) 739.
- 33. F. Wu, R. Du, T. Hu, H. Zhai and H. Wang, *Materials*, 12 (2019) 2752.
- 34. Y. Hou, J. Wu and E.Y. Konysheva, Int. J. Hydrogen Energy, 41(2016) 3994.
- 35. L. Gu, Y. Ling, G. Li, Z. Wang, Y. Wan, R. Wang, B. He and L. Zhao, *J. Power Sources*, 301(2016) 369.

© 2020 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).