International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Effects of nanosized Bi₂O₃ addition on the superconducting properties of Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O₁₀

Nabil A. A. Yahya¹, R. Abd-Shukor^{2,*}

¹ Department of Physics, Thamar University, Thamar, Yemen

² School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia *E-mail: ras@ukm.edu.my

Received: 2 July 2019 / Accepted: 29 August 2019 / Published: 29 October 2019

The effects of nanosized Bi₂O₃ (150 nm) addition on Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O₁₀ ((Bi,Pb)-2223) superconductor have been investigated. Samples with nominal starting composition (Bi,Pb)-2223)(Bi₂O₃)_x with x = 0.0.15 wt.% were prepared using the co-precipitation method. The structure and microstructure were examined by using powder X-ray diffraction (XRD) method and scanning electron microscopy (SEM), respectively. The onset-temperature ($T_{c-onset}$), zero-resistance-temperature (T_{c-zero}), and transport critical current density (J_c) were determined by using the four-probe technique. The XRD patterns confirmed the presence of Bi,Pb-2223 phase. J_c of all Bi₂O₃ added samples were higher than the non-added sample. The highest J_c , T_{c-zero} and hole concentration (p) was observed in the x = 0.01 sample. At 77 K, J_c of x = 0.01 wt. % was about 42 times higher than the non-added sample. This could be due to the enhanced flux pinning as the size of Bi₂O₃ was between the coherence length and penetration depth of (Bi,Pb)-2223.

Keywords: nanosized Bi₂O₃; flux pinning centers; transport critical current density

1. INTRODUCTION

The Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O₁₀ ((Bi,Pb)-2223) high- T_c superconductor is one of the most promising materials for applications as tapes or wires. However, the transport critical current density (J_c) is strongly suppressed by weak links and weak pinning of magnetic flux lines [1-3]. The coherence length (ξ), penetration depth (λ) and magnetic flux size in a superconductor is in the nanometer range. The weak pinning of magnetic flux lines decreases J_c with increasing temperature and magnetic field, due to the motion of the vortices.

The penetration depth, λ of (Bi,Pb)-2223 superconductor is about 1000 nm and the coherence length ξ is 2.9 nm. It is expected that the interaction between the pinning center (e.g. nanoparticles) and magnetic flux lines will be strong for a particle with size *d* where $\xi < d < \lambda$ [4]. The introduction of

nanosized particles as defects into (Bi,Pb)-2223 can be an effective method to improve flux pinning without destroying the superconductivity and thus enhance J_c [e.g. 5,6]. The size and type of nanoparticles as the magnetic flux pinning center in YBa₂Cu₃O₇ and (Bi,Pb)-2223 are important parameters [7-13]. In a previous study, we have investigated the effect of nanosized PbO (10 – 30 nm) on J_c of Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O₁₀ tapes [5].

Bismuth oxide has been useful in enhancing the superconducting properties of the cuprates such as the bismuth- and thallium-based high temperature superconductors. When Bi₂O₃ (50-80 nm) was added to (Bi,Pb)-2223, the samples with composition (Bi,Pb)-2223(Bi₂O₃)_{0.06} showed the highest J_c [14]. It would be interesting to investigate the effects of Bi₂O₃ with other size on the (Bi,Pb)-2223 phase. In this work, Bi₂O₃ with size 150 nm was added into (Bi,Pb)-2223. This size was chosen because it is between ξ and λ . The onset temperature $T_{c-onset}$, zero resistance temperature T_{c-zero} and J_c of (Bi,Pb)-2223(Bi₂O₃)_x for x = 0 to 0.15 wt. % were measured. The structural and microstructural properties of (Bi, Pb)-2223 were also investigated.

2. EXPERIMENTAL DETAILS

The pellets were prepared from high purity powders (> 99%) of Bi(CH₃CO₂)₃, Pb(CH₃CO₂).3H₂O, Sr(CH₃CO₂).1/2H₂O, Ca(CH₃CO₂).H₂O, and Cu(CH₃CO₂).H₂O with nominal starting composition Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O₁₀. The powders were prepared by the acetate coprecipitation technique, where the filtered precipitate was calcined in a tube furnace for 12 h at 730 °C to remove the volatile materials. An additional calcination was performed for 24 h at 845 °C to start the formation of (Bi,Pb)-2223 superconducting phase. The size of the precursor powder was a few micrometers. Bi₂O₃ with size 150 nm (US-nano, 99+% purity) was added into (Bi,Pb)-2223 with different concentrations (*x* = 0, 0.01, 0.05, 0.01 and 0.15 wt.%). The mixed powders were ground and then pressed into pellets of ~ 12 mm diameter and ~ 2 mm thickness and sintered for 48 h at 845 °C. The heating and cooling rate was 2 °C/min.

The phase and structure of the samples were examined by a D8 Advance X-ray diffractometer (XRD) from Bruker AXS with a CuK_{α} source ($\lambda = 0.15406$ nm). The volume fraction of Bi-2223 (high- T_c phase) and Bi-2212 (low- T_c phase) was estimated from the total intensities of these phases using the following equations [15,16]:

Bi-2223 % =
$$\frac{\sum I_{2223}}{\sum I_{2223} + \sum I_{2212}} \times 100\%$$

Bi-2212 % = $\frac{\sum I_{2212}}{\sum I_{2223} + \sum I_{2212}} \times 100\%$

The microstructure of the samples was recorded using a Zeis VPSEM (Leo 1450). The size of Bi₂O₃ was determined by transmission electron microscope (HRTEM, JEOL JEM- 2100F). The fourprobe technique was used to determine $T_{c-onset}$ and T_{c-zero} of the pellets. The effect of nanosized Bi₂O₃ on J_c was determined by using four-probe technique from 30 to 77 K in self-fields. The 1- μ V/cm criterion was used to determine J_c .

3. RESULTS AND DISCUSSION

Figure 1. XRD patterns of $(Bi,Pb)-2223(Bi_2O_3)_x$ for x = 0, 0.01, 0.05, 0.10, and 0.15 wt. %. (*H*) indicates the high- T_c phase and (*L*) indicates the low- T_c phase

Figure 2. SEM micrographs of (Bi,Pb)-2223(Bi₂O₃)_{*x*}; (a) x = 0 wt. %, (b) x = 0.01 wt. %, (c) x = 0.05 wt. %., (d) x = 0.10 wt. %., and (e) x = 0.15 wt. %

Figure 1 shows the XRD patterns of $(Bi,Pb)-2223(Bi_2O_3)_x$ for x = 0, 0.01, 0.05, 0.01, and 0.15 wt.%. The XRD patterns showed that a small amount of nanosized Bi₂O₃ did not hinder the formation of (Bi, Pb)-2223 phase. Most of the peaks corresponded mainly to the Bi-2223 (high- T_c phase). Minor peaks due to the Bi-2212 (low- T_c) phase was also present in the samples. In addition, a small peak signifying the Ca₂PbO₄ phase was observed at $2\theta \approx 17.6^{\circ}$ in all samples. The lattice parameters *a*, *b*, and *c* of the non-added sample are 5.415, 5.407, and 37.12 Å, respectively. The lattice parameters in Bi₂O₃ added samples were almost the same as those of the non-added sample. It is therefore likely that a small amount of nanosized Bi₂O₃ did not affect the (Bi,Pb)-2223 crystal structure. SEM micrographs for (Bi, Pb)-2223(Bi₂O₃)_x (x = 0, 0.01, 0.05, 0.01, and 0.15 wt.%) are shown in Figures 2(a-e). SEM of all the samples showed plate-like grain structure of the high- T_c phase (Bi-2223).

Figure 3. Temperature dependence of electrical resistance of $(Bi, Pb)-2223(Bi_2O_3)_x$ for x = 0, 0.01, 0.05, 0.10, and 0.15 wt. %

The temperature dependence of electrical resistance for all samples exhibited metallic normal state behavior (Figure 3). $T_{c-onset}$ and T_{c-zero} for the non-added sample is 110 K and 98 K, respectively. The sample with x = 0.01 wt. % showed the highest T_{c-zero} (99 K) among the samples and the same $T_{c-onset}$ compared with non-added sample (Table 1). It is probable that very small addition of nanosized Bi₂O₃ (x = 0.01 wt. %) slightly improved the intergranular links[17].

Table 1. Lattice parameters, volume fraction, $T_{\text{c-onset}}$, $T_{\text{c-zero}} J_{\text{c}}$, (at 30 and 77 K) and hole concentration (*p*) of (Bi,Pb)-2223(Bi₂O₃)_{*x*} for x = 0 - 0.15 wt. %

x	<i>a</i> / Å	<i>b /</i> Å	<i>c</i> /Å	BiPb-	BiPb-	$T_{\text{c-onset}}$	$T_{\text{c-zero}}$	p hole	<i>J</i> _c (30 K)	J _c (77 K)
				2223 / %	2212 / %	/ K	/ K	conc.	/mA cm ⁻²	/mA cm ⁻²
0.00	5.415	5.407	37.12	74	26	110	98	0.15934	344±10	59±2
0.01	5.403	5.417	37.11	72	28	110	99	0.15939	4620±90	2500 ± 50
0.05	5.416	5.409	37.11	71	29	109	98	0.15934	2310±70	1640 ± 50
0.10	5.414	5.409	37.12	74	26	108	97	0.15928	2250±40	1020±20
0.15	5.413	5.411	37.10	71	29	108	97	0.15928	1840±60	690±20

The charge carriers, p (hole concentration) in the samples can be calculated according to the following equation [16, 18]:

$$p = 0.16 - \left(\frac{\left(1 - T_c / T_c^{\text{max}}\right)}{82.6}\right)^{1/2}$$

where T_c^{max} for (Bi, Pb)-2223 superconductor was taken at 110 K.

The Bi₂O₃ content dependence of hole concentration, *p*, *T*_{c-onset} and *T*_{c-zero} are shown in Figure 4. The hole concentration, *p* for x = 0.01 wt. % sample showed the highest value. The x = 0.05 wt. % sample showed similar hole concentration, *p* compared to the non-added sample. The hole concentration, *T*_{c-onset} and *T*_{c-zero} for x > 0.05 wt. % samples were slightly lower than those of the non-added sample. It is clear that *T*_{c-onset} and *T*_{c-zero} with x > 0.05 wt. % decreased slightly due to the decrease of the hole concentration, *p*.

Figure 4. Nanosized Bi₂O₃ content dependence of hole concentration (*p*), $T_{\text{c-onset}}$ and $T_{\text{c-zero}}$ for x = 0, 0.01, 0.05, 0.10, and 0.15 wt. %

Figure 5. J_c of (Bi,Pb)-2223(Bi₂O₃)_x as a function of temperature for x = 0, 0.01, 0.05, 0.10, and 0.15 wt. %

Figure 6. J_c of (Bi,Pb)-2223(Bi₂O₃)_x as a function of different adding concentrations for x = 0, 0.01, 0.05, 0.10, and 0.15 wt. %

11516

 J_c for all samples as a function of temperature is shown in Figure 5. In general, J_c decreased with the increased of temperature from 30 to 77 K due to the thermally activated flux creep. All of the Bi₂O₃ added samples showed much higher J_c compared with the non-added sample. For the non-added sample, J_c at 30 and 77 K was 344 mA/cm² and 59 mA/cm², respectively. The x = 0.01 wt. % sample showed the highest J_c , which was 4615 mA/cm² and 2500 mA/cm² at 30 and 77 K, respectively. The improved J_c may be due to the enhancement of flux pinning strength as a result of nanosized Bi₂O₃ at the grain boundaries.

 J_c showed a sudden decrease when the amount of Bi₂O₃ was increased to more than x = 0.01 wt. % (Figure 6). The lattice parameters, hole concentration, p, $T_{c-onset}$, T_{c-zero} , and J_c at 30 and 77 K of the samples are summarized in Table 1. It is interesting to note that nano PbO addition also increased J_c of the BiPb-2223 superconductor [5]. Hence, although these two elements are already in the parent compound, addition of nanosized Bi₂O₃ and PbO led to the enhancement of J_c without suppressing the transition temperature. The enhancement of J_c is possibly due to enhanced grain connectivity as a result of nanosized Bi₂O₃ at the grain boundaries. Smaller Bi₂O₃ (50-80 nm) addition showed x = 0.06 wt. % as the highest J_c value [14]. In this work, 150 nm Bi₂O₃ was used and a smaller amount (x = 0.01 wt. %) was sufficient to optimize J_c .

In conclusion, the effects of nanosized Bi₂O₃ addition on the superconducting properties of bulk Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O₁₀(Bi₂O₃)_x samples were investigated. The optimal amount which showed the highest J_c , T_{c-zero} , and hole concentration, p was x = 0.01 wt. %. J_c of x = 0.01 wt. % was about 13 and 42 times larger than the non-added sample at 30 and 77 K, respectively. The enhancement of J_c may be due to the fact that the particles size of Bi₂O₃ is larger than ξ and smaller than λ of (Bi, Pb)-2223, which can increase the flux pinning ability in the samples.

ACKNOWLEDGMENTS

This research was supported by the Ministry of Education, Malaysia under grant no. FRGS/1/2017/SG02/UKM and Thamar University, Thamar, Yemen.

References

- 1. A. Campbell, J. Evetts, Adv. Phys., 50 (2001) 1249.
- 2. D. Larbalestier, Science (Washington, DC, U. S.), 274 (1996) 736.
- 3. D. S. Fisher, M.P.A. Fisher, D.A. Huse, Phys. Rev. B, 43 (1991) 130.
- 4. I. Lyuksyutov, D. Naugle, Mod. Phys. Lett. B, 13 (1999) 491.
- 5. N.A.A. Yahya, R. Abd-Shukor, Ceram. Int., 40 (2014) 5197.
- 6. X. Wan, Y. Sun, W. Song, K. Wang, L. Jiang, J. Du, Phys. C (Amsterdam, Neth.), 307 (1998) 46.
- 7. I.P. Abu-Bakar, N.R. Mohd-Suib, K. Muhammad-Aizat, J. Nur-Akasyah, S. Radiman, R. Abd-Shukor, *Sains Malaysiana*, 46 (2017) 1971.
- 8. N.A.Yahya, R. Abd-Shukor, J. Supercond. Nov. Magn., 27 (2014) 329.
- 9. E. Hannachi, Y. Slimani, F. Ben Azzouz, A. Ekicibil, Ceram. Int., 44 (2018) 18836.
- Y. Slimani, E. Hannachi, A. Ekicibil, M. A. Almessiere, F. Ben Azzouz, J. Alloys Compd., 781 (2019) 664.
- 11. N.A. Yahya, A. Al-Sharabi, N.R. Mohd-Suib, W. Chiu, R. Abd-Shukor, *Ceram. Int.*, 42 (2016) 18347.

- 12. R. A. Al-Mohsin, A. L. Al-Otaibi, M. A. Almessiere, H. Al-badairy, Y. Slimani, F. Ben Azzouz, J. Low Temp. Phys., 192 (2018) 100.
- 13. Y. Slimani, M. A. Almessiere, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, F. Ben Azzouz, *Ceram. Int.*, 45 (2019) 2621.
- 14. Nurul Raihan Mohd Suib, J. Nur-Akasyah, K. Muhammad Aizat, R. Abd-Shukor, J. Phys.: Conf. Ser., 1083 (2016) 012045.
- 15. I. Karaca, O. Uzun, U. Kölemen, F. Yilmaz, O. Sahin, J. Alloys Compd., 476 (2009) 486.
- 16. T. Çördük, O. Bilgili, K. Kocabaş, J. Mat. Sci.: Mater. Electron., 28 (2017) 14689.
- 17. A. Aftabi, M. Mozaffari, J. Supercond. Nov. Magn. 28 (2015) 2337.
- 18. M. Mumtaz, L. Ali, I. Ahmad, Phys. C (Amsterdam, Neth.), 551 (2018) 19.

© 2019 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).