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The battery state of charge (SOC) and state of power capability (SOP) are the core elements of a battery 

management system (BMS) for ensuring efficient and safe driving in electric vehicles. In this paper, the 

SOC and the SOP are jointly estimated under multiple constraints by using the dual polarization (DP) 

model for a ternary lithium-ion battery, and the extended Kalman filter (EKF) algorithm has been used 

to improve the accuracy of state estimation and the calculational simplicity. The calculation equations 

for the multiple-constraint parameters are deduced. The power capability can be calculated rapidly based 

on the constraints on the current, voltage and SOC. The simulation and experimental results demonstrate 

that for both the SOC and the SOP, highly satisfactory prediction accuracy is realized under various 

operating conditions. The maximum SOP estimation error in the DP model is less than 2.1% for a battery 

with various SOC states, which corresponds to higher estimation accuracy than that of the Thevenin 

model. In addition, the SOP estimation model has strong robustness, which renders the joint estimation 

of the SOC and the SOP more reliable in the practical application of electric vehicles. 

 

 

Keywords: Ternary lithium-ion battery, dual polarization model, extended Kalman filter, state of charge 
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1. INTRODUCTION 

The T-LiB (ternary lithium ion battery), as a promising solution to the exacerbation of fuel 

depletion and environmental disruption produced by traditional fuel vehicles, is an important vehicle 

energy storage device that has received extensive attention in the electric vehicle industry. To ensure 

safe, durable, and efficient driving performance of the battery under various operating conditions and 
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during interactions with charging piles, an excellent battery management system (BMS) is essential and 

has been devised to furnish estimation, monitoring, equalization, control and communication functions 

to improve the battery efficiency. Among these, accurate real-time state estimation within the battery is 

the key role of BMS. However, due to the formidable nonlinearity and time-variability, along with the 

inconsistency among battery packs, the reliable and accurate estimation of the state of charge (SOC) and 

the state of power capability (SOP) remains challenging [1-3]. 

A reliable prediction of the battery’s states is based on an accurate battery model, which can 

represent the internal characteristics of the battery [4]. Many battery models have been presented, which 

include the neural network model, the electrochemical model [5], and equivalent circuit models (ECMs) 

[6]. The first two models are not suitable for practical applications in electric vehicles because they 

require complicated calculations and are unstable models. The equivalent-circuit models that use electric 

components to approximate the battery dynamics are the most widely used. The commonly used 

equivalent circuit models are the resistance model (Rint), the first-order resistor-capacitor (RC) model 

(Thevenin), the second-order RC model (DP) [7], and PNGV. In Ref. [8, 9], the second-order RC model 

has been applied to determine the state of charge, and satisfactory estimation accuracy was realized. In 

Ref. [10-12], the DP model performs the best in estimating the SOC with the extended Kalman filter 

(EKF) algorithm on the basis of three operating conditions. Nejad [13] obtained a similar conclusion by 

using FUDS, finding that the state estimation within the DP model has the highest precision. In Ref. 

[14], a comprehensive comparison of equivalent circuit models demonstrates that the maximum error of 

the DP model is much smaller than that of the Thevenin model. Considering both the model accuracy 

and the simplicity of the mathematical analysis, the DP model with two-RC hysteresis is adopted in this 

paper. 

The SOC is critical for the energy management system of the battery, which refers to the 

remaining charge and is the basis of the charge and discharge control strategy and the system security 

[15]. It is the hidden state inside the battery and is determined via non-direct measurement. Therefore, 

accurate and rapid estimation of the battery SOC has become the main focus and challenge of the BMS 

[16]. For overcoming these difficulties, various approaches for estimation have been proposed, such as 

the ampere-hour integration method [17], genetic algorithms [18], the open-circuit voltage method [19], 

the particle filter (PF) [20], the neural network method [21], the grey extended Kalman filter [22], the 

extended Kalman filter (EKF) [23-25], and artificial intelligence [26]. In addition, adaptive filter 

techniques and observer methods [27-30] have been designed for determining the battery SOC rapidly. 

Ye [31] uses the improved adaptive particle swarm filter algorithm to estimate the SOC. Wei [32] 

proposes a multi-timescale approach with on-line battery parameter identification for simultaneously 

estimating the SOC and the battery capacity. Among these methods, the Kalman-filter-based approaches 

perform the best in practical applications, especially the EKF and the unscented Kalman filter (UKF) 

algorithms. Nevertheless, the UKF uses predetermined sampling points in the system sampling, which 

is a complicated calculation process. Thus, the EKF [33-35] is a useful approach for determining the 

SOC exactly, which is the research objective in this study, and the EKF is implemented via a simple 

algorithm. In addition, it can self-correct if a large error occurs in the estimation of the system, and its 

filtering theory can substantially reduce the impact of sampling noise. In Ref. [36], the EKF is integrated 

with the multi-model method and is used to estimate navigation information according to various error 
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models to provide an optimal estimate for the state. To improve the state estimation accuracy and to 

simplify the calculation process, this paper use the EKF to estimate the SOC. 

For the estimation of the battery power usage in electric vehicles and the regulation of the 

propelling power of starting, speeding up, climbing, and regenerative braking, a reliable SOP estimation 

is of substantial importance. Nevertheless, the power capability cannot be measured by measuring 

equipment directly [37]. Ref. [38] describes a common method for measuring the power capability using 

the hybrid pulse power characterization (HPPC) test. This method considers only the battery voltage 

limit, which inevitably leads to reductions in the accuracy and adaptability. In addition, the employed 

Rint model cannot identify the dynamic characteristic of the battery. Therefore, it can be only used in 

the laboratory. Regarding the SOP estimation, various algorithms that are based on dynamic battery 

models are available for ensuring efficient and safe driving [39]. In Ref. [40, 41], the state of energy 

(SOE) is considered when estimating the SOP with multi-constrained conditions; however, the use of 

the Thevenin model reduces the algorithm accuracy by ignoring the model precision. In Ref. [42], the 

temperature effect is calculated in the SOP estimation of multi-parameter constraints. However, model-

based SOP estimation with a RC circuit of a dynamic equivalent circuit model is not precise. Wei [43] 

presents an AF-RTLS technique combined with a Luenberger observer to compensate for noise 

interference by gaining control, and the SOP estimate is extracted by utilizing the first-order battery 

model without sufficient model accuracy. Other proposed SOP estimation methods are also based on the 

Thevenin model and ignore the dynamics characteristics inside the model [44]. Since the SOC and the 

SOP are mutually interactive, it is valuable to discuss the joint estimation of the SOC and the SOP under 

multi-parameter constraints. A critical result of this paper is the development of a multi-parameter joint 

estimation method for the state of charge and the state of power under the DP battery model. The DP 

model with two RC loop circuits is used to estimate the status parameter with higher model accuracy. 

The joint estimation for the SOC and the SOP is conducted on the basis of the EKF technique to improve 

the estimation accuracy and the calculational simplicity. Moreover, various conditions are used to 

evaluate the joint estimation performance, and the low-order equivalent circuits are compared in terms 

of estimation accuracy.  

The paper is divided into four parts. Section 2 represents the employed equivalent-circuit model 

and parameter identification approach. Section 3 reviews the EKF algorithm on the basis of the DP 

model, and an approach for the multi-parameter-constraint joint estimation of the SOC and the SOP is 

developed. The proposed multi-parameter-constraint joint estimation method with various profiles is 

evaluated in Section 4. The conclusions of this study are summarized in the last part.   

 

 

 

2. PROPOSED BATTERY MODEL AND PARAMETER IDENTIFICATION METHOD 

2.1. Battery Model     

The accuracy of state estimation and the calculational simplicity vary among battery models. 

Therefore, a reliable battery model must be established prior to obtaining a state estimate with high 

accuracy. In the practical BMS, the equivalent circuit model, which is based on the resistor and the 
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capacitor, is widely used [9, 45-47]. For this study, the DP model, which includes an open-circuit 

voltage, an ohmic resistance and two resistor-capacitor (RC) loop circuits, is used as the battery model, 

a schematic diagram of which is displayed in Fig. 1. The open-circuit voltage (UOCV) is a function of the 

SOC value. The ohmic resistance (R0) of the battery mainly refers to the impedance that is caused by the 

material structure of the electrode and the connection resistance. Two RC networks with polarization 

resistances (Rp1, Rp2) and polarization capacitances (Cp1, Cp2) are used to simulate the dynamic 

electrochemical polarization and concentration polarization. 

 

 
 

Figure 1. Schematic diagram of the equivalent circuit model  

 

 

In Fig. 1, UP1, UP2, and UL are the two polarization voltages that are generated by RC circuits and 

the terminal voltage, respectively, and I is the load current, where discharge is defined as positive. The 

electrical conduction of the battery model can be expressed by Equation (1).  

{
 
 

 
 
𝑈𝐿 = 𝑈𝑜𝑐𝑣 − 𝐼𝑅0 −𝑈𝑃1 − 𝑈𝑃2

𝑈𝑃1̇ = −
1

𝐶𝑃1𝑅𝑃1
𝑈𝑃1 +

1

𝐶𝑃1
𝐼

𝑈𝑃2̇ = −
1

𝐶𝑃2𝑅𝑃2
𝑈𝑃2 +

1

𝐶𝑃2
𝐼

                                                        (1) 

where 𝑈𝑃1̇ and 𝑈𝑃2̇ are the derivatives of UP1 and UP2, respectively. The battery state equation in 

Equation (1) can be discretized as follows: 

{
 

 
𝑈𝐿(𝑘) = 𝑈𝑜𝑐𝑣 − 𝐼𝑘𝑅0 − 𝑈𝑃1(𝑘) − 𝑈𝑃2(𝑘)

𝑈𝑃1(𝑘 + 1) = 𝑈𝑃1(𝑘)𝑒
−
𝑇𝑆
𝜏1 + 𝐼𝑘+1𝑅𝑃1(1 − 𝑒

−
𝑇𝑆
𝜏1)

𝑈𝑃2(𝑘 + 1) = 𝑈𝑃2(𝑘)𝑒
−
𝑇𝑆
𝜏2 + 𝐼𝑘+1𝑅𝑃2(1 − 𝑒

−
𝑇𝑆
𝜏2)

                                 (2) 

 

2.2. Parameter Identification Method 

Prior to describing the dynamic characteristics of the battery, the model parameters must be 

identified reliably, which include UOCV, R0, RP, and CP. In this paper, nonlinear offline identification [9, 

48] is used to obtain the parameters, which analyses the voltage response curve of the HPPC. Fig. 2 

presents the battery terminal voltage and current changes that occur during an HPPC experiment at one 

SOC point. 
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Figure 2. Curves of the HPPC test voltage and current response  

 

 

The average value of the two terminal voltages after the charging and discharging processes is 

used as the open-circuit voltage UOCV to reduce the effect of the rebound voltage.  

Affected by ohmic resistance R0, the terminal voltage changes rapidly with the change of the 

current from I to 0. For reducing noise interference to R0, the charge-discharge resistances are calculated 

and the average value of voltage values of AB and CD is used to calculate R0 by Equation (3). 

𝑅0 =
∆𝑈𝐴𝐵 + ∆𝑈𝐷𝐶

2𝐼
                                                                      (3) 

During the period from t2 to t3, the terminal voltage changes slowly due to the polarization effect. 

Based on Equation (1), the terminal voltage UL(t) can be expressed as an exponential function, which is 

presented as Equation (4).  

𝑈𝐿(𝑡) = 𝑈𝑂𝐶𝑉 − 𝑈1(0)𝑒
−𝑡 𝜏1⁄ − 𝑈2(0)𝑒

−𝑡 𝜏2⁄                                        (4) 

Suppose 𝑈1(0) = 𝑏1 and𝑈2(0) = 𝑏2. Then: 

𝑈𝐿(𝑡) = 𝑈𝑂𝐶𝑉 − 𝑏1𝑒
−𝑡 𝜏1⁄ − 𝑏2𝑒

−𝑡 𝜏2⁄                                                    (5) 

From the measurement data of the terminal voltage, the values of b1, b2, τ1 and τ2 in the above 

equation can be acquired through exponential fitting with the cftool fitting toolbox in the MATLAB 

software. 

τ1 and τ2 are the polarization time constants in the RC circuits of ECM, which can be expressed 

as: 

{
𝜏1 = 𝐶𝑃1𝑅𝑃1
𝜏2 = 𝐶𝑃2𝑅𝑃2

                                                                       (6) 

Since the polarization voltage cannot change in the process from point C to point D, the 

instantaneous voltages at the two points are equal. Thus, Equation (6) can be obtained. 

{
{𝐼 × 𝑅𝑃1(1 −𝑒

−𝑡𝑐 𝜏1⁄ ) = 𝑏1
{𝐼 × 𝑅𝑃2(1 −𝑒

−𝑡𝑐 𝜏2⁄ ) = 𝑏2
                                                    (7) 

Comparing Equations (6) and (7), we obtain polarization parameters RP1, CP1, RP2, and CP2. 
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3. JOINT ESTIMATION APPROACH UNDER A MULTI-PARAMETER CONSTRAINT 

3.1. State of Charge Estimation Based on EKF 

In a linear system, Kalman filtering can be used to calculate the system state with the state 

equation according to the system input and output. Nonlinear systems, such as lithium-ion battery 

systems, require the use of the EKF algorithm to linearize the state-space equation with the Taylor 

formula, from which the second-order and higher order terms are omitted. The calculation procedure of 

the EKF arithmetic that is based on the time series that is defined in this paper is presented in Table 1. 

The SOC refers to the ratio of the residual capacity to the capacity of the fully charged state. The 

traditional amperage integration method for estimating the SOC is based on Equations (8). Considering 

the negative effects of the suboptimal sensor precision, battery ageing and self-discharge on the SOC 

estimation performance, this paper combines the EKF algorithm with the traditional amperage 

integration method to estimate the SOC to realize the self-correction of the SOC.  

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡0) −
𝜂

𝐶𝑁
∫ 𝑖(𝑡)𝑑𝑡
𝑡

𝑡0

                                               (8) 

where η is the coulomb efficiency, which is determined by the current, temperature, and capacity, 

and CN is the capacity of the fully charged state, where CN=35 Ah. 

 

 

Table 1. Algorithm of the extended Kalman filter 

 

The nonlinear state-space equation ：{
𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘) + 𝜔𝑘
𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘) + 𝜈𝑘

 

Linearization equation：{
𝑥𝑘+1 ≈ 𝑓(𝑥̂𝑘, 𝑢𝑘) +

𝜕𝑓

𝜕𝑥𝑘
(𝑥𝑘 − 𝑥̂𝑘) + 𝜔𝑘

𝑦𝑘 ≈ 𝑔(𝑥̂𝑘, 𝑢𝑘) +
𝜕𝑔

𝜕𝑥𝑘
(𝑥𝑘 − 𝑥̂𝑘) + 𝜈𝑘

  

Suppose 
𝜕𝑓

𝜕𝑥𝑘
= 𝐴𝑘 and   

𝜕𝑔

𝜕𝑥𝑘
= 𝐶𝑘. Then, 

{
𝑥𝑘+1 ≈ 𝐴𝑘𝑥𝑘 + [𝑓(𝑥̂𝑘, 𝑢𝑘) − 𝐴𝑘𝑥̂𝑘] + 𝜔𝑘
𝑦𝑘 ≈ 𝐶𝑘𝑥𝑘 + [𝑔(𝑥̂𝑘, 𝑢𝑘) − 𝐶𝑘𝑥̂𝑘] + 𝜈𝑘

 

(1) Initialization: 

𝑥̂0/0 = 𝐸(𝑥0), 𝑃0/0 = 𝑣𝑎𝑟(𝑥0) 

(2) State estimate update:  

𝑥̂𝑘/𝑘−1 = 𝑓(𝑥̂𝑘−1/𝑘−1, 𝑢𝑘−1) = 𝐴𝑘−1𝑥̂𝑘−1/𝑘−1 + 𝐵𝑘−1𝑢𝑘−1 

Error covariance update: 

𝑃𝑘/𝑘−1 = 𝐴𝑘−1𝑃𝑘−1/𝑘−1𝐴𝑘−1
𝑇 + 𝑄𝑘  

(3) Kalman gain matrix: 

𝐿𝑘 = 𝑃𝑘/𝑘−1𝐶𝑘
𝑇[𝐶𝑘𝑃𝑘/𝑘−1𝐶𝑘

𝑇 + 𝑅𝑘]
−1

 

(4) State estimate measurement update:  

𝑥̂𝑘/𝑘 = 𝑥̂𝑘/𝑘−1 + 𝐿𝑘[𝑦𝑘 − 𝑔(𝑥̂𝑘/𝑘−1, 𝑢𝑘)] 

Error covariance measurement update: 

𝑃𝑘/𝑘 = (𝐸 − 𝐿𝑘𝐶𝑘)𝑃𝑘/𝑘−1 
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In these equations, xk is the state variable at time k, uk is the input variable, yk is the observation 

variable, ω is the process noise, ν is the measured noise, and ω and ν are independent. 𝑔(𝑥𝑘, 𝑢𝑘) and 

𝑓(𝑥𝑘, 𝑢𝑘)are the observation function and the state function, respectively, of the system. 

After discretization and linearization of Equations (2), the state and observation equations of the 

battery can be obtained via Equations (9) and (10) 

[

𝑈𝑃1,𝑘
𝑈𝑃2,𝑘
𝑆𝑂𝐶𝑘

] = [
𝑒
−
𝑇𝑆
𝜏1 0 0

0 𝑒
−
𝑇𝑆
𝜏2 0

0 0 1

] [

𝑈𝑃1,𝑘−1
𝑈𝑃2,𝑘−1
𝑆𝑂𝐶𝑘−1

] +

[
 
 
 
 𝑅𝑃1(1 − 𝑒

−
𝑇𝑆
𝜏1)

𝑅𝑃2(1 − 𝑒
−
𝑇𝑆
𝜏2)

𝜂𝑇𝑠

𝐶𝑁 ]
 
 
 
 

[𝑖𝑘−1] + [

𝜔1.𝑘−1
𝜔2.𝑘−1
𝜔3.𝑘−1

]                    (9)

  

[𝑈𝐿,𝑘] = [−1 −1 0] [

𝑈𝑃1,𝑘−1
𝑈𝑃2,𝑘−1
𝑆𝑂𝐶𝑘−1

] − [𝑅0][𝑖𝑘] + [𝑈𝑂𝐶𝑉] + [𝜈𝑘]                           (10) 

where 𝜔1.𝑘−1, 𝜔2.𝑘−1  and𝜔3.𝑘−1  denote the noises of the three state variables and 𝜈𝑘  is the 

observation noise. Equation (11) presents the correlative SOC estimation matrices, which have been 

deduced from the state equation of the battery.  

𝐴𝑘 = [
𝑒
−
𝑇𝑆
𝜏1 0 0

0 𝑒
−
𝑇𝑆
𝜏2 0

0 0 1

] , 𝐵𝑘 =

[
 
 
 
 
 𝑅𝑃1(1 − 𝑒

−
𝑇𝑆
𝜏1)

𝑅𝑃2(1 − 𝑒
−
𝑇𝑆
𝜏2)

𝜂𝑇𝑠
𝐶𝑁 ]

 
 
 
 
 

                                (11) 

𝐶𝑘 =
𝜕𝑈𝐿
𝜕𝑥𝑘

= [
𝜕𝑈𝐿
𝜕𝑈𝑃1

𝜕𝑈𝐿
𝜕𝑈𝑃2

𝜕𝑈𝐿
𝜕𝑆𝑂𝐶

]                                           (12) 

  
𝜕𝑈𝐿
𝜕𝑈𝑃1

= −1,
𝜕𝑈𝐿
𝜕𝑈𝑃2

= −1,
𝜕𝑈𝐿
𝜕𝑆𝑂𝐶

=
𝜕𝑈𝑂𝐶𝑉
𝜕𝑆𝑂𝐶

− 𝑖 ×
𝜕𝑅0
𝜕𝑆𝑂𝐶

                      (13) 

UOCV and the ohmic resistance are sixth-order polynomial functions of the SOC; 

hence, 
𝜕𝑈𝑂𝐶𝑉

𝜕𝑆𝑂𝐶
 and  

𝜕𝑅0

𝜕𝑆𝑂𝐶
 can be obtained by partial differentiation based on Equations (14) and (15). For 

simplicity of expression, the SOC is replaced with z. 
𝜕𝑈𝑂𝐶𝑉
𝜕𝑆𝑂𝐶

= 𝑎1 + 2𝑎2𝑧
1 + 3𝑎3𝑧

2 + 4𝑎4𝑧
3 + 5𝑎5𝑧

4 + 6𝑎6𝑧
5                    (14) 

𝜕𝑅0
𝜕𝑆𝑂𝐶

= 𝑏1 + 2𝑏2𝑧
1 + 3𝑏3𝑧

2 + 4𝑏4𝑧
3 + 5𝑏5𝑧

4 + 6𝑏6𝑧
5                       (15) 

 

3.2. State of Power Capability Estimation 

3.2.1. Estimation based on the Voltage Constraint 

Automotive applications require continuous power capability estimates, and the current 

capability calculator should be constructed first. Assuming that the system input is unchanged from the 

kth sampling time tk to the (k+L)th sampling time tk+L, namely, 𝑢𝑘+𝐿 = 𝑢𝑘within the sampling intervals 

of L*△t, the discrete state-space equation of the battery model at the discrete-time index k + L is 
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expressed by Equation (16). L is an integer that is determined by the actual energy demand of the vehicle. 

For example, hybrid electric vehicles require 10 s of continuous power to accelerate, climb or brake; 

thus, the value of L is defined as 10/△t. In this study, the value of L is set to 300, and the sampling 

interval is 0.1 s; hence, we require 30 s of continuous power capability. 

{
𝑥𝑘+𝐿 = 𝐴𝑘+𝐿𝑥𝑘+𝐿−1 + 𝐵𝑘+𝐿𝑢𝑘+𝐿−1

𝑦𝑘+𝐿 = 𝐶𝑘+𝐿𝑥𝑘+𝐿 +𝐷𝑘+𝐿
                                                            (16) 

The parameters of the battery change slowly and there are minimal differences with the model 

parameters of the adjacent SOC. Therefore, the battery model can be regarded as a model parameter 

constant system within 30-s duration of power: 

𝑥𝑘+𝐿 = 𝐴𝑘
𝐿𝑥𝑘 + (∑ 𝐴𝐾

𝐿−1−𝑗
𝑥𝑘𝐵𝐾)𝑢𝑘                                           (17)

𝐿−1

𝑗=0
 

The peak power calculation is based on the DP model, and the terminal voltage and polarization 

voltage in a continuous period can be obtained from Equations (18) and (19). 

𝑈𝐿,𝑘+𝐿 = 𝑈𝑜𝑐𝑣(𝑧𝑘+𝐿, 𝐶𝑁) − 𝑈𝑃1,𝑘+𝐿 − 𝑈𝑃2,𝑘+𝐿 − 𝑅𝑖𝑖𝑘+𝐿                                     (18)  

                                        𝑈𝑃,𝑘+𝐿 = 𝑈𝑃1,𝑘+𝐿 +𝑈𝑃2,𝑘+𝐿         

= (𝑒
−
𝑇𝑆
𝜏1)

𝐿

𝑈𝑃1,𝑘 + 𝑖𝐿,𝑘𝑅𝑃1(1 − 𝑒
−
𝑇𝑆
𝜏1)∑ (𝑒

−
𝑇𝑆
𝜏1)

𝐿−1−𝑗𝐿−1

𝑗=0
+ (𝑒

−
𝑇𝑆
𝜏2)

𝐿

𝑈𝑃2,𝑘

+ 𝑖𝐿,𝑘𝑅𝑃2(1 − 𝑒
−
𝑇𝑆
𝜏2)∑ (𝑒

−
𝑇𝑆
𝜏2)

𝐿−1−𝑗

                                                                      (19)
𝐿−1

𝑗=0
 

In addition, the SOC is a function of the current within the continuous sampling interval, and 

UOCV depends on the SOC and the battery capacity. Thus, Equations (18) cannot be directly applied to 

the solution of the current capability. To decouple the nonlinear relation, the independent function g (z, 

Cn) is used to define the UOCV, and the first-order Taylor expansion of UOCV is used to obtain the current 

capability estimate with the high-order terms omitted, which is expressed as follows: 

                        𝑈𝑜𝑐𝑣(𝑧𝑘+𝐿, 𝐶𝑁) = 𝑈𝑜𝑐𝑣 (𝑧𝑘 −
𝜂𝑖𝑘𝐿 × 𝑇𝑆

𝐶𝑁
⁄ , 𝐶𝑁)  

≈ 𝑈𝑜𝑐𝑣(𝑧𝑘, 𝐶𝑁) − 𝑖𝑘
𝜂𝐿 × 𝑇𝑆

𝐶𝑁
⁄

𝜕𝑈𝑂𝐶𝑉
𝜕𝑧

|
𝑧=𝑧𝑘

                                                     (20) 

Then:  

      𝑈𝐿,𝑘+𝐿 = 𝑈𝑜𝑐𝑣(𝑧𝑘, 𝐶𝑁) − 𝑖𝑘
𝜂𝐿 × 𝑇𝑆

𝐶𝑁
⁄

𝜕𝑈𝑂𝐶𝑉
𝜕𝑧

|
𝑧=𝑧𝑘

− [(𝑒
−
𝑇𝑆
𝜏1)

𝐿

𝑈𝑃1,𝑘 + 𝑖𝑘𝑅𝑃1(1 − 𝑒
−
𝑇𝑆
𝜏1 )∑ (𝑒

−
𝑇𝑆
𝜏1)

𝐿−1−𝑗𝐿−1

𝑗=0
+ (𝑒

−
𝑇𝑆
𝜏2)

𝐿

𝑈𝑃2,𝑘 + 𝑖𝑘𝑅𝑃2(1

− 𝑒
−
𝑇𝑆
𝜏2)∑ (𝑒

−
𝑇𝑆
𝜏2)

𝐿−1−𝑗𝐿−1

𝑗=0
] − 𝑅𝑖𝑖𝑘                                                                                (21) 

In the end, the current capability estimates that are based on the voltage constraint between tk and 

tk+L are expressed as: 
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{
 
 
 
 
 

 
 
 
 
 

𝑖𝑚𝑎𝑥,𝑘+𝐿
𝑑𝑖𝑠,𝑉 =

𝑈𝑜𝑐𝑣(𝑧𝑘 , 𝐶𝑁) − (𝑒
−
𝑇𝑆
𝜏1)

𝐿

𝑈𝑃1,𝑘 − (𝑒
−
𝑇𝑆
𝜏2)

𝐿

𝑈𝑃2,𝑘 −𝑈𝐿,𝑚𝑖𝑛

𝐿 × 𝜂𝑇𝑆
𝐶𝑁
⁄

𝜕𝑈𝑂𝐶𝑉
𝜕𝑧

|
𝑧=𝑧𝑘

+𝑅𝑃1 (1 − 𝑒
−
𝑇𝑆
𝜏1)∑ (𝑒

−
𝑇𝑆
𝜏1)

𝐿−1−𝑗

𝐿−1
𝑗=0 +𝑅𝑃2 (1 − 𝑒

−
𝑇𝑆
𝜏2)∑ (𝑒

−
𝑇𝑆
𝜏2)

𝐿−1−𝑗

+ 𝑅𝑖
𝐿−1
𝑗=0

𝑖𝑚𝑖𝑛,𝑘+𝐿
𝑐ℎ𝑔,𝑉 =

𝑈𝑜𝑐𝑣(𝑧𝑘 , 𝐶𝑁) − (𝑒
−
𝑇𝑆
𝜏1)

𝐿

𝑈𝑃1,𝑘 − (𝑒
−
𝑇𝑆
𝜏2)

𝐿

𝑈𝑃2,𝑘 −𝑈𝐿,𝑚𝑎𝑥

𝐿 × 𝜂𝑇𝑆
𝐶𝑁
⁄

𝜕𝑈𝑂𝐶𝑉
𝜕𝑧

|
𝑧=𝑧𝑘

+ 𝑅𝑃1 (1 − 𝑒
−
𝑇𝑆
𝜏1)∑ (𝑒

−
𝑇𝑆
𝜏1)

𝐿−1−𝑗

𝐿−1
𝑗=0 + 𝑅𝑃2 (1 − 𝑒

−
𝑇𝑆
𝜏2)∑ (𝑒

−
𝑇𝑆
𝜏2)

𝐿−1−𝑗

+ 𝑅𝑖
𝐿−1
𝑗=0

    (22) 

where 𝑈𝐿,𝑚𝑎𝑥  and𝑈𝐿,𝑚𝑖𝑛are the upper and lower limits, respectively, of the cut-off voltage, which are 

specified by the manufacturer, and 𝑖𝑚𝑎𝑥,𝑘+𝐿
𝑑𝑖𝑠,𝑉  and 𝑖𝑚𝑖𝑛,𝑘+𝐿

𝑐ℎ𝑔,𝑉
are the maximum continuous discharge current 

and the minimum continuous charge, respectively, under the voltage limits.  

 

3.2.2. Estimation based on the SOC Constraint 

To prevent over-charging and over-discharging and to guarantee the safe operation of the battery, 

the current capability must be controlled when the actual SOC approaches the design limits. After 

considering the SOC limit voltage from Equation (8), the SOC-based current calculation formula for 

consecutive L sampling intervals is expressed by Equation (23).  

{
 
 

 
 𝑖𝑚𝑎𝑥,𝑘+𝐿

𝑑𝑖𝑠,𝑧 =
𝑧𝑘 − 𝑧𝑚𝑖𝑛
𝐿 × 𝜂𝑇𝑆

𝐶𝑁
⁄

𝑖𝑚𝑖𝑛,𝑘+𝐿
𝑐ℎ𝑔,𝑧

=
𝑧𝑘 − 𝑧𝑚𝑎𝑥
𝐿 × 𝜂𝑇𝑆

𝐶𝑁
⁄

                                                            (23) 

where 𝑖𝑚𝑎𝑥,𝑘+𝐿
𝑑𝑖𝑠,𝑧  and 𝑖𝑚𝑖𝑛,𝑘+𝐿

𝑐ℎ𝑔,𝑧
are the maximum continuous discharge current and the minimum 

continuous charge current, respectively, that are based on the SOC constraints. 

 

3.2.3. SOP Estimation under the Multi-Parameter Constraint 

After calculating the current capability design limits, the continuous current estimates under 

multi-parameter constraints are calculated as follows: 

{
𝑖𝑚𝑎𝑥
𝑑𝑖𝑠 = 𝑚𝑖𝑛{𝑖𝑚𝑎𝑥 , 𝑖𝑚𝑎𝑥,𝑘+𝐿

𝑑𝑖𝑠,𝑉 , 𝑖𝑚𝑎𝑥,𝑘+𝐿
𝑑𝑖𝑠,𝑧  }

𝑖𝑚𝑖𝑛
𝑐ℎ𝑔

= 𝑚𝑎𝑥{𝑖𝑚𝑖𝑛 , 𝑖𝑚𝑖𝑛,𝑘+𝐿
𝑐ℎ𝑔,𝑉

, 𝑖𝑚𝑖𝑛,𝑘+𝐿
𝑐ℎ𝑔,𝑧

 }
                                             (24) 

where imin and imax are the design limits for the minimum charge current and the maximum discharge 

current, respectively, and 𝑖𝑚𝑖𝑛
𝑐ℎ𝑔

 and 𝑖𝑚𝑎𝑥
𝑑𝑖𝑠  are the minimum charge current and the maximum discharge 

current under multi-parameter constraints.  

Then, the continuous power capability estimate with all limits enforced is presented in Equation 

(25). 

{
𝑃𝑚𝑎𝑥
𝑑𝑖𝑠 = 𝑈𝐿,𝑘+𝐿𝑖𝑚𝑎𝑥,𝑘+𝐿

𝑑𝑖𝑠

𝑃𝑚𝑖𝑛
𝑐ℎ𝑔

= 𝑈𝐿,𝑘+𝐿𝑖𝑚𝑖𝑛,𝑘+𝐿
𝑐ℎ𝑔                                                                 (25) 

where 𝑃𝑚𝑖𝑛
𝑐ℎ𝑔 

 and  𝑃𝑚𝑎𝑥
𝑑𝑖𝑠 are the minimum charge peak power and the maximum discharge peak power, 

respectively. 
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Substituting the terminal voltage calculation of Equation (21) into Equation (25) yields: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑃𝑚𝑎𝑥
𝑑𝑖𝑠 = 𝑖𝑚𝑎𝑥,𝑘+𝐿

𝑑𝑖𝑠

(

 
 
 
 
 

𝑈𝑜𝑐𝑣(𝑧𝑘, 𝐶𝑁) − (𝑒
−
𝑇𝑆
𝜏1)

𝐿

𝑈𝑃1,𝑘 − (𝑒
−
𝑇𝑆
𝜏2)

𝐿

𝑈𝑃2,𝑘

−𝑖𝑚𝑎𝑥,𝑘+𝐿
𝑑𝑖𝑠

(

 
 
𝐿 × 𝜂𝑇𝑆

𝐶𝑁
⁄

𝜕𝑈𝑂𝐶𝑉
𝜕𝑧

|
𝑧=𝑧𝑘

+ 𝑅𝑃1 (1 − 𝑒
−
𝑇𝑆
𝜏1)∑ (𝑒

−
𝑇𝑆
𝜏1)

𝐿−1−𝑗𝐿−1

𝑗=0

+𝑅𝑃2 (1 − 𝑒
−
𝑇𝑆
𝜏2)∑ (𝑒

−
𝑇𝑆
𝜏2)

𝐿−1−𝑗

+ 𝑅𝑖
𝐿−1

𝑗=0 )

 
 

)

 
 
 
 
 

𝑃𝑚𝑖𝑛
𝑐ℎ𝑔

= 𝑖𝑚𝑖𝑛,𝑘+𝐿
𝑐ℎ𝑔

(

 
 
 
 
 

𝑈𝑜𝑐𝑣(𝑧𝑘 , 𝐶𝑁) − (𝑒
−
𝑇𝑆
𝜏1)

𝐿

𝑈𝑃1,𝑘 − (𝑒
−
𝑇𝑆
𝜏2)

𝐿

𝑈𝑃2,𝑘

−𝑖𝑚𝑖𝑛,𝑘+𝐿
𝑐ℎ𝑔

(

 
 
𝐿 × 𝜂𝑇𝑆

𝐶𝑁
⁄

𝜕𝑈𝑂𝐶𝑉
𝜕𝑧

|
𝑧=𝑧𝑘

+ 𝑅𝑃1 (1 − 𝑒
−
𝑇𝑆
𝜏1)∑ (𝑒

−
𝑇𝑆
𝜏1)

𝐿−1−𝑗𝐿−1

𝑗=0

+𝑅𝑃2 (1 − 𝑒
−
𝑇𝑆
𝜏2)∑ (𝑒

−
𝑇𝑆
𝜏2)

𝐿−1−𝑗

+ 𝑅𝑖
𝐿−1

𝑗=0 )

 
 

)

 
 
 
 
 

    (26) 

 

3.3. Joint Estimation Method of the SOC and the SOP 
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Figure 3. Flow diagram of the joint estimation method 

 

From the above descriptions of the estimation algorithm, SOC and SOP interact with each other. 

Continuous power output leads to a rapid change in the SOC. Moreover, without a reliable power 

capability estimate, the SOC cannot be accurately obtained. Fig. 3 presents a flow diagram of the joint 
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estimation method, which includes onboard data measurement, offline parameter identification, SOC 

estimation, and SOP estimation. 

 

 

 

4. RESULTS AND ANALYSIS   

To evaluate the performance of the proposed joint estimation method, a simulation is designed. 

The test bench is introduced in Section 4.1. The SOC estimation performance is evaluated in Section 

4.2. Section 4.3 presents the evaluations of the SOP. 

 

4.1. Experimental Setup 

The battery test platform of this study includes a high- and low-temperature alternating heat and 

humidity test chamber (GDJS-150), a PC controller, and a battery test system (Xinwei BTS-5V300A). 

The battery test system has multiple charge and discharge control modes, which can collect and store 

test data in real time. Its data acquisition step is up to 0.1 s, with ±0.3 A current control accuracy and 

±0.005 V voltage control accuracy. The temperature test chamber can be used to simulate the battery 

temperature environment accurately with a temperature deviation of only 0.2 °C and a test temperature 

range of -50°C to 150°C. During the experiments, the battery is put in a test chamber for temperature 

control while connecting to the battery test system. This study chooses a commercial ternary material 

lithium-ion battery as the test object, which has an energy density of 160 wh/kg and a high-voltage 

platform; thus, it is easy to realize the accurate estimation of SOC. The performance parameters of the 

battery are listed in Table 2. 

 

Table 2. Performance parameters of the battery 

 

Items Parameter values 

Cathode materials  LiNi1/3Co1/3Mn1/3O2 

Nominal capacity (Ah)  35 

Nominal voltage (V) 3.7 

Maximum continuous discharge current 

(C) 

3 

 Maximum pulse discharge current (C) 5 (30 s) 

Upper/lower cut-off voltage (V) 4.2/2.5 

 

4.2. Performance of SOC Estimation 

Through the algorithm that is proposed above, we can estimate the SOC for each sampling 

interval. For evaluating the accuracy of SOC estimation by EKF technology, three operating conditions 
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of T-LiB cells are used to conduct the evaluation: a constant-current discharge (CCD), HPPC and 

dynamic stress test (DST) conditions.  

 

 
 

Figure 4. Comparison of SOC estimates between the DP and Thevenin models with CCD: (a) the SOC 

; (b) the SOC error 

 

The SOC estimates with CCD are presented in Fig. 4. The CCD condition is a static and stable 

condition, and the model accuracy can be evaluated based on the model estimation performance under 

the static condition. Fig. 4(a) presents the SOC comparison curve among the estimates of the DP and 

Thevenin models and the experimental measurement, while the estimated SOC error is plotted in Fig. 

4(b). The results demonstrate that the estimated SOC error of the Thevenin model is less than 3%, while 

the maximum SOC estimation error of the EKF algorithm that is based on the DP model in the full-

charge state range is less than 2%; hence, the proposed estimation method realizes satisfactory static 

estimation performance for the ternary lithium battery. 

The SOC estimates in HPPC are presented in Fig. 5. The HPPC condition can be used not only 

for parameter identification, as a dynamic condition, but also to assess the estimation performance of the 

model. Fig. 5(a) presents the SOC comparison curve among the estimates of the DP and Thevenin 

models and the experimental measurement, while the estimated SOC error is plotted in Fig. 5(b). Twenty 

cycles are used to estimate the HPPC operating conditions. A static process lasts for an hour in each 

HPPC cycle; hence, the SOC will exhibit a stable state, which is the same as the estimation results in the 

diagram. From the estimation accuracy of the low-order equivalent model, the estimated values of the 

two models are close to the experimental values, and there is no abnormal alteration of the SOC; 

however, according to the enlarged diagram of (a), the estimation result of the DP model has more 

advantages. Combined with Fig. 5(b), the maximum error of estimating the SOC of the low-order 

equivalent circuit model does not exceed 3%; however, the maximum error of the DP model is smaller 

than that of the Thevenin model. 
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Figure 5. Comparison of the SOC estimates between the DP and Thevenin models in HPPC: (a) SOC; 

(b) SOC error 

 

 

 
 

Figure 6. Comparison of the SOC estimates between the DP and Thevenin models in DST: (a) SOC; (b) 

SOC error. 

 

 

The SOC estimates in DST are presented in Fig. 6. DST is a dynamic working condition, which 

can simulate the performance of a power cell with variable power, similar to HPPC. However, the 

frequency and amplitude of the current change are more complicated due to the simulation of the 

characteristics of starting, acceleration, uniform speed, braking, and climbing, among other actions. Fig. 

6(a) presents the SOC comparison curve among the estimates of the DP and Thevenin models and the 

experimental measurement, while the estimated SOC error is plotted in Fig. 6(b). Comparing the 

simulation results with (a), the estimated curve of the model is highly coincident with the curve of the 

test. The variation of the current under the DST condition is more complex than that under the HPPC 

condition, which causes the estimation models to have larger prediction errors at both extremes of 

estimation, and it is difficult to track the true value. However, according to Fig. 6(b), the maximum 

estimated error of the SOC is still controlled within 2.5% under the more complicated variable-current 

conditions. This demonstrates that the estimation models realize satisfactory SOC estimation 

performance, and the DP model has lower error in the early stage of DST. 
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Table 3. Error analysis of SOC estimation 

 

Condition Model Maximum error Average error Standard 

deviation 

CCD 
Thevenin 0.0201 0.0102 0.0073  

DP 0.0168 0.0059 0.0065 

HPPC 
Thevenin 0.0267 0.0097 0.0086 

DP 0.0223 0.0050 0.0073 

DST 
Thevenin 0.0246 0.0087 0.0096 

DP 0.0242 0.0051 0.0085 

 

The mathematical statistical results of the SOC estimation error are presented in Table 3: under 

three working conditions, the maximum errors of SOC estimation in the DP model and the Thevenin 

model are less than 3%. However, the maximum error and the average error of the DP model are 

approximately 2% and 0.5%, respectively, which are smaller than those of the Thevenin model under 

static and dynamic conditions. Compared with the ESP-model-based EKF algorithm [49], the DP model 

yields a lower maximum SOC estimation error than 3.19%. According to reference [41], with the 

Thevenin-model-based UKF algorithm, the RMSE and MAE of SOC estimation under dynamic profiles 

are 0.0257 and 0.0207, respectively. In addition, the SOC estimation error of the PNGV-model-based 

UKF algorithm [50] is within 6%. In summary, the SOC estimation performance of the DP-model-based 

EKF algorithm is superior. 

A reliable SOC estimate requires not only accurate estimation performance but also excellent 

robustness. It can be quickly corrected and converged to accurate values under inaccurate initial SOC 

values and various operating conditions. 

Fig. 7 presents the results of the robustness analysis of the estimated SOC during discharge. The 

initial SOC of the discharge is 1 in the test, while the simulation process sets the initial SOC as 0.8. The 

simulation results demonstrate that when the SOC has an initial error at the beginning of discharge but 

converges to the real value quickly, the SOC can guarantee higher estimation accuracy; hence, the 

algorithm is robust. 

 
 

Figure 7. Robustness analysis of SOC estimation in the discharge process 
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4.3. Performance of SOP Estimation 

For assessing the multi-parameter-constraint SOP estimation method, the SOC constraints of the 

T-LiB cells should be set, which vary among control strategies. The battery manufacturers set the voltage 

and current limits. Table 4 specifies a series of parameter limits of SOP estimation. 

 

 

Table 4. Parameter limits of SOP estimation 

 

Parameters Maximum value Minimum value 

I (Imax, Imin) (A) 175 -105 

UL (UL, max, UL, min) (V) 4.2 2.5 

SOC (SOCmax, SOCmin) (%) 90 10 

 

 

Fig. 8 presents the estimated current capability and Fig. 9 presents the estimated power capability 

with an initial SOC of 100%. According to Fig. 8, the voltage, current and SOC constraints have 

important effects on the estimation of the maximum discharge current. In the first and middle periods of 

the discharge, the current constraint is effective, and the voltage constraint affects the peak current in the 

middle and late stages of the discharge. At the end, the current capability depends on the SOC constraint. 

If the peak power is always estimated under the same constraint condition, the estimated current value 

will be too large, and over-discharge of the battery will easily occur in the later stage of discharge, which 

will lead to irreversible and severe harm to the battery. Consequently, with the joint estimation of the 

SOC and the SOP within multi-parameter constraints, the battery can be used to avoid possible safety 

issues such as overcharge and over-discharge. 

 

 

 
 

Figure 8. Maximum current variation curve with multi-parameter constraints 
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Figure 9. SOP estimation results in discharge 

 

 

Fig. 9 compares the simulation and test results regarding the peak discharge power, in which the 

test data come from the results of 9 PPTs (peak power tests) in the range of 0.1-0.9 with an SOC interval 

of 0.1 using the USABC standard [38]. The simulation results of two types of low-order models are 

described as follows: the multi-state constrained SOP estimate of the equivalent circuit model is lower 

than the PPT experimental value, which is consistent with the results that were derived from the previous 

formulas. The simulation results of the DP model are closer to the experimental values, and the accuracy 

of SOP estimation is higher at the end of discharge than that of the Thevenin model. For the Thevenin 

model, the accuracy of SOP estimation is satisfactory at the initial stage but decreases substantially in 

the later stage of discharge. This decrease is observed because the battery parameters change with the 

increase of the temperature during the high-power discharge of the battery; hence, it is difficult for a 

single RC loop to accurately simulate the polarization effect. 

 

Table 5. Analysis of Peak power 

 

SOC 
Tested power 

(W) 

Estimation power (W) 
 

Estimation error (%) 

DP Thevenin  DP  Thevenin     

0.9 610.99 606.66 602.25  0.70 1.43 

0.8 601.96 596.01 592.08  0.98 1.64 

0.7 590.46 588.13 582.35  0.39 1.37 

0.6 580.16 576.49 572.92  0.63 1.24 

0.5 568.96 558.95 555.96  1.75 2.28 

0.4 552.01 540.58 539.73  2.07 2.22 

0.3 535.09 528.08 519.36  1.31 2.94 

0.2 517.59 513.32 489.89  0.82 5.35 

0.1 465.69 463.78 435.89  0.40 6.39 

 

Table 5 is obtained by selecting the data of peak power within the SOC range of 0.1-0.9. The 

SOP estimation error of the Thevenin model increases with the decrease of the SOC up to 6.4%. 
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However, the maximum error and MAE of SOP estimation in the DP model are 2.1% and 0.469%, 

respectively, which can effectively avoid overcharging and over-discharging and fully realize the power 

performance of the battery. In reference [51], a 10-s power projection that is based on the adaptive and 

direct solution of the governing differential equations shows a deviation of 2.5%. The SOP that is 

estimated under multiple constraints based on DEKF [52] has a maximum relative error of 4%. Adding 

moving average (MA) noise to the Thevenin model [53], an SOP long-term discharge error of 2.72% is 

realized.  

However, due to the differences in the requirements for the applications of peak power among 

electric vehicles, hybrid electric vehicles and fuel cell electric vehicles, the estimation performances of 

the power capability at various output times must be studied. Fig. 10 shows the peak power curve for the 

continuous power that is required for 1 s, 10 s, and 30 s during discharge. The power capability estimate 

decreases as the duration increases. Thus, the peak power and duration should be set to suitable values 

to protect the battery from safety damage. 

 
 

Figure 10. Power capability estimates for various durations 

 

 

 
 

Figure 11. Robustness analysis of power capability estimation 
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The robustness analysis results of the power capability estimation method are presented in Fig. 

11. The estimation profile of erroneous initial SOC has converged to the correct trajectory quickly, which 

demonstrates that the estimation method is highly robust. 

Based on the above analysis, the proposed joint estimation of SOC and SOP with multi-parameter 

constraints performs well in estimating the SOC and the power capability. In addition, it can overcome 

an inaccurate initial SOC and has high robustness. 

 

 

 

5. CONCLUSIONS 

To obtain accurate SOC and power capability estimates in real time, the joint estimation of the 

SOC and SOP under multi-parameter constraints via the EKF algorithm has been proposed in this study. 

Through the real-time measurement and updating of the battery current and voltage, the battery 

parameters are accurately identified by an off-line fitting method to guarantee a reliable battery state 

estimate. The second-order RC model (DP) is used to reflect the dynamics of a ternary lithium-ion 

battery. Further, the model accuracy has been considered, along with the simplicity of calculation. Next, 

under the interrelationship of SOC and SOP, the EKF-based state observer is used for SOC estimation, 

and the SOP can be exactly calculated within the constraints of the current, voltage and SOC, which has 

high estimation accuracy and calculation simplicity. Finally, various operating conditions and robustness 

analysis of the battery are conducted to evaluate the performance of the proposed joint estimation 

approach. The results indicate the necessity of joint estimation under multi-parameter constraints and 

the robustness and high precision of the proposed method. Moreover, the error of estimation that is based 

on the DP model is smaller than that based on the Thevenin model, with a maximum error of less than 

2.1%. As a result, the SOC and SOP joint estimates are reliable for practical application to electric 

vehicles. Our future work will revolve around the joint estimation of the battery state of health, the SOC 

and the SOP while considering the effect of single-cell inconsistency among batteries. 
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