International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Short Communication

Characterization and electrical properties of a novel Sn_{0.9}Cu_{0.1}P₂O₇/KPO₃ composite electrolyte for intermediate temperature solid oxide fuel cells

Li Zhang, Wei Chen, Wenli Hu*

Fuyang Preschool Education College, Fuyang 236015, China *E-mail: <u>huwenli830914@126.com</u>

Received: 2 January 2020 / Accepted: 21 February 2020 / Published: 10 April 2020

In this study, 10 mol% Cu^{2+} -doped SnP_2O_7 was compounded with K_2CO_3 to prepare $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ composite electrolyte. The structure, morphology and medium temperature electrical properties of $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ were investigated. The Raman spectrometer result showed that $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ was composed of pyrophosphate and metaphosphate groups. The maximum conductivity of $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ reached $6.6 \times 10^{-2} \text{ S} \cdot \text{cm}^{-1}$ at 700 °C. The maximum power density of $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ reached to 131 mW·cm⁻² at 700 °C.

Keywords: Pyrophosphate; Composite; Electrolyte; Conductivity; Fuel cell

1. INTRODUCTION

A fuel cell is a device which can convert the energy generated by the reaction between a fuel and oxidant into electric output in one step [1–6]. In recent years, solid oxide fuel cells (SOFCs) have attracted much attention [7–11]. Yttria doped zirconia has been widely studied and applied in solid oxide fuel cells (SOFCs). However, it must be operated at high temperatures (800–1000 °C) to obtain excellent performance. Therefore, it has become a research hotspot to explore the material systems which have superior conductivities at medium (400–700 °C) and low (100–300 °C) temperatures [12–17].

Doped pyrophosphates are considered to be appropriate materials because of their good ionic conductivities at 100–300 °C [18–20]. Singh et al. synthesized Ce_{1-x}Sr_xP₂O₇ and analyzed conductivity at 90-230 °C [18]. Hibino et al. found that Mⁿ⁺-doped SnP₂O₇ had the highest conductivity among RP₂O₇ (R = Sn, Ce and Ti) materials [19–20]. Due to the low mechanical strength of single Mⁿ⁺-doped tin pyrophosphate, composite electrolytes made of SnP₂O₇-based materials and other compounds have been developed [21–23]. Jin et al. combined Sn_{0.95}Al_{0.05}P₂O₇ with polybenzimidazole or polystyrene-b-poly(ethylene/propylene)-b-polystyrene to synthesize a composite membrane [21–22]. Singh et al.

synthesized new RP₂O₇ (R = Sn and Zr) / alkali carbonate composite electrolytes and found that Sn_{0.9}In_{0.1}P₂O₇-Li₂CO₃ had a maximum conductivity of 5.5×10^{-2} S·cm⁻¹ at 630 °C [23]. Therefore, composite electrolytes can increase applied temperature ranges of SnP₂O₇-based materials. The ionic radius of Cu²⁺ (0.073 nm) is close to that of Sn⁴⁺ (0.069 nm). Cu²⁺ doped SnP₂O₇ composite electrolyte is an interesting research area.

In this study, a novel composite electrolyte $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ was prepared. The structure, morphology and medium (400–700 °C) temperature electrical properties of $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ were investigated.

2. EXPERIMENTAL

The calculated 2.7642 g K₂CO₃, 8.1389 g SnO₂, 13 mL 85 % H₃PO₄ and 1.8756 g Cu(NO₃)₂ were weighed out by analytical balance. The mixture was heated until it became gray and sticky. The primary powders were pre-fired and sintered at 500 °C and 700 °C for 1 h, respectively, to obtain the Sn_{0.9}Cu_{0.1}P₂O₇/KPO₃ composite electrolyte.

The crystal structure of $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ was determined by X-ray diffraction (XRD) and Raman spectrometer. A scanning electron microscope was used to characterize the morphology of the sintered sample. In order to analyze the conductivities, Pd-Ag paste was coated on both sides of the sintered sample and it was treated at 600 °C for 0.5 h. The AC impedance spectra of $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ were measured by a CHI660E electrochemical analyzer with Ag wires as the conductors. The test temperature range was 400–700 °C. Finally, hydrogen and oxygen were used as fuel and oxidant to test the fuel cell performance of $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$.

3. RESULTS AND DISCUSSION

Fig. 1 shows the Raman spectrum of $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$. The vibration peaks displayed near 348–404 cm⁻¹ may be attributed to PO₄ tetrahedron in pyrophosphate and Cu-O-P vibration. The vibrations at 758 cm⁻¹ and 1095 cm⁻¹ belong to the symmetric stretching vibration of the bridged oxygen group P-O-P and the non-bridged oxygen group (PO₂) in pyrophosphate, respectively. The band at 692 cm⁻¹ belongs to the symmetric stretching vibration of P-O-P in metaphosphate. The strong band at 1160 cm⁻¹ belongs to the symmetric stretching vibration of the non-bridged oxygen group (PO₂) in metaphosphate [24]. The results show that $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ is composed of pyrophosphate and metaphosphate groups.

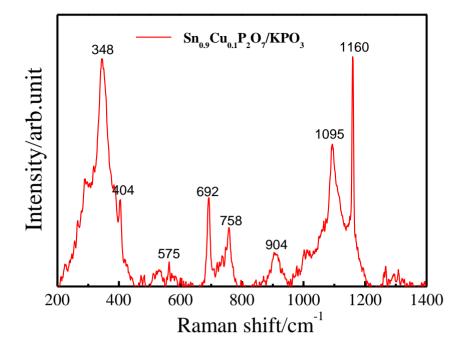


Figure 1. Raman spectrum of Sn_{0.9}Cu_{0.1}P₂O₇/KPO₃ composite.

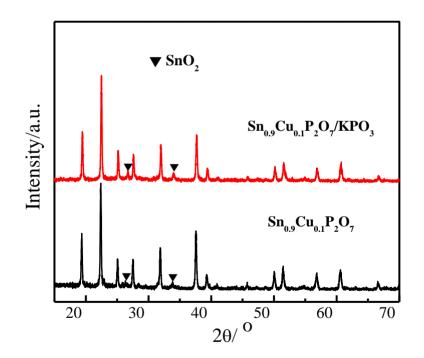


Figure 2. XRD pattern of Sn_{0.9}Cu_{0.1}P₂O₇/KPO₃ composite.

Fig. 2 shows the XRD diagram of $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$. $Sn_{0.9}Cu_{0.1}P_2O_7$ is listed for comparison. The diffraction peaks of $Sn_{0.9}Cu_{0.1}P_2O_7$ are consistent with Hibino et al. [19–20]. However, there are additional weak diffraction peaks of SnO_2 . It can be inferred that high heat treatment causes the loss of P element [19, 25]. For $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$, the extra peaks appearing at 26.36° and 33.84° are obvious and they come from crystalline SnO_2 . These may be due to $2H_3PO_4 + K_2CO_3 = 3H_2O + 2KPO_3 + CO_2\uparrow$ and $SnP_2O_7 + K_2CO_3 = SnO_2 + 2KPO_3 + CO_2\uparrow$ chemical reactions in the synthesis process. Combined with the Raman spectrum results, most KPO_3 exists among the grain boundaries of $Sn_{0.9}Cu_{0.1}P_2O_7$ in amorphous form.

The morphology of $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ is shown in Fig. 3. Fig. 3(a, b) shows that $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ is densified and the grains in the composite are closely combined with each other and have a clear morphology. The distribution of grains is relatively uniform. In the sintering process at 700 °C, the amorphous potassium metaphosphate can flow among the $Sn_{0.9}Cu_{0.1}P_2O_7$ particles, fill the gaps and densify the composite electrolyte.

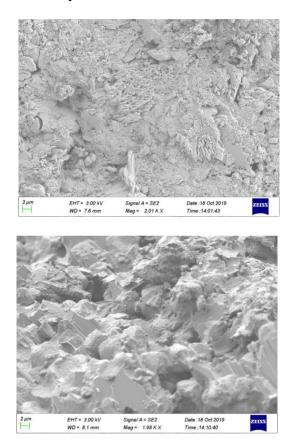


Figure 3. The external and cross-sectional SEM photos of Sn_{0.9}Cu_{0.1}P₂O₇/KPO₃ (a, b).

Fig. 4 shows the log (σ T) ~ 1000 T⁻¹ curves of Sn_{0.9}Cu_{0.1}P₂O₇/KPO₃ in air from 400 °C to 700 °C and the reported samples [26–27]. From Fig. 4, the conductivities of Sn_{0.9}Mg_{0.1}P₂O₇ (after sintered at 600 °C) at 50–250 °C are higher than those of Sn_{0.9}In_{0.08}P₂O₇ (after sintered at 1000 °C) at 300–700 °C [26–27]. The result shows that high sintering temperature (1000 °C) results in the deficiency of P₂O₇⁴⁻ in Sn_{0.92}In_{0.08}P₂O₇ which hinders the long-range ordered conduction of ions [19]. However, there is a turning point in the Arrhenius curve of Sn_{0.9}Mg_{0.1}P₂O₇ at 150 °C. This shows that the electronic conductivity increases and the stability decreases in Sn_{0.9}Mg_{0.1}P₂O₇ above 150 °C. The conductivities of Sn_{0.9}Cu_{0.1}P₂O₇/KPO₃ are higher than those of single SnP₂O₇-based electrolytes in the temperature range of 400-700 °C [26–27]. This may be due to the conducting ions which could conduct through the

interface and the bulk phase in the composite. The maximum conductivity of $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ reached $6.6 \times 10^{-2} \text{ S} \cdot \text{cm}^{-1}$ at 700 °C.

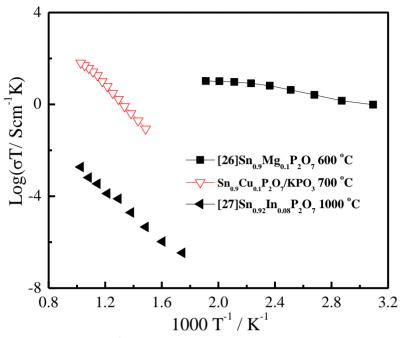


Figure 4. The log (σ T) ~ 1000 T⁻¹ curves of Sn_{0.9}Mg_{0.1}P₂O₇ (after sintered at 600 °C), Sn_{0.9}Cu_{0.1}P₂O₇/KPO₃ (after sintered at 700 °C) and Sn_{0.92}In_{0.08}P₂O₇ (after sintered at 1000 °C).

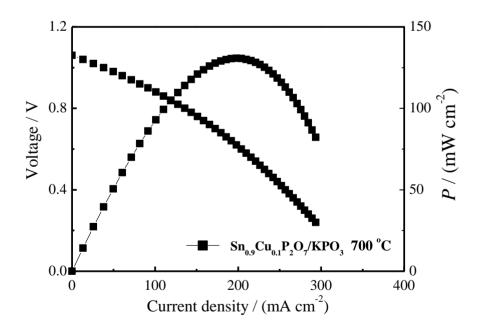


Figure 5. H₂/O₂ fuel cell performance of Sn_{0.9}Cu_{0.1}P₂O₇/KPO₃ at 700 °C.

Fig. 5 shows the H_2/O_2 fuel cell performance of $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ at 700 °C. It can be seen from Fig. 5 that the *I-V* curve is basically straight, indicating that there is no electrode polarization and the microstructure of the electrode meets the requirements. The open circuit voltage is above 1.0 V,

indicating that $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ is basically airtight at 700 °C. The H_2/O_2 fuel cell using $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ as electrolyte obtains the maximum power density of 131 mW·cm⁻² at 700 °C. The value is higher than those of $Sn_{0.91}Ga_{0.09}P_2O_7$ [25], $Sn_{0.9}Mg_{0.1}P_2O_7$ [28] and $Sn_{0.94}Sc_{0.06}P_2O_7$ [29] under the same conditions (Table 1). The results show that the performance of $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ is good [30].

Table 1. The highest power densities of $Sn_{0.9}Cu_{0.1}P_2O_7/KPO_3$ and similar electrolytes in the literatures.

electrolytes	Highest power densities
Sn _{0.9} Cu _{0.1} P ₂ O ₇ /KPO ₃	131 mW·cm ⁻² , 700 °C, 1.2 mm in this work
$Sn_{0.91}Ga_{0.09}P_2O_7$	22.1 mW·cm ⁻² , 175 °C, 1.45 mm [25]
$Sn_{0.9}Mg_{0.1}P_2O_7$	105 mW·cm ⁻² , 150 °C, 1.0 mm [28]
$Sn_{0.94}Sc_{0.06}P_2O_7$	25 mW·cm ⁻² , 150 °C, 1.7 mm [29]

4. CONCLUSIONS

In this study, a facile K₂CO₃ salt was compounded with 10 mol% Cu²⁺-doped SnP₂O₇ to synthesize Sn_{0.9}Cu_{0.1}P₂O₇/KPO₃. The Raman spectrometer and X-ray diffraction indicated that the main structure was SnP₂O₇ phase and most KPO₃ existed among the grain boundaries of Sn_{0.9}Cu_{0.1}P₂O₇ in amorphous form. The SEM photos showed that Sn_{0.9}Cu_{0.1}P₂O₇ and KPO₃ was densified and combined with each other during the sintering process. The maximum power density of Sn_{0.9}Cu_{0.1}P₂O₇/KPO₃ reached 131 mW·cm⁻² at 700 °C.

ACKNOWLEDGEMENTS

This work was supported by the natural science project of Anhui province of China (KJ2019A1273, KJ2018A0980).

CONFLICTS OF INTEREST The authors declare no conflicts of interest.

References

- 1. L. Bi, S.P. Shafi, E.H. Da'as and E. Traversa, Small, 14 (2018) 1801231.
- 2. C. Bernuy-Lopez, L. Rioja-Monllor, T. Nakamura, S. Ricote, R. O'Hayre, K. Amezawa, M. Einarsrud and T. Grande, *Materials*, 11 (2018) 196.
- Y.P. Xia, Z.Z. Jin, H.Q. Wang, Z.Gong, H.L. Lv, R.R. Peng, W. Liu and L. Bi, J. Mater. Chem. A, 7 (2019) 16136.
- 4. Y. Tian, Z. Lü, X. Guo and P. Wu, Int. J. Electrochem. Sci., 14 (2019) 1093.
- 5. X. Xu, L. Bi and X.S. Zhao, J. Membrane Sci., 558 (2018) 17.
- 6. A.A. Solovyev, S.V. Rabotkin, A.V. Shipilova and I.V. Ionov, *Int. J. Electrochem. Sci.*, 14 (2019) 575.

- 7. X. Xu, H.Q. Wang, J.M. Ma, W.Y. Liu, X.F. Wang, M. Fronzi and L. Bi, *J. Mater. Chem. A*, 7 (2019) 18792.
- 8. H. Jiang and F. Zhang, Int. J. Electrochem. Sci., 15 (2020) 959.
- 9. J.M. Ma, Z.T. Tao, H.N. Kou, M. Fronzi and L. Bi, Ceram. Int., 46 (2020) 4000.
- 10. H. Dai, H. Kou, Z. Tao, K. Liu, M. Xue, Q. Zhang, L. Bi, *Ceram. Int.*, doi: 10.1016/j.ceramint.201 9.11.134.
- 11. E. H. Da'as, L. Bi, S. Boulfrad and E. Traversa, Sci. China Mater., 61 (2018) 57.
- 12. J.-W. Ju, D.-M. Huan, Y.-X. Zhang, C.-R. Xia, G.-L. Cui, Rare Met., 37 (2018) 734.
- 13. Y. N. Chen, T. Tian, Z. H. Wan, F. Wu, J. T. Tan and M. Pan, *Int. J. Electrochem. Sci.*, 13 (2018) 3827.
- 14. T. Hibino, K. Kobayashi, P. Lv, M. Nagao, S. Teranishi, and T. Mori, *J. Electrochem. Soc.*, 164 (2017) F557.
- 15. H.-S. Kim, H.B. Bae, W.C. Jung and S.-Y. Chung, Nano. Lett., 18(2018) 1110.
- 16. Z. Gong, W. Sun, Z. Jin, L. Miao and W. Liu, ACS Appl. Energy Mater., 1(2018) 3521.
- 17. G. L. Liu, W. Liu Q. Kou and S. J. Xiao, Int. J. Electrochem. Sci., 13 (2018) 2641.
- 18. B. Singh, H-N. Im, J-Y. Park and S-J. Song, J. Phys. Chem. C, 117 (2013) 2653.
- 19. M. Nagao, T. Kamiya, P. Heo, A. Tomita, T. Hibino and M. Sano, J. Electrochem. Soc., 153 (2006) A1604.
- 20. A. Tomita, N. Kajiyama, T. Kamiya, M. Nagao and T. Hibino, *J. Electrochem. Soc.*, 154 (2007) B1265.
- 21. Y.C. Jin, M. Nishida, W. Kanematsu and T. Hibino, J. Power Sources, 196 (2011) 6042.
- 22. Y.C. Jin and T. Hibino, *Electrochim. Acta*, 55 (2010) 8371.
- 23. B. Singh, A. Bhardwaj, S. K. Gautam, D. Kumar, O. Parkash, I.-H. Kim and S.-J. Song, J. Power Sources, 345 (2017) 176.
- 24. P. A. Bingham and R. J. Hand, Mater. Res. Bull., 43 (2018) 1679.
- 25. H. Wang, J. Liu, W. Wang and G. Ma, J. Power Source, s 195 (2010) 5596.
- 26. H. Wang, L. Sun, J. Chen and C. Luo, Acta Phys.-Chim. Sin., 28 (2012) 2893.
- 27. S. Tao, Solid State Ionics 180 (2009) 148.
- 28. K. Genzaki, P. Heo, M. Sano and T. Hibino, J. Electrochem. Soc., 156 (2009) B806.
- 29. H. Wang, H. Zhang, G. Xiao, F. Zhang, T. Yu, J. Xiao and G. Ma, *J. Power Sources*, 196 (2011) 683.
- 30. Q. Guan, T. Hu, H. Wang, G. Xi, Ceram. Int., doi: 10.1016/j.ceramint.2020.01.189.

© 2020 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).