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The global sensitivity method based on variance was applied to the microbial fuel cell (MFC) field for 

the first time here. The purpose of this study was to expound how the global sensitivity method can be 

used in the mathematical model of MFC and to visualize the sensitivity index of eight key parameters, 

such as the flow rate of the fuel feed, with respect to the MFC power performance. This algorithm can 

not only clarify the influence of uncertain parameters on power density, but also explain the influence 

of the interaction of uncertain parameters on MFC power density. The result shows that the cathodic 

charge transfer coefficient, acetate concentration in the influent of the anode chamber, forward rate 

constant of anode reaction under standard conditions, half velocity rate constant for acetate, charge 

transfer coefficient of the anode, forward rate constant of the cathode reaction under standard conditions 

and flow rate of the fuel feed to the anode are sensitive parameters that affect the power density of MFC; 

furthermore, the cathodic charge transfer coefficient is the most influential. Additionally, it was found 

that the electrical conductivity of the aqueous solution in MFC is the least sensitive parameter. The 

research achievements in this paper can be used in model optimization, parameter analysis or model 

simplification. 
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1. INTRODUCTION 

Economic development has led to a growing contradiction between environment and energy, and 

the development of green renewable energy will be widely concerned. Microbial fuel cell (MFC) 

technology has developed rapidly over the last few years as a result of its potential applications in 

pollution treatment, ecological restoration and power generation [1-7]. Under mild operating conditions, 

MFC produce electrical energy by oxidizing organic matter in the presence of fermenting bacteria [8]. 

The potential (biologically mediated) generated by bacterial activity (the series of redox reactions that 
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produce protons (H+) and electrons (e−)) and electron acceptor conditions produces bioelectricity [4]. 

Microorganisms extract energy from oxidation-reduction reactions (catabolism) to produce biomass (an 

anabolic process) under electron donor/receptor conditions [9]. 

However, many restrictions hinder the widespread use of MFCs. More importantly, the power 

density of MFC is lower than that of other fuel cells, so the technology has remained in the laboratory 

stage [10,11]. In the past few years, the pharmacological activity of microbial communities and electrode 

modification is the main tendency of MFC biology. The first-rank experimental conditions can be 

determined either by a large number of laboratory experiments or by a mathematical model. Model 

alternatives are more advantageous than experimental ones because they take less time and cost to obtain 

the desired results. In addition, different designs and configurations of MFC have been proposed [12-

15]. Pinta et al. [16-18] established the MFC incentive model and optimized the power performance. In 

2010, Lorenzo et al. found a positive correlation between the anode surface area and the output current 

density in MFC [19]. Based on experimental analysis, Ren et al. [20] proposed that smaller MFCs have 

a higher current density and power density than do larger MFC. Cheng et al. [21] found that the output 

of the system increased with increasing anode substrate concentration and cathode solution conductivity. 

Alavijeh et al. [22] combined the diffusion effect of matrix on biofilm and the competition of biofilm in 

the same substrate, proposed an equation for MFCs wastewater treatment. Ou et al. [23] proposed a one-

dimensional transient model of single-chamber MFC without considering the change of cathode biofilm 

thickness and concentration distribution in biofilm area. Katuri et al. [24] calculated the current density 

by introducing the basic Butler-Volmer equation, and expressed the overpotential of the anode with the 

hyperbolic sinusoidal function. On the basis of mass balance, a simple expression of anode steady-state 

overpotential was derived. Cheng et al. [25-26] studied the effects of MFC size, anode feed flow rate 

and quantity of electricity-producing bacteria in the feed flow rate on power generation. Based on 

experimental, Picioreanu et al. [27-28] computationally simulated the variation in current, voltage, 

substrate concentration and microorganisms with time under different conditions. 

Calculation method plays a critical role in the development of fuel cells and has the preferable 

performance under various operating conditions. As a matter of fact, modelling or computational 

methods are tools for conducting simulation experiments that require complex operations and are costly, 

such as material studies, complex geometries, and steady-state and dynamic fuel cell characteristics 

[29,30]. Computational approaches can bridge knowledge gaps, thereby achieving better performance 

and discovering new possibilities for optimizing MFC operation. The main difficulty in obtaining 

accurate MFC dynamic models is the absence of information concerning the exact values applied to 

model parameters. The analysis and selection of parameters can significantly impact the MFC power 

generation. To obtain better model predictions and higher accuracy, it is necessary to apply evaluation 

methods to quantify the uncertainty or confidence of the estimated parameters. Sensitivity analysis (SA) 

is an important means for obtaining better model and measuring the quality of parameter estimates [31-

33]. SA can show the impact on the system of univariate or multivariate changes [34]. Saltelli et al. [31] 

consider SA to be an assessment of the extent to which each input parameter affects output uncertainty. 

The analysis method of SA is to generate the value of the factor on the basis of mathematical rules, and 

then calculate the output corresponding to the mathematical model. The result obtained from SA allows 

for the changes in the outputs to be mapped in light of the variability of the input parameters [35]. 
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Additionally, SA can also be used to discover technical defects in a model, identify the key areas of 

input, discern the priority of research, simplify a model and so on [36]. Song et al. [33] reviewed the 

common methods and application areas of SA. Saltelli et al. [37] concentrated on the application of SA 

in chemical models. Borgonovo et al. [38] studied the measures of uncertainty and sensitivity and Perz 

et al. [39] summarized the global sensitivity analysis (GSA) and uncertainty analysis (UA) methods 

applied to ecological resilience. Although global sensitivity analysis is used in different fields of science, 

the method used in the fuel cell field has rarely been studied [40]. For example, Li et al. [41] established 

a dimensionless steady-state calculation model for a fuel cells and evaluated the influence of various 

parameters on outputs using multi-parameter sensitivity analysis (MPSA) based on this model. 

Srinivasulu et al. [42] focused on the sensitivity investigation of proton exchange membrane fuel cell 

(PEMFC) electrochemical model by using MPSA and aimed to determine the extent to which each 

parameter affects the modelling results. 

MPSA is a regionalized sensitivity analysis (RSA). The advantage of regionalized sensitivity 

analysis lies in the small number of calculations required, but in order to obtain a more accurate 

evaluation of parameter sensitivity, the current research is more inclined to use the global sensitivity 

analysis method [43]. Laoun et al. [35] proposed the method of applying the variance-enhanced global 

sensitivity technique to the PEMFC model. Baroni et al. [44] proposed a general probabilistic framework 

for uncertainty and global sensitivity analysis of hydrological model, and based on this, first-order 

sensitivity indices and total sensitivity indices were estimated. Based on the Rothermel equations, an 

analysis of scale effects and a global sensitivity analysis have been presented by Salvador et al. The 

results of the GSA indicated the tiny effect of the changeability of the low heat content, the particle 

density and the mineral content on the outputs. However, all other input variables had some obvious 

effects on the output, which cannot be neglected [45]. Nossent et al. [46] presented a result of the global 

sensitivity analysis for flow simulations of a Soil-Water-Atmosphere-Plant (SWAT) model. By using a 

model-independent Sobol’ method, some major shortcomings of screening sensitivity analysis methods 

commonly used in SWAT are overcome. The purpose of this paper was to use the variance-based global 

sensitivity analysis method to compute the sensitivity index of key parameters in the MFC model for the 

first time in the MFC field. Using this method, we can obtain a more comprehensive understanding of 

the overall impact of the changes in multiple parameters on the MFC output. This paper is structured in 

the following order: Section 2 gives a brief review to the typical continuous flow microbial fuel cell 

model; Section 3 describes the mathematical methods used for the GSA method; and Section 4 presents 

the performance tests and simulation results. Finally, the conclusions are presented at the end of this 

paper. 

 

 

 

2. MFC MODELLING DESCRIPTION 

A typical microbial fuel cell consist of two reaction chambers. A schematic diagram of an MFC 

system is shown in Fig. 1. There are two kinds of reactions in MFC: electrochemical and biochemical 

[47]. Electrochemical reactions involve the electron transfer and the generation of energy, the 

biochemical reactions involve microbial metabolism and the reduction of organic matter. The primary 
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transfer processes of matter, electrons and protons in typical microbial fuel cells are as follows [48]: 

1. The organic matter in the anode chamber reacts on the active surface of the 

microorganism, releasing protons and electrons. 

2. Electrons transfer to the electrode surface through the microbial cell membrane. 

3. The electrons are transferred to the cathode through an external circuit. 

4. Protons in the anode chamber are transferred to the cathode chamber by the proton 

exchange membrane. 

5. The electron acceptor in the cathode chamber is transferred from the solution to the 

electrode surface. 

6. The cathode electron acceptor permeates the cathode chamber to the anode. 

7. The fuel (organic matter) in the anode chamber is transferred to the active surface of the 

microorganism via the host matrix. 

 
 

Figure 1. Schematic diagram of an MFC system 

 

This paper focuses on the effects of various MFC parameters on generation of electrical energy 

by microorganisms; thus, a two-compartment MFC mathematical model was adopted. In this section, a 

mathematical model for studying the power generation of microbial fuel cells is introduced in detail 

based on literature [48]. 

The basic electrochemical reactions are given as follows: 

 (CH2O)2 + 2H2O → 2CO2 + 8H+ + 3e− (1) 

 O2 + 2H2O + 4e− → 4OH− (2) 

The anode chamber operated under anoxic conditions, and the Monod-type equation was used to 

describe the anodic reaction rate (𝑟1). The reaction rate of the anode chamber is described as follows:  

 𝑟1 = 𝑘1
0𝑒𝑥𝑝(

𝛼𝐹

𝑅𝑇
𝜂𝑎)

𝐶𝐴𝐶

𝐾𝐴𝐶+𝐶𝐴𝐶
𝑋 (3) 
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where 𝐶𝐴𝐶  is the concentration of acetate, 𝑋 denotes the biomass in the anode compartment, 𝜂𝑎 

is the anodic polarization overpotential, 𝐾𝐴𝐶  represents the half velocity rate constant for acetate, α 

denote the charge transfer coefficient of the anodic reaction, 𝑘1
0 is the rate constant of the anodic reaction 

under standard conditions, 𝐹 denotes the Faraday constant, 𝑇 is the cell operating temperature, and 𝑅 is 

the gas constant. 

The Butler-Volmer expression was used to describe the electrochemical reaction. The reaction 

rate of the cathode chamber is given as:  

 𝑟2 = −𝑘2
0 𝐶𝑂2

𝐾𝑂2+𝐶𝑂2
𝑒𝑥𝑝[(𝛽 − 1)

𝐹

𝑅𝑇
𝜂𝑐] (4) 

where 𝜂𝑐  is the overpotential at the cathode, 𝐶𝑂2  denotes the concentration of the dissolved 

oxygen, 𝛽 is the charge-transfer coefficient, 𝑘2
0  represents the rate constant of the cathodic reaction 

under standard conditions, and 𝐾𝑂2  is the half-velocity rate constant for dissolved oxygen. 

The anode and cathode chambers of the MFC system are regarded as a continuous reactor, and 

four mass balance equations for the acetate, dissolved 𝐶𝑂2, hydrogen ion and biomass in the anode 

chamber were obtained, respectively, and are defined as follows: 

 𝑉𝑎
𝑑𝐶𝐴𝐶

𝑑𝑡
= 𝑄𝑎(𝐶𝐴𝐶

𝑖𝑛 − 𝐶𝐴𝐶) − 𝐴𝑚𝑟1 (5) 

 𝑉𝑎
𝑑𝐶𝐶𝑂2

𝑑𝑡
= 𝑄𝑎(𝐶𝐶𝑂2

𝑖𝑛 − 𝐶𝐶𝑂2) + 2𝐴𝑚𝑟1 (6) 

 𝑉𝑎
𝑑𝐶𝐻

𝑑𝑡
= 𝑄𝑎(𝐶𝐻

𝑖𝑛 − 𝐶𝐻) + 8𝐴𝑚𝑟1 (7) 

 𝑉𝑎
𝑑𝐶𝑋

𝑑𝑡
= 𝑄𝑎 (

𝑋𝑖𝑛−𝑋

𝑓𝑥
) + 𝐴𝑚𝑌𝑎𝑐𝑟1 − 𝑉𝑎𝐾𝑑𝑒𝑐𝑋 (8) 

where subscript ‘𝑎’ and superscript ‘𝑖𝑛’ represent the anode and flow of feed, respectively; 𝑉, 𝑄 

and 𝐴𝑚 denote the volume, the flow rate and the cross-section area of the membrane, respectively; and 

𝑌𝑎𝑐, 𝑓𝑥 , and 𝐾𝑑𝑒𝑐  are the bacterial yield, the reciprocal of the wash-out fraction and the decay constant 

for acetate utilizers, respectively. 

The same method was used to obtain three mass balance equations for the dissolved oxygen, 

hydroxyls, and M+ ions in the cathode chamber, which are written as: 

 𝑉𝑐
𝑑𝐶𝑂2

𝑑𝑡
= 𝑄𝑐(𝐶𝑂2

𝑖𝑛 − 𝐶𝑂2) + 𝐴𝑚𝑟2 (9) 

 𝑉𝑐
𝑑𝐶𝑂𝐻

𝑑𝑡
= 𝑄𝑐(𝐶𝑂𝐻

𝑖𝑛 − 𝐶𝑂𝐻) − 4𝐴𝑚𝑟2 (10) 

  𝑉𝑐
𝑑𝐶𝑀

𝑑𝑡
= 𝑄𝑐(𝐶𝑀

𝑖𝑛 − 𝐶𝑂2) + 𝐴𝑚𝑁𝑀 (11) 

where the subscript ‘𝑐’ refers to the cathode and 𝑁𝑀 stands for the flow of M+ ions through the 

membrane, which can be calculated as follows: 

 𝑁𝑀 =
3600𝑖𝑐𝑒𝑙𝑙

𝐹
 (12) 

The charge balances at the anode and cathode are described as follows: 

 𝐶𝑎
𝑑𝜂𝑎

𝑑𝑡
= 3600𝑖𝑐𝑒𝑙𝑙 − 8𝐹𝑟1 (13) 

 𝐶𝑐
𝑑𝜂𝑐

𝑑𝑡
= 3600𝑖𝑐𝑒𝑙𝑙 + 4𝐹𝑟2 (14) 

where 𝑖𝑐𝑒𝑙𝑙 denotes the cell current density, 𝐶𝑎 and 𝐶𝑐 denote the anode capacitance and cathode 

capacitance, respectively. 

The output voltage of the cell is expressed as follows: 

 𝑉𝑐𝑒𝑙𝑙 = 𝑉0 − 𝜂𝑎 + 𝜂𝑐 − (
𝑑𝑚

𝑘𝑚
+

𝑑𝑐𝑒𝑙𝑙

𝑘𝑎𝑞
)𝑖𝑐𝑒𝑙𝑙 (15) 
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where 𝑉0 represents the open-circuit voltage, 𝑑𝑚 is the membrane thickness, 𝑑𝑐𝑒𝑙𝑙  denotes the 

electrode distance, 𝑘𝑎𝑞 is the conductivity of the solution, and 𝑘𝑚 is the conductivity of the membrane. 

The meanings and standard values of the parameters in the model are shown in Table 1. 

 

Table 1. Nominal values of parameters for the MFC model 

 

Description Symbol/Unit Value 

Flow rate of fuel feed to anode 𝑄𝑎/m3 h-1 2.25×10-5 

Flow rate of feed to cathode compartment 𝑄𝑐/m
3 h-1 1.11×10-3 

Concentration of acetate in the influent of anode compartment 𝐶𝐴𝐶
𝑖𝑛/mol m-3 1.56 

Concentration of CO2 in the influent of anode compartment 𝐶𝐶𝑂2
𝑖𝑛 /mol m-3 0 

Concentration of bacteria in the influent of anode compartment 𝑋𝑖𝑛/mol m-3 0 

Concentration of H+ in the influent of anode compartment 𝐶𝐻
𝑖𝑛/mol m-3 0 

Concentration of dissolved O2 in the influent of cathode 

compartment 
𝐶𝑂2
𝑖𝑛/mol m-3 0.3125 

Concentration of M+ in the influent of cathode compartment 𝐶𝑀
𝑖𝑛/mol m-3 0 

Concentration of OH− in the influent of cathode compartment 𝐶𝑂𝐻
𝑖𝑛 /mol m-3 0 

Faraday’s constant F/Coulombs mol-1 96485.4 

Gas constant R/J mol-1 K-1 8.3144 

Temperature T/K 303 

Electrical conductivity of membrane 𝑘𝑚/Ohm-1 m-1 17 

Thickness of membrane 𝑑𝑚/m 1.778×10-4 

Electrical conductivity of the aqueous solution 𝑘𝑎𝑞/Ohm-1 m-1 5 

Distance between anode and cathode in the cell 𝑑𝑐𝑒𝑙𝑙/m 2.2×10-2 

Capacitance of anode 𝐶𝑎/F m−2 4×102 

Capacitance of cathode 𝐶𝑐/F m−2 5×102 

Volume of anode compartment 𝑉𝑎/m3 5.5×10-5 

Volume of cathode compartment 𝑉𝑐/m3 5.5×10-5 

Area of membrane 𝐴𝑚/m2 5×10-4 

Bacterial yield 𝑌𝑎𝑐/Dimensionless 0.05 

Decay constant for acetate 𝐾𝑑𝑒𝑐/h
-1 8.33×10-4 

Reciprocal of wash-out fraction 𝑓𝑥/Dimensionless 10 

Cell open circuit potential 𝑉0/volt 0.77 

Forward rate constant of anode reaction under standard 

conditions 
𝑘1
0/mol m−2 h−1 0.207 

Forward rate constant of cathode reaction under standard 

conditions 
𝑘2
0/m12 mol-4 h-1 3.288×10-5 

Half velocity rate constant for acetate 𝐾𝐴𝐶/mol m−3 0.592 

Half velocity rate constant for dissolved oxygen 𝐾𝑂2/mol m−3 0.004 

Charge transfer coefficient of anode 𝛼/Dimensionless 0.051 

Charge transfer coefficient of cathode 𝛽/Dimensionless 0.663 
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3. GLOBAL SENSITIVITY ANALYSIS 

Usually, when parameters are known to affect the output of the mathematical model, we may use 

the technical terminology ‘sensitive’, ‘more important’, ‘primary’ or ‘effective’ interchangeably [49]. 

Saltelli et al. [31] defined SA as the method of how to assign variation in statistical model outputs to 

different changes in model inputs. Thabane et al. [50] consider SA as a suitable way to solve the problem 

of ‘What happens to the results if the key inputs or assumptions change?’. Sensitivity analysis is divided 

into two categories: local sensitivity analysis (LSA) and global sensitivity analysis. LSA is an analysis 

of small range variations of a single input parameter, whereas GSA is focused on the influences of 

multiparameter over the whole input space [51]. 

 

3.1 Sensitivity index estimation 

The global sensitivity index based on variance decomposition analysis proposed by Sobol [52] 

in 1993 has become an milestone in the global sensitivity analysis method, and it has been supplemented 

and developed by Homma and Saltelli [53]. Based on Sobol’s research, the concept of gross effect of 

input random variables was proposed, and it further improved the global sensitivity analysis system 

based on variance. 

The details of GSA method are described as follows: 

 𝑌𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑋1, 𝑋2, …𝑋𝑘) (16) 

where 𝑌𝑜𝑢𝑡𝑝𝑢𝑡  represents the expected outputs, 𝑓 is the model function and 𝑋1, 𝑋2, …𝑋𝑘  are the 

parameters that influence the outputs. 

The first-order coefficient can be calculated as follows: 

 𝑆𝑖 =
𝑉𝑎𝑟𝑋𝑖(𝐸𝑋~𝑖(𝑌𝑜𝑢𝑡𝑝𝑢𝑡|𝑋𝑖))

𝑉𝑎𝑟(𝑌𝑜𝑢𝑡𝑝𝑢𝑡)
 (17) 

The total effect sensitivity analysis can be described as follows: 

 𝑆𝑇𝑖 = 1 −
𝑉𝑎𝑟𝑋~𝑖(𝐸𝑋𝑖(𝑌𝑜𝑢𝑡𝑝𝑢𝑡|𝑋~𝑖))

𝑉𝑎𝑟(𝑌𝑜𝑢𝑡𝑝𝑢𝑡)
=

𝐸𝑋~𝑖(𝑉𝑎𝑟𝑋𝑖(𝑌𝑜𝑢𝑡𝑝𝑢𝑡|𝑋~𝑖))

𝑉𝑎𝑟(𝑌𝑜𝑢𝑡𝑝𝑢𝑡)
 (18) 

where 𝑋𝑖 represents a matrix of all factors, 𝑋~𝑖 is a matrix of all factors except for the factor 𝑋𝑖 , 

𝑉𝑎𝑟𝑋𝑖(∙) and 𝐸𝑋𝑖(∙) represent the variance and mean of argument (∙) taken over 𝑋𝑖, and 𝑉𝑎𝑟𝑋~𝑖(∙) and 

𝐸𝑋~𝑖(∙) stand for the variance and mean of argument (∙), including all factors except for 𝑋𝑖. 

To apply GSA, the steps to obtain the input data are as follows: 

1. Select the parameters you want to test. 

2. Set a change interval for each parameter. 

3. Within each parameter range, generate a sample that obeys the Sobol sequence, with the 

number of samples per parameter being 𝑁. 

4. Generate the matrices 𝐴, 𝐵, 𝐴𝐵
(𝑖)

 of each 𝑘 parameter. 

The calculation methods of 𝑉𝑎𝑟𝑋𝑖(∙) and 𝐸𝑋~𝑖(∙) are as follows: 

 𝑉𝑎𝑟𝑋𝑖(𝐸𝑋~𝑖(𝑌𝑜𝑢𝑡𝑝𝑢𝑡|𝑋𝑖)) ≈
1

𝑁
∑ 𝑓(𝐵)𝑗 (𝑓(𝐴𝐵

(𝑖))
𝑗
− 𝑓(𝐴)𝑗)

𝑁
𝑗=1  (19) 

 𝐸𝑋~𝑖(𝑉𝑎𝑟𝑋𝑖(𝑌𝑜𝑢𝑡𝑝𝑢𝑡|𝑋~𝑖)) ≈
1

2𝑁
∑ (𝑓(𝐴)𝑗 − 𝑓(𝐴𝐵

(𝑖))
𝑗
)
2

𝑁
𝑗=1  (20) 
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where 𝐴 and 𝐵 are design matrices of size 𝑁 × 𝑘; the column 𝑖 in matrix 𝐴𝐵
(𝑖)

 is selected from 

matrix 𝐵, and other 𝑘 − 1 columns are selected from matrix 𝐴. 𝑓 denotes the evaluation of the function 

in the design matrix. The settings of matrices 𝐴 and 𝐵 can be obtained from references [54] and [55]. 

 

 

 

4. RESULTS AND DISCUSSION BASED ON MFC MODEL 

This section focuses on how GSA is applied to the MFC mathematical model and evaluates the 

effects of input parameters on the output under steady and dynamic conditions. By introducing the 

model, we can conclude that a number of parameters in the model may have an impact on the output, 

and we choose the most representative parameters for research: the forward rate constant of an anodic 

reaction under standard conditions (𝑘1
0), the half velocity rate constant for acetate (𝐾𝐴𝐶), the forward rate 

constant of an cathodic reaction under standard conditions (𝑘2
0), the anodic charge transfer coefficient 

(𝛼), the cathodic charge transfer coefficient (𝛽), the concentration of acetate in the influent of the anode 

compartment (𝐶𝐴𝐶
𝑖𝑛 ), the flow rate of the fuel feed to the anode (𝑄𝑎) and the electrical conductivity of the 

aqueous solution (𝑘𝑎𝑞). 

First, the initial value of parameters during the execution of the program was obtained from Table 

1, and the initial value was set to the centre value. In the process of model simulation, the range of 

parameters needed for MFC was determined. Sobol sequences were generated at different ranges for all 

parameters and the number of sampling points was set as 3000. The variation range of the parameters as 

shown in Table 2. 

 

Table 2. Range of selected parameters for the sensitivity analysis 

 

Symbol/Unit Centre value Lower limit Upper limit 

𝑘1
0/mol m−2 h−1 0.207 0.1656 0.2484 

𝐾𝐴𝐶/mol m−3 0.592 0.4736 0.7104 

𝑘2
0/ m12 mol-4 h-1 0.00003288 0.0000263 0.000039456 

𝛼/Dimensionless 0.051 0.0408 0.0612 

𝛽/Dimensionless 0.663 0.5304 0.7956 

𝐶𝐴𝐶
𝑖𝑛 /mol m-3 1.56 1.248 1.872 

𝑄𝑎/m3 h-1 0.0000225 0.000018 0.000027 

𝑘𝑎𝑞/Ohm-1 m-1 5 4 6 
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Figure 2. Dependence of MFC power density on the electrical conductivity of the aqueous solution 

 

The parameters were evaluated by GSA method, and each parameter was represented by a 

scatterplot to show its effect on the power density. The scatterplots of the MFC power density versus the 

electrical conductivity of the aqueous solution is shown in Fig. 2. From the diagram, we can conclude 

that the power density is insensitive to 𝑘𝑎𝑞 within the range of 4 to 6 Ohm-1 m-1, and exhibits weak 

discernible patterns. This phenomenon indicates that the research emphasis should be placed elsewhere 

and studying the effects of 𝑘𝑎𝑞 on power density should be avoided. 

The diagram of the MFC power density versus the half velocity rate constant for acetate, the 

forward rate constant of the cathodic reaction under standard conditions, the anodic charge transfer 

coefficient and the concentration of acetate in the influent of the anode compartment are shown in Fig. 

3. From these figures, we can conclude that these four parameters exhibit discernible weak linear patterns 

compared to the 𝑘𝑎𝑞. This conclusion suggests that changes in these parameters have an impact on the 

power density. The power density increases slightly as 𝐶𝐴𝐶
𝑖𝑛  and 𝑘2

0 increases, and decreases as 𝐾𝐴𝐶  and 

𝛼 increases. During the experiment, researchers can appropriately increase the value of anode chamber 

acetate feed concentration to get higher power density. 
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Figure 3. Dependence of MFC power density on the (a) concentration of acetate in the influent of the 

anode compartment, (b) forward rate constant of the cathode reaction under standard conditions, 

(c) half velocity rate constant for acetate and (d) anodic charge transfer coefficient 

 

The scatterplots, shown in Fig. 4, exhibit discernible strong linear patterns, which indicate that 

the power density is sensitive to the forward rate constant of the anodic reaction under standard 

conditions and the flow rate of fuel feed to the anode. The results indicate that 𝑘1
0 and 𝑄𝑎 are control 

variables, where 𝑘1
0 is positively correlated with the power density and 𝑄𝑎 is negatively correlated with 

the power density. When 𝑘1
0 changes from 0.1656 to 0.2484 mol m−2 h−1, the power density increases by 

0.4 W m-2 accordingly. In contrast, when 𝑄𝑎 changes from 0.000018 to 0.000027, the power density 

shows a downward trend. Based on above analysis, we believe that an increased flow rate supply to the 

anode may slow down the biochemical reaction and reduce the power generation when other factors tend 

toward the extreme value. 
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Figure 4. Dependence of MFC power density on the (a) forward rate constant of the anodic reaction 

under standard conditions and the (b) flow rate of the fuel feed to the anode 

 

The result of the MFC power density versus the cathodic charge transfer coefficient within the 

range of 0.5304 and 0.7956 is shown in Fig. 5. The scatterplot exhibits a discernible nonlinear pattern 

suggesting that 𝛽 is the control variable. The geometrical shape clearly states the noticeable effect of the 

change of the𝛽 on the outputs. Within the range of 𝛽, the value range of power density changes from 

0.8-1.6 W m-2 to 0-0.8 W m-2. 

 

 
 

Figure 5. Dependence of MFC power density on the cathodic charge transfer coefficient 

 

The first-order sensitivity coefficient based on variance reflects the degree of influence on the 

MFC output when variables act alone, and the total sensitivity represent the degree of influence on the 

MFC output considering the cross-action of variables. The higher the sensitivity of variables in the 

parameters, the sensitivity coefficient is closer to 1. The first-order sensitivities and total sensitivities of 

the model were calculated by Equation 17 and Equation 18, and are shown in Table 3. From Table 3, we 
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can determine the sequence of first-order sensitivity: charge transfer coefficient of the cathode, forward 

rate constant of the anodic reaction under standard conditions, flow rate of the fuel feed to the anode, 

anodic charge transfer coefficient, concentration of acetate in the influent of the anode compartment, 

half velocity rate constant for acetate, forward rate constant of the cathode reaction under standard 

conditions, and electrical conductivity of the aqueous solution. The sequence of total sensitivity was the 

same as that for first-order sensitivities. The histogram of first-order and total sensitivity is shown in Fig. 

6. We can see more intuitively that the sensitivity of the electrical conductivity of the aqueous solution 

is almost zero which shows that there is almost no interaction between this parameter with other 

parameters. The first-order sensitivity and the total sensitivity of 𝛽  are greater than those of other 

parameters, which play a decisive role in the power generation of the model. The difference between the 

first-order sensitivity and the total sensitivity reflects the interaction between the variable and other 

variables. A large difference indicates that the parameter has a greater impact on the system when the 

parameter changes with other variables. The difference between the total sensitivity and the first-order 

sensitivity of each parameter is shown in Table 3 and Fig. 6. These indicate that different parameters 

change at the same time, i.e., the output power under more complex experimental conditions is only 

slightly different from that under a single experimental condition. It also shows that only a certain 

parameter or a combination of specific parameters can cause a large change in the power density. 

 

Table 3. First-order effects and total effects of the parameters 

 

Factor/Unit First-order effect Total effect Difference value 

𝑘1
0/mol m−2 h−1 0.1505 0.1517 0.0012 

𝐾𝐴𝐶/mol m−3 0.0149 0.0155 0.0006 

𝑘2
0/mol m−2 h−1 0.0030 0.0046 0.0016 

𝛼/Dimensionless 0.0286 0.0342 0.0056 

𝛽/Dimensionless 0.6528 0.6543 0.0015 

𝐶𝐴𝐶
𝑖𝑛 /mol m-3 0.0191 0.0214 0.0023 

𝑄𝑎/m3 h-1 0.1269 0.1279 0.001 

𝑘𝑎𝑞/Ohm-1 m-1 3.3603×10-4 0.0018 1.46397×10-3 

 

Through analysing the above images and data, we classify the effects of all parameters on power 

density. Among them, 𝛽 has a strong nonlinear influence, 𝑘1
0 and 𝑄𝑎 have a strong linear effect, 𝐶𝐴𝐶

𝑖𝑛 , 𝑘2
0, 

𝐾𝐴𝐶  and 𝛼 have a weak linear effect, and 𝑘𝑎𝑞 has no significant influence. At the same time, these data 

and graphs also illustrate the ability of GSA analyse the MFC mathematical model. For example, the 

results in the literature [56] clearly demonstrate that the greater the anode feed flow rate at the same 

current density is, the lower the power density of the output. To improve the power density of MFC, one 

of the most important solutions is to adjust the anode feed flow reasonably, but this is beyond the scope 

of this research, and should become the research emphasis of MFC performance optimization. 

Additionally, as observed by authors [48] the higher the concentration of acetate in the influent of the 

anode compartment is, the better the MFC power generation becomes, adequate substrate concentration 

provides continuous nutrients for microbial redox reactions that occurs in the microbial fuel cells. Each 
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point in Fig. 2 to Fig. 5 represents a different situation that may occur during the course of an experiment. 

Compared with the local sensitivity analysis method used in the literature [48], the GSA method used in 

this paper can illustrate the effect of uncertain parameters on the output more clearly. By calculating and 

comparing the first-order sensitivity index with the total sensitivity index, the cross-influence between 

one uncertain parameter and other uncertain parameters can be understand more deeply. 

 

 
 

Figure 6. Sensitivity indices for the first-order effects and total effects of the parameters 

 

 

 

5. CONCLUSIONS 

First, this paper presents a variance-based global sensitivity analysis method and introduces it to 

the microbial fuel cell model analysis for the first time. Additionally, based on the MFC model, an 

analysis system for microbial fuel cells was established using the following parameters: charge transfer 

coefficient of the cathode, forward rate constant of the anodic reaction under standard conditions, flow 

rate of the fuel feed to the anode, anodic charge transfer coefficient, concentration of acetate in the 

influent of the anode compartment, half velocity rate constant for acetate, forward rate constant of the 

cathode reaction and electrical conductivity of the aqueous solution. Taking into consideration the 

optimization of MFC, this paper focuses on the effect of different parameters on the power density. The 

analysis results shows that the cathodic charge transfer coefficient had the greatest effect on the power 

density, while the electrical conductivity of the aqueous solution had almost no effect on the results. 

Above all, it can be concluded that even the number of model evaluations is limited, the global sensitivity 
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analysis can be successfully applied for parameter analysis and parameter optimization in consideration 

of the input parameters of MFC model. The study in this paper will be crucial to the further 

comprehension of MFC systems and has guiding significance for variety of fuel cells model. 
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