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Two types of coatings with different deposition thicknesses were prepared on AZ31B Mg alloy by micro-

arc oxidation (MAO) and micro-arc oxidation plus electrophoretic deposition (MAO/EPD) techniques. 

The surface morphology, cross section and phase composition of two type coatings were studied by 

scanning electron microscopy and X-ray diffraction. The corrosion performance of the coatings was 

investigated via electrochemical and immersion experiments. The results indicated that corrosion 

resistance of MAO coating did not monotonously enhance with the increase of the period of deposition 

time; instead, it displayed a close relation with the thickness of the coating dense layer. The corrosion 

resistance of MAO/EPD coating was upgraded with the composite coating. Compared with MAO 

coating, MAO/EPD coating was found more effective in isolating the substrate from the corrosive 

environment. It was attributed to EPD coating composite that greatly reduces the micro-porosity and 

microcrack defects of MAO coating. 

 

 

Keywords: micro-arc oxidation; electrophoretic deposition; coating thickness; microstructure; 

corrosion behaviour 

 

1. INTRODUCTION 

Magnesium and magnesium alloys attract wide attentions from industries such as automotive, 

aerospace and communication owing to the characteristics of lightweight, good thermal conductivity, 

high specific mechanical strength and good microwave shielding property [1]. Unfortunately, poor 

corrosion resistance limits the use of magnesium in harsh environments [2-3]. Therefore, it is crucial to 

improve the corrosion resistance of magnesium alloys. To date, the use of various coatings on 
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magnesium substrate is the most effective method to prevent magnesium from corrosion, such as metal 

coating [4-5], organic coating [6], anodizing [7-8] and conversion coating [9]. Although these surface 

treatments help to improve the corrosion resistance of magnesium alloys, the preparations of these 

coatings are subjected to complex procedures and do harm to the environment. 

Micro-arc oxidation (MAO) has been proven an effective technique of surface treatment for Mg, 

Al, Ti alloys [10-12]. It brings significant improvement in wear resistance, corrosion resistance, and 

mechanical strength of magnesium alloys [13-15]. Nevertheless, due to continuous and strong spark 

discharge and gas bubbling, MAO is inclined to form porous structures on the surface [16-17]. It 

increases the possibility of corrosive electrolytes permeating in the later period of service, thus leads to 

magnesium corrosion. 

The electrophoretic deposition (EPD) is another promising method to prepare protective coatings 

with high corrosion resistance and good adhesion to both metallic substrates and top coatings [18]. The 

short deposition time makes it applicable to any solid in the form of a fine powder or colloidal 

suspension. Owing to the simple facilities and few restrictions on the shape of substrate, EPD has been 

accepted as an economical and effective surface treatment [19]. MAO/EPD combined technique can 

reduce the microporous and microcracks on the MAO coating. Great efforts have been made to compare 

the microstructure and corrosion resistance of magnesium alloys w/o EPD and/or MAO. Nevertheless, 

a systematic investigation addressing the different effects between MAO and MAO/EPD on the 

electrochemical behaviours of magnesium alloy is still required. It can boost the processing optimization 

in MAO and MAO/EPD treatments. 

In present work, MAO and MAO/EPD surface treatments were individually employed to prepare 

the composite coatings on AZ31B magnesium alloy. Microstructure, chemical and phase compositions, 

electrochemical behaviours, and corrosion resistance of magnesium alloys with MAO and MAO/EPD 

coatings were investigated. 

2. MATERIALS AND METHODS 

A commercial AZ31B magnesium alloy with the chemical composition of Mg-3.2Al -0.82Zn -

0.35 Mn- 0.03Si -0.05Ca- 0.005Fe wt.% was used as substrate material. The AZ31B alloy was cut into 

disc specimens with a thickness of 3 mm and a diameter of 50 mm. Prior to the MAO process, the 

specimens were firstly polished with SiC abrasive paper from 200 grade to 2000 grade. The coating 

process was implemented in an alkaline electrolyte containing 5.0 g/L Na2SiO3·9H2O, 8.0 g/L KF·2H2O 

and 10.0 g/L NaOH. The pulse width was set 80 μs, the frequency was set 500 Hz, and the current density 

was 7.8 A dm-2. Different periods (5 min, 10 min, and 15 min) of oxidation time were adopted to obtain 

the different thickness coatings (~5 μm, 11 μm, 15 μm) in MAO treatment. The temperature of the 

electrolyte solution was maintained at ~20 ℃ by adjusting the temperature of cooling water during the 

treatment process. To obtain the MAO/EPD coatings, the MAO-coated AZ31B specimens with the same 

deposition time were then immersed in a cathodic HG-91 E-coating bath solution (60 wt.% deionized 

water, 30 wt.% HG-90 emulsion and 10 wt.% HG-90 matte color paste) at voltages of 60 V, 80 V, 100 

V respectively for different thickness coatings (~ 10 μm, 15 μm, 20μm). Afterward, the specimens were 

cleaned with deionized water and then put in an oven at 220 ℃ for 20 min. 
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The microstructures of the specimens were observed by Field Emission Scanning Electron 

Microscopy (FE-SEM, JSM-6700F, JEOL, Tokyo, Japan). Phase composition of the coatings were 

analysed by X-ray diffraction (XRD, DMAX-RB, Rigaku, Tokyo, Japan, Cu K α) using Cu Kα radiation 

with 2θ of 20 - 80°. 

The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were 

adopted to evaluate the corrosion resistance properties of MAO and MAO/EPD coatings. They were 

carried out on CHI660D (Shanghai, China). In three-electrode cells, a platinum plate was used as the 

counter electrode, and Ag/AgCl was used as the reference electrode. The working electrode was the 

coated sample. The exposed area of the working electrode was 0.5 cm2. It was immersed into the 

electrolyte of 3.5 wt.% NaCl at room temperature. Half an hour later, EIS was performed with a 

perturbation amplitude of 10 mV and a test frequency ranging 105 Hz - 1 Hz. After 1 h immersion, the 

potentiodynamic polarization test was conducted at a rate of 5 mV/s. A 3.5 wt.% NaCl solution was used 

in immersion experiment to evaluate the long-term corrosion behavior of the samples and the soaked 

solution was replaced every 24h. During the replacement, the sample was washed with deionized water 

and dried in the air, and the changes on the surface of the sample were recorded by photos.  

 

 

3. RESULTS AND DISCUSSION 

3.1 Microstructure 

The SEM images of the surface and the cross-section of MAO coatings are shown in Figure 1. 

The morphology changes with different periods of deposition time. The typical “crater-like” micropores 

are found on the surface of MAO coating.  The formation of the micropores may be related to the gas 

bubbles out of the micro-arc discharge channels and thermal stress concentrated in the solidified molten 

oxide [20]. The surface discharge micropores increase in size and decrease in amount with the micro-

arc oxidation time prolongs. Meanwhile, more defects can be observed. It can be explained by the fact 

that the increasing deposition times of the ceramic layer leads to enlarged impedance value of the surface 

increases. In the constant current mode, the voltage rise increases the energy of a single pulse, and the 

volume of the melt produced by the ceramic layer during the breakdown discharge grows, resulting in 

an increase in the size of the micropores remaining after the discharge channel is condensed.  The 

formation of these micropores and microcracks is detrimental to corrosion resistance of MAO coating. 

Figure 1(b, d, f) shows the morphology of the cross-sections of the MAO-coated AZ31B magnesium 

alloy. They are composed of a porous layer on the top and a thin dense layer between top layer and 

AZ31B substrate. Owing to the chemical bonding in the MAO process, the dense layer and the substrate 

are jointed compactly [21]. The thickness and the compactness of the dense layer change with oxidation 

time. For 5-10 min, the dense layer become thick with time and kept compact. However, when the 

oxidation time reached 15 min, the thickness of the dense layer decreases and a large number of defects 

appeared.  
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Figure 1. SEM micrographs of the surface and the cross-sections of the MAO coated AZ31B with 

different oxidation time: (a~b) 5 μm ; (c~d) 11 μm ; (e~f) 15 μm . 

 

The SEM images of the surface and the cross-section of MAO/EPD coated alloys are shown in 

Figure 2. It is clear that MAO with an EPD coating is able to obtain a smooth and non-porous surface. 

From the cross-section, MAO/EPD coating consists of the organic EPD coating, and the layer of MAO. 

The epoxy resin contributes a smooth and compact surface without any defects. The organic EPD coating 

is observed to reach the dense inner layer through the porous outer layer of MAO, and the mechanical 

interlocking between the EPD coating and the rough interface of the discharge channel is tightly 

combined through the discharge channel. The thickness of the EPD coating is proportional to the 

oxidation voltage.  
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Figure 2. SEM micrographs of (a) the surface and the cross-sections of the MAO coated AZ31B. (b-d) 

are associated with different thickness: (b) 10 μm, (c) 15 μm, (d) 20 μm. 

 

3.2 Phase Composition 

 
Figure 3. XRD patterns of the MAO and MAO/EPD coating on AZ31B magnesium alloy. 

 

Figure 3 shows the XRD patterns of the MAO and MAO/EPD coated AZ31B in comparison to 

AZ31B alloy without coating. The diffraction peaks are predominately Mg solid solution for the AZ31B. 

However, the MAO and MAO/EPD coated samples show other diffraction peaks of Mg2SiO4 and MgO 

besides Mg. There is no difference of phase composition between MAO and MAO/EPD coated samples, 

indicating hardly an effect of electrophoretic treatment on the phase composition. The phase formation 
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mechanism of AZ31B magnesium alloy MAO coating in the silicate electrolyte has already been 

reported [22].  

 

3.3 Electrochemical Corrosion Behavior 

3.3.1 Electrochemical test of MAO coatings 

The potentiodynamic polarization curves of MAO coatings with different thickness are displayed 

in Figure 4. Tafel extrapolation [23,24] was employed to obtain the corrosion potential (Ecorr) and 

corrosion current density (icorr).  The measured values are listed in Table 1. 

 
Figure 4. Potentiodynamic polarization curves of MAO coatings with different thickness in 3.5 wt.% 

NaCl. 

 

Table 1. Electrochemical data from potentiodynamic polarization tests 

 

Samples Ecorr (mV vs. Ag/AgCl) icorr (A/cm2) 

5 μm MAO coating -1403 1.28 × 10-8 

11 μm MAO coating -1384 2.01 × 10-8 

15 μm MAO coating -1448 3.76 × 10-8 

 

The results show that Ecorr moves towards the positive direction firstly with the increase of MAO 

thickness from 5 μm  to 11 μm, and then towards the opposite direction when the thickness reaches 15 

μm . The low corrosion current density of the three samples (~10-8 A/cm2) indicate that the corrosion 

resistance of the samples increased after MAO treatment. Compared with 5 μm and 15 μm MAO 

processed samples, coatings fabricated with 11 μm illustrated superior corrosion protection properties. 

It indicates that the corrosion resistance of MAO coating is not growing monotonously with the 

increasing thickness. This may be attributed to the increasing size of MAO micropores (Figure 1a, c and 

e) with deposition time, which leads to decreases the corrosion resistance of MAO coating [25]. 



Int. J. Electrochem. Sci., Vol. 15, 2020 

  

1384 

However, with the increase of time, the thickness of the dense layer of the micro-arc oxidation coating 

was the largest when the MAO coating was 11 μm, so the corrosion resistance of the coating did not 

increase with the increase of the thickness. 

Electrochemical Impedance Spectroscopy (EIS) was further to evaluate the corrosion behavior 

of MAO coatings with different deposition time. The Nyquist plot in Figure 5a shows that MAO coating 

with 11 μm has the maximum semicircles' radius. It indicates the highest impedance thus the highest 

corrosion resistance. In contrast, MAO coatings with 5 μm and 15 μm deposition exhibit lower values 

of impedance and corrosion resistance. It supports the conclusion in the last paragraph that the corrosion 

resistance of MAO coating is not growing monotonously with the increasing thickness. In the Bode plot 

(Figure 5b), the value of impedance modulus of 11 μm deposition is highest among three samples, which 

verifies the result of Nyquist plot. 

 

 
 

Figure 5. EIS with different thickness of MAO coating in 3.5 wt.% NaCl: (a) Nyquist; (b) Bode; (c) 

Phase angle; (d) Equivalent circuit diagram. 

 

Table 2. EIS fitting results for MAO coatings in 3.5 wt.% NaCl solution. 

 

Sample CPE1 (F/cm2) R1 (Ω·cm2) CPE2 (F/cm2) R2 (Ω·cm2) 

5 μm MAO coating 2.16 × 10-7 3.52 × 103 2.84 × 10-6 5.96× 104 

11 μm MAO coating 6.85 × 10-8 8.63 × 104 2.48 × 10-7 6.35× 105 

15 μm MAO coating 3.76 × 10-8 1.42 × 104 3.14 × 10-6 2.82× 104 

 

The schematic drawing of equivalent electrical circuit is given in Figure 5d [26]. It is plotted 

based on the EIS studies on MAO coatings to fit the experimental data. Rs is the resistance of solution; 

R1 is the resistance of porous outer layer of MAO coating and paralleled with a phase element CPE1; R2 
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represents the resistance of dense inner layer of MAO coating and paralleled with a phase element CPE2. 

The fitted results of the circuit elements are listed in Table 2, where the inner layer resistance R2 is higher 

than that of outer layer, R1.  

Under the existing technological conditions, the resistance value of MAO coatings changes with 

the thickness and reaches a peak. Further increasing of thickness, the values resistance decrease. It's 

worth noting that the resistances R2 of the dense layer at all coating thickness are higher than those  of 

the porous layer R1. The MAO thickness of the sample for 11 μm has the highest corrosion resistance. 

The test results of corrosion resistance are consistent with the trend of the thickness of the MAO coating 

dense inner layer in Figure 1. It indicates that the dense inner layer plays a key role in MAO coating, 

protecting AZ31B alloy from corrosion In other words, the dense inner layer determines the corrosion 

protection properties of the whole MAO coating[27]. 

 

3.3.2 Electrochemical test of MAO/EPD coatings 

 
Figure 6. Potentiodynamic polarization curves of MAO/EPD coatings with different thickness in 

3.5.wt% NaCl. 

 

Table 3. Electrochemical data from potentiodynamic polarization tests. 

 

Samples Ecorr (mV vs. Ag/AgCl) icorr (A/cm2) 

10 μm MAO/EPD coating -1360 2.69 × 10-10 

15 μm MAO/EPD coating -1323 1.23 × 10-10 

20 μm MAO/EPD coating -1308 5.51 × 10-11 

 

Figure 6 gives the potentiodynamic polarization curves of MAO/EPD coatings with different 

thickness. The results of electrochemical parameters (Ecorr and icorr) are listed in Table 3, where Ecorr 
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grows with the coating thickness from 10 to 15, 20 μm, while icorr decreases from 2.69 × 10-10 to 1.23 × 

10-10, 5.51 × 10-11 A/cm2, It indicates that the corrosion resistance of MAO/EPD coating enhances with 

the increase of EPD coating thicknes. Compared with MAO coatings, all MAO/EPD coatings exhibited 

a higher corrosion potential and a lower corrosion current density (decreased~2 order of magnitude). It 

illustrated that the EPD composite treatment is capable of significantly increasing the corrosion 

resistance of MAO coating. 

 
 

Figure 7. EIS of MAO/EPD coatings with different thickness in 3.5 wt% NaCl: (a) Nyquist; (b) Bode; 

(c) Phase angle; (d) Equivalent circuit diagram. 

 

To further study the electrochemical corrosion behavior of MAO/EPD coatings, the samples 

were tested by EIS, with the results shown in Figure 7. It can be seen from Nyquist plot and Bode plotin 

Figure 7a and b that the MAO/EPD coating with 20 μm exhibits a maximum semicircles' radius and 

highest impedance modulus, indicating highest corrosion resistance. And the corrosion resistance of the 

MAO/EPD coating increases with the increasing deposition voltage. 

Considering the Nyquist plot of MAO/EPD coatings shows only one capacitive loop in Figure 

7a and the MAO/EPD coatings form an integral structure (Figure 2), the equivalent circuit model with 

series resistances is adopted and shown in Figure 7d. Rs is the resistance of solution; R1 is the resistance 

of MAO/EPD composite coating and paralleled with a phase element CPE1. The fitted results are 

provided in Table 4. 

As demonstrated by the EIS result, the resistance of the composite coating rises from 4.62 × 108, 

4.81 × 108 to 7.72 × 108 Ω·cm2 with the processing voltage increases,, and the capacitance of the 

composite coating reduces from 8.33 × 10-10, 2.83 × 1010 to 2.30 × 10-10 F/cm2. In other words, the 

corrosion resistance of the MAO/EPD composite coating increased with the increasing voltage of EPD 
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treatment. At the same time, the resistance values of composite coatings are all in the order of 108 Ω·cm2, 

more than three orders of magnitude than those of MAO, It shows that MAO/EPD coatings all possess 

good corrosion resistance. 

 

 

Table 4. EIS fitting results for MAO/EPD coatings in 3.5 wt.% NaCl solution. 

 

Samples CPE1 (F/cm2) R1(Ω∙cm2) 

10 μm MAO/EPD coating 8.33 × 10-10 4.62 × 108 

15 μm MAO/EPD coating 2.83 × 10-10 4.81 × 108 

20 μm MAO/EPD coating 2.30 × 10-10 7.72 × 108 

 

3.4 Immersion experiment 

The immersion experiment was used to study the degradation behaviors of MAO and MAO/EPD 

coated AZ31B. In order to compare the corrosion resistance of MAO samples with the best corrosion 

resistance and the MAO/EPD samples with the least corrosion resistance. Figure 8 shows optical 

microscopic images of the sample treated with MAO for 11 μm and the sample treated with MAO/EPD 

thickness of 10 μm during the course of the immersion experiment. Immersed in 3.5 wt.% NaCl solution 

for 53 hours, the MAO treated AZ31B began to show corrosion points (Figure 8a). After 149 h, the entire 

surface was covered with corrosion pits. In contrast, in Figure 8b, there was no corrosion point in the 

whole process. The results indicate that MAO/EPD treatment significantly improved the long-term 

corrosion resistance of AZ31B Mg alloy. 

 

 
Figure 8. Optical microscopic images of the MAO (a) and MAO/EPD coated (b) AZ31B Mg alloy after 

immersion experiment for different times in 3.5 wt.% NaCl solution. 
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From the results of electrochemical tests and immersion experiment, both of MAO coating and 

MAO/EPD coating improve the corrosion resistance of the magnesium alloy, and MAO/EPD coating 

performs better. The schematic drawings of the protection mechanisms for both MAO and MAO/EPD 

coatings are illustrated in Figure 9. Due to the porous structure on the outer layer of MAO coating (Figure 

9a), the corrosive substance is easy to pass through the porous layer, and intrude into and react with  the 

dense layer,  resulting in the damage of the MAO coating[28]. Then some corrosive medium penetrates 

through the MAO dense layer and reacts with the Mg matrix, resulting in corrosion of the magnesium 

alloy matrix (Figure. 8a). These corrosion spots should be developed from micropores and cracks on the 

surface of the MAO coating during the immersion process. As the thickness of the dense layer of the 

MAO coating increases, the difficulty of the corrosive medium penetrating the coating increases, and 

the corrosion protection ability of the coating on the magnesium alloy increases. Therefore, the dense 

layer of MAO coating is particularly important in the corrosion protection of magnesium alloys[25,26]. 

Therefore, the sealing of MAO coating is very important in improving the corrosion resistance. 

After the composite treatment by electrophoresis, the pores of MAO coating are covered by the 

electrophoretic layer, forming a compact structure (Figure 9b). The entire EPD layer filled the micro-

pores and micro-cracks on the MAO surface and prevented corrosive medium from penetrating into the 

coating, thus effectively improved the corrosion resistance of the alloy[29,30]. Moreover, EPD coating 

belongs to the organic category which has high chemical stability. It effectively prevented the corrosive 

substance from penetrating the EPD coating, as well as the formation of corrosion current[31]. With the 

increase of MAO/EPD coating thickness, the overall ability of to impede the corrosive medium was 

enhanced, so the corrosion resistance of the coatingwas increased. Both electrochemical tests and 

immersion tests confirmed that MAO/EPD coatings have excellent performance of corrosion protection.  

 

 
 

Figure 9. Corrosion protection schematic diagram of the MAO coating (a) and MAO/EPD coating (b). 

 

 

4. CONCLUSIONS 

MAO coatings and MAO/EPD coatings with different thickness were prepared on AZ31B Mg 

alloy. The corrosion resistance of MAO coatings is enhanced with the increase of coating thickness and 
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closely related to the dense layer. The increase of EPD coating thickness resulted in insignificant 

enhancement of corrosion resistance for MAO/EPD composite coating. The resistance values are 

estimated in the order of 108 Ω·cm2.It means that MAO/EPD composite coatings has an improved 

corrosion resistance compared with MAP coating. It is mainly because the EPD coating composite 

effectively reduces the microporous and microcrack defects of MAO coating. 
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