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To more accurately predict the remaining useful life of batteries, in this paper, a novel hybrid method 

that includes a particle filter, exponential smoothing and a capacity degradation model is proposed. 

First, the parameters of the dynamic model of a lithium-ion battery are estimated by the particle filter 

to acquire the parameters at each cycle in the estimation phase. Second, these parameters are processed 

and weighted by exponential smoothing to export the weighted averages of these parameters as the 

predictive parameters. Finally, the predictive parameters are brought into an empirical capacity degra-

dation model to predict the remaining useful life of the lithium-ion battery. The comparative experi-

ments for predicting the remaining useful life with different end-of-monitoring thresholds are per-

formed to verify the higher accuracy and stability of this hybrid method compared to the pure particle 

filter method. 
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1. INTRODUCTION 

Compared with lead-acid batteries, nickel-cadmium batteries or nickel-metal hydride batteries, 

lithium-ion batteries have the advantages of a higher energy density, lower self-discharge rate, longer 

lifetime and no memory effect [1], and they have been widely used in electronic products, such as mo-

bile phones and laptops, hybrid/pure electric vehicles, the aerospace industry and other fields. The deg-

radation of lithium-ion batteries affects the safety of electrical equipment [2], so a method that can 

monitor the state-of-health (SOH) and predict the remaining useful life (RUL) of the battery accurately 

and rapidly is needed to better determine the working condition and safety of batteries. Battery degra-
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dation occurs in many aspects [3], such as the decline of capacity, current, voltage and instantaneous 

power and the increase of impedance and the self-discharge rate. Usually, capacity and impedance are 

selected as the evaluation indicators of battery degradation [4]. Based on previous studies, methods for 

battery prognostics can be roughly divided into three categories: data-driven methods, model-based 

methods, and hybrid methods. 

Simply speaking, data-driven methods tend to analyse historical data to excavate potential rules 

and then apply these rules to predict the development of events [5]. Therefore, it is not necessary to 

have a profound knowledge of the degradation mechanism of a battery. The degradation law of the bat-

tery can be predicted simply by rules derived from historical data, and the advantages of such methods 

are now apparent. Chao Hu et al. [6] proposed an integrated data-driven method that contained multi-

ple seed algorithms and integrated them with a weight strategy based on accuracy, diversity and opti-

ma; this method showed high accuracy and robustness for RUL prediction. Patil et al. [7] proposed a 

multi-node support vector machine method that combined a classical model and a regression model to 

improve prediction accuracy, and with the benefits of multi-node computing, this method improved 

program efficiency and resulted in a well-trained model with the possibility of real-time online RUL 

prediction. The disadvantages of data-driven methods are also obvious. On one hand, the accuracy and 

robustness of predicted results will be greatly reduced when historical data is insufficient or unreliable; 

on the other hand, the timeliness of prediction results will be seriously reduced by the calculational 

complexity of intelligent algorithms [8]. 

Contrary to data-driven methods, model-based methods require analysis of the degradation 

mechanism of lithium-ion batteries and depend less on historical data. The electrochemical model, 

equivalent circuit model, and empirical model are commonly used in current research [9]. The electro-

chemical model is composed of three processes: mass transfer, electric conduction and electrochemical 

reaction [10]. These three processes are organically unified by governing equations. The equivalent 

circuit model does not require an in-depth analysis of the electrochemical reaction inside the battery; 

rather, this model uses descriptions of the open-circuit voltage, DC internal resistance and polarisation 

internal resistance in the circuit to express the external characteristics of the battery [11]. The empirical 

model represents a mathematical relationship between the inputs and outputs, which means the data 

obtained from the actual process is analysed by mathematical statistics, and the relations between the 

inputs and outputs are determined according to the principle of minimum error [12]. Compared with 

the other two models, empirical models are more easily applied to online prediction, so they are the 

most widely selected type of method in the study of battery RUL prediction, and models such as the 

exponential increase model based on impedance, the exponential decrease model based on capacity, 

the polynomial model, the Kalman filter and the particle filter are often used to estimate the parameters 

and states of empirical models [13]. The model-based methods consist of two phases: an estimation 

phase and a prognostics phase. Due to the lack of measurements, the model parameters will not be up-

dated in the prognostics phase [14], which means the last parameters in the estimation phase will be 

applied to predict the RUL, potentially leading to large errors. 

The data-driven methods and model-based methods have their own advantages and limitations, 

so more research should be concentrated on combining them to develop their abilities to achieve higher 

performance than a single method. Dong Wang et al. [15] proposed a hybrid method that contained a 
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relevance vector machine (RVM) and a capacity degradation model to predict the RUL of lithium-ion 

batteries. Representative training vectors, including the cycle of relevance vectors and the predicted 

value at this cycle, were determined by the RVM. The predicted values at each cycle were fitted by the 

capacity degradation model, and the RUL value was calculated by an extrapolation method. Yang 

Chang et al. [16] proposed a hybrid method based on error correction. First, the predicted result and a 

raw error series were obtained by an unscented Kalman filter, then the complete ensemble empirical 

mode decomposition was adopted to construct a new error series, and finally, the new error series was 

utilised by an RVM to correct the predicted result. The hybrid method utilises both the stability of the 

model and the creativity of big data, which can improve prognostic performance to some extent. 

Inspired by the limitations of the model-based methods mentioned above, this paper proposes a 

novel hybrid method composed of a particle filter (PF), exponential smoothing (ES) and an empirical 

capacity degradation model to predict the RUL of a lithium-ion battery. Implementation of the pro-

posed method can be divided into three phases: in the start-up phase, the parameters of the dynamic 

lithium-ion battery model are estimated using the PF algorithm, and the parameters at each estimation 

cycle are acquired; in the following phase, the parameters acquired by the PF are processed and 

weighted by the ES algorithm, and the weighted averages of these parameters are exported as the pre-

dictive parameters; in the last phase, the predictive parameters are brought into the empirical capacity 

degradation model to predict the remaining useful life of the lithium-ion battery. Comparative RUL 

prediction experiments with different end-of-monitoring thresholds are conducted, and the results 

show that the proposed ES-PF hybrid method can achieve more accurate and stable prognostic results 

compared with the PF method. Benefiting from the iterative nature of the ES algorithm, the computa-

tion speed does not decline substantially. 

The remaining sections of this paper are arranged as follows. The theories and concepts related 

to particle filters and exponential smoothing algorithms are explained in section 2. Section 3 provides 

cycle life experiments and the capacity degradation model of a lithium-ion battery. Section 4 conducts 

prediction experiments of the RUL of a lithium-ion battery. Section 5 presents three evaluation indica-

tors and analyses the predicted results of battery RUL based on these indicators. The conclusions are 

discussed in section 6. 

 

 

 

2. PARTICLE FILTER AND EXPONENTIAL SMOOTHING 

The particle filter is a method to solve the integral problem of Bayesian optimal estimation with 

the concept of the Monte Carlo integral [17]. It is the process of searching a group of random samples 

that propagate in the state space, then regarding these samples as the posterior probability density func-

tion of the system and substituting the average of these samples for the integral in the Bayesian optimal 

estimation. These samples are known figuratively as "particles". The particle filter removes the con-

straint condition of the Kalman filter that the random variables must satisfy the Gaussian distribution 

and solves the problem of particle degeneracy to some extent [18]. To better understand the proposed 

method, it is necessary to first explain the standard particle filter algorithm. 

 



Int. J. Electrochem. Sci., Vol. 14, 2019 

  

9540 

2.1 Particle filter algorithm 

Consider the state transition function and measurement function of the dynamical system mod-

el as [19] 

𝑥𝑘 = 𝑓𝑘(𝑥𝑘−1, 𝜔𝑘−1)                                                                                                                                              (1) 

𝑧𝑘 = ℎ𝑘(𝑥𝑘 , 𝑣𝑘)                                                                                                                                                       (2) 

  Here, 𝑥𝑘  represents the system state at time 𝑘, 𝑓𝑘  represents the state transition function of 

state 𝑥𝑘−1, 𝜔𝑘−1 is the process noise at time 𝑘 − 1, ℎ𝑘 is the measurement function of state 𝑥𝑘, 𝑣𝑘 rep-

resents the measurement noise at time 𝑘, and 𝑧𝑘 is the measured value at time 𝑘. 

  The process of the particle filter algorithm is as follows. 

(a) Set the algorithm parameters. 

  The number of particles 𝑁, the covariance of the process noises 𝑃𝑘 and the measurement nois-

es 𝑅𝑘, and the driving transaction matrix are included. 

(b) Initialise the particle set. 

The initial states of each particle 𝑥0
𝑖  are obtained by sampling from the initial distribution 

𝑝(𝑥0). Each particle is assigned a weight 𝑤𝑘
𝑖 , and {𝑥𝑘

𝑖 , 𝑤𝑘
𝑖 } is used to present the state and weight of the 

𝑖th particle at time 𝑘. At this step, the weights of all the particles are equal, as represented by {𝑥0
𝑖 , 1/

𝑁}. 

(c) Importance sampling. 

  It is the best choice to sample from the posteriori distribution of the system 𝑝(𝑥0:𝑘|𝑧1:𝑘), but 

𝑝(𝑥0:𝑘|𝑧1:𝑘) is multivariable and nonstandard, which makes it difficult to sample from directly [20]. 

Usually, a known probability density distribution 𝑞(𝑥0:𝑘|𝑧1:𝑘), which is easy to sample from, is intro-

duced, and this distribution is called the importance distribution [21]. 

(d) Calculate the importance weights. 

 𝑧𝑘 is needed at this step, and the original formula of weight calculation is represented as 

𝑤𝑘(𝑥0:𝑘) =
𝑝(𝑧1:𝑘|𝑥0:𝑘)𝑝(𝑥0:𝑘)

𝑞(𝑥0:𝑘|𝑧1:𝑘)
                                                                                                                          (3) 

  Here, 𝑤𝑘(𝑥0:𝑘) is the unnormalised importance weight, 𝑝(𝑧1:𝑘|𝑥0:𝑘) is the likelihood function, 

and 𝑝(𝑥0:𝑘) is the prior distribution. Formula (3) is not recursive, so it is not suitable for computer pro-

gramming. 

  Suppose that the current state is independent of future measurements; then, the importance 

function can be written in the form of continuous multiplication as follows. 

𝑞(𝑥0:𝑘|𝑧1:𝑘) = 𝑞(𝑥0)∏𝑞(𝑥𝑗|𝑥0:𝑗−1, 𝑧1:𝑗)

𝑘

𝑗=1

                                                                                                      (4) 

  Assume that the state variables conform to the first-order Markov process. Then, 

𝑝(𝑥0:𝑘) = 𝑝(𝑥0)∏𝑝(𝑥𝑗|𝑥𝑗−1)

𝑘

𝑗=1

                                                                                                                          (5) 

𝑝(𝑧1:𝑘|𝑥0:𝑘) =∏𝑝(𝑧𝑗|𝑥𝑗)

𝑘

𝑗=1

                                                                                                                                  (6) 
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  Equations (4-6) are brought into formula (3) to obtain the recurrence formula of the weights 

[22]. 

𝑤𝑘 = 𝑤𝑘−1
𝑝(𝑧𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑥𝑘−1)

𝑞(𝑥𝑘|𝑥0:𝑘−1, 𝑧1:𝑘)
                                                                                                                         (7) 

  If the prior distribution 𝑝(𝑥𝑘|𝑥𝑘−1) is chosen as the importance distribution, i.e., 

𝑞(𝑥𝑘|𝑥0:𝑘−1, 𝑧1:𝑘) = 𝑝(𝑥𝑘|𝑥𝑘−1)                                                                                                                         (8) 

then the recurrence formula can be written as the product of the weight at the previous moment and the 

likelihood function [23]. 

𝑤𝑘 = 𝑤𝑘−1𝑝(𝑧𝑘|𝑥𝑘)                                                                                                                                               (9) 

  The importance weights are normalised using the following formula. 

𝑤𝑘
𝑖 =

𝑤𝑘
𝑖

∑ 𝑤𝑘
𝑗𝑁

𝑗=1

                                                                                                                                                       (10) 

(e) Re-sampling. 

  Particle degeneracy will reduce the diversity of the particles [18]. The re-sampling technique 

can solve the problem by reproducing and abandoning the particles {𝑥𝑘
𝑖 }𝑖=1
𝑁  according to their weights 

[24]. To elaborate, the particles with large weights will be vastly reproduced, and the particles with 

weights close to zero will be reduced or abandoned. The weights of all particles will return to 1/𝑁 af-

ter re-sampling. 

(f) Estimation. 

Regard the mathematical expectation of the particle distribution as the estimated value. 

�̃�𝑘 =∑𝑤𝑘
𝑖𝑥𝑘

𝑖

𝑁

𝑖=1

                                                                                                                                                      (11) 

(g) Circulation. 

If 𝑘 ≤ 𝑇 (where 𝑇 is the last number of measurements), let 𝑘 = 𝑘 + 1, and turn to step c; else, 

stop the algorithm. 

  From the above algorithm process, in the estimation phase of battery RUL prediction, the pa-

rameters of the model remain updated because of the continuous supply of measurements. However, 

there is no measurement in the prognostics phase, and the parameters will retain their values from the 

last estimated cycle. Then, the parameters in this cycle are used in the model to predict the RUL with-

out utilising the change rules of the parameters hidden in the historical data. The proposed method is 

exactly inspired by this problem. 

 

2.2 Exponential smoothing algorithm 

  Exponential smoothing is a prediction method commonly used in management science [25]. It 

smooths historical data to obtain reasonable predicted values. 

  Suppose the time series to be 𝑥1, 𝑥2, … , 𝑥𝑘. 

𝑆𝑘 =
𝑥𝑘 + 𝑥𝑘−1 +⋯+ 𝑥𝑘−𝑁+1

𝑁
, 𝑘 ≥ 𝑁                                                                                                           (12) 

Then, the exponential smoothing formula is as follows. 

𝑆𝑘 = 𝛼𝑥𝑘 + (1 − 𝛼)𝑆𝑘−1                                                                                                                                    (13) 
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  Here, 𝑆𝑘 represents the exponential smoothing result. 𝛼 is the weighting coefficient, and 0 <

𝛼 < 1. 

  Expand formula (13) successively. 

𝑆𝑘 = 𝛼𝑥𝑘 + (1 − 𝛼)[𝛼𝑥𝑘−1 + (1 − 𝛼)𝑆𝑘−2] 

      = 𝛼𝑥𝑘 + 𝛼(1 − 𝛼)𝑥𝑘−1 + (1 − 𝛼)
2𝑆𝑘−2 

      = ⋯ 

      = 𝛼𝑥𝑘 + 𝛼(1 − 𝛼)𝑥𝑘−1 + 𝛼(1 − 𝛼)
2𝑥𝑘−2 +⋯+ (1 − 𝛼)

𝑘𝑆0 

      = 𝛼∑ (1 − 𝛼)𝑗𝑥𝑘−𝑗 + (1 − 𝛼)
𝑘𝑆0

𝑘−1

𝑗=0
                                                                                                    (14) 

  When 𝑘 tends to infinity, (1 − 𝛼)𝑘 tends to zero, so equation (14) is simplified to equation 

(15). 

𝑆𝑘 =  𝛼∑(1 − 𝛼)𝑗𝑥𝑘−𝑗

∞

𝑗=0

                                                                                                                                    (15) 

  From equation (15), 𝑆𝑘 is the weighted average of 𝑥𝑘, 𝑥𝑘−1, … , 𝑥𝑘−𝑗 , …. The weighting coeffi-

cients are α, α(1 − α), α(1 − 𝛼)2, … respectively, and the closer the data is, the more weight it has, and 

vice versa, and the sum of the weights is one. 

  Consider 𝑆𝑘 as the predicted value at time 𝑘 + 1. The prediction model can be shown as fol-

lows. 

�̂�𝑘+1 = 𝛼𝑥𝑘 + (1 − 𝛼)�̂�𝑘                                                                                                                                    (16) 

  Expand equation (16) and rewrite it as follows. 

�̂�𝑘+1 = �̂�𝑘 + 𝛼(𝑥𝑘 − �̂�𝑘)                                                                                                                                     (17) 

From equation (17), the new predicted value is obtained by modifying the former predicted 

value according to the prediction error. The size of α embodies the size of the correction range: the 

larger the α, the greater the correction range, and vice versa. The value of 𝛼 not only affects the re-

sponse speed of the prediction model but also determines the ability of the prediction model to correct 

for errors. There is perceptual knowledge for the selection of 𝛼:  

(1) if the time series is smooth and steady, the value of α should be small to narrow the correc-

tion range and to make the prediction model contain longer time series information;  

(2) if the time series fluctuates quickly and obviously, the value of α should be large to improve 

the sensitivity of the prediction model and to rapidly keep up with data changes. 

In practice, several values of 𝛼 are used for trial calculations, and then one of the values that 

yields the smallest prediction error is selected as the model weighting coefficient. 

In this paper, the exponential smoothing algorithm is used to process the historical data of the 

battery model parameters obtained by the particle filter and to acquire reasonable predicted parameters 

of the battery degradation model, which is required in the prognostics phase. The flow chart of the 

proposed ES-PF algorithm is shown in Fig. 1. Here, 𝐸𝑂𝑀 represents the end of the monitoring, 𝑘𝐸𝑂𝑀 

represents the cycle number at the end of the monitoring, 𝐸𝑂𝐿 represents the end of life of the batter-

ies, and 𝑘𝐸𝑂𝐿 represents the cycle number at the end of life of the batteries. 
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Figure 1. Flowchart of the proposed hybrid method. 

 

3. EXPERIMENT AND BATTERY DEGRADATION  

 

3.1 Battery cycle life experiments 

Lithium-ion battery cycle life experiments were conducted first to obtain the data, which are 

used to estimate the parameters and demonstrate the validity of the proposed method. 

The rated capacity of the 18650 ternary lithium batteries used in the experiments is 1600 mAh, 

and the nominal voltage, lower cut-off voltage and upper cut-off voltage are 3.7 V, 2.75 V, and 4.2 V, 

respectively. The experiments were conducted under room temperature (30℃), and two batteries were 

tested in total. The specific experimental steps are as follows. 

(1) Discharge the new batteries in a constant current at 1 C until the battery voltages fall to 

2.75 V, and then shelve them for 10 minutes. (The purpose of this step is to discharge the residual ca-

pacity in the new batteries.) 

(2) Charge the batteries in a constant current at 1 C until the battery voltages reach 4.2 V. 

(3) Charge the batteries in a constant voltage at 4.2 V until the current falls to 20 𝑚𝐴, and then 

shelve them for 30 minutes. 

(4) Discharge the batteries in a constant current at 1 C until the voltages fall to 2.4 V and 2.5 V. 

Then, shelve them for 30 minutes. 

(5) Repeat step 2 to step 4 until the actual maximum capacity of the batteries drops to 75% of 

the rated capacity. 
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We set up the experimental conditions of overcharge and over-discharge to accelerate the fail-

ure of the batteries and to shorten the experimental period. Fig. 2. shows the degradation curves of the 

battery discharge capacity. The capacity degradation curves of the batteries are different because of the 

difference of the lower cut-off voltages.  

 

Figure 2. Discharge capacity degradation curves 

 

3.2 Empirical capacity degradation model of lithium-ion battery 

 

Establishing the degradation model of lithium-ion batteries is an important part of remaining us

eful life prediction. The electrochemical model has been established according to the electrochemical p

rocess inside the battery [26]. Therefore, it is a quite accurate battery model, especially in complex and

 changeable conditions. However, the establishment of the model is very difficult and requires a thorou

gh understanding of the degradation mechanism of batteries [27]. The equivalent circuit model describ

es the external characteristics of the battery by describing the open-circuit voltage, DC internal resistan

ce and polarisation internal resistance of the battery [28]. However, it cannot directly reflect the capacit

y degradation characteristics of batteries. Compared with the two models mentioned above, the empiric

al model is commonly used in research. R.B. Wright et al. [29] proposed an empirical model based on i

mpedance increases. 

𝑅(𝑡, 𝑇, 𝑆𝑂𝐶, ∆%𝑆𝑂𝐶) = 𝐴(𝑇, 𝑆𝑂𝐶, ∆%𝑆𝑂𝐶)𝑡1 2⁄ + 𝐵(𝑇, 𝑆𝑂𝐶, ∆%𝑆𝑂𝐶)                                       (18 − 1) 

{
 
 

 
 𝐴 = 𝑎(𝑆𝑂𝐶, ∆%𝑆𝑂𝐶) {exp [

𝑏(𝑆𝑂𝐶, ∆%𝑆𝑂𝐶)

𝑇
]} 

𝐵 = 𝑐(𝑆𝑂𝐶, ∆%𝑆𝑂𝐶) {exp [
𝑑(𝑆𝑂𝐶, ∆%𝑆𝑂𝐶)

𝑇
]}

                                                                              (18 − 2) 

Usually, the accuracy and complexity of a model will increase as the number of parameters incr

eases. In addition to the conventional parameters, the model also takes into account the effects of temp

erature and state-of-charge, so the accuracy is high and the computation is complicated. 
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The battery capacity decreases as the number of charge and discharge cycles increases. Saha et 

al. [30] found that the capacity of lithium-ion batteries decays exponentially, and He et al. [31] pro-

posed an exponential growth model to fit the degradation curve. 

𝑄𝑘 = 𝑎 × exp(𝑏 × 𝑘) + 𝑐 × exp(𝑑 × 𝑘)                                                                                                       (19) 

  Here, 𝑄𝑘 represents the capacity at the 𝑘th cycle, 𝑎, 𝑏, 𝑐, 𝑑 represent parameters of the model, 

and 𝑘 is a variable of the model that represents the number of cycles. In practice, the parameters of the 

model vary with time. These four parameters are taken as the states of the model, and the state transi-

tion equation and measurement equation can be shown as follows. 

 𝑋(𝑘) = [𝑎(𝑘) 𝑏(𝑘) 𝑐(𝑘) 𝑑(𝑘)]𝑇                                                                                                   (20 − 1) 

{
 

 
𝑎(𝑘) = 𝑎(𝑘 − 1) + 𝜔𝑎(𝑘)

𝑏(𝑘) = 𝑏(𝑘 − 1) + 𝜔𝑏(𝑘)

𝑐(𝑘) = 𝑐(𝑘 − 1) + 𝜔𝑐(𝑘)

𝑑(𝑘) = 𝑑(𝑘 − 1) + 𝜔𝑑(𝑘)

                                                                                                                     (20 − 2) 

𝑄(𝑘) = 𝑎(𝑘) × exp(𝑏(𝑘) × 𝑘) + 𝑐(𝑘) × exp(𝑑(𝑘) × 𝑘) + 𝜈(𝑘)                                                            (21) 

  Here, 𝑋(𝑘) is the state vector at the 𝑘th cycle, 𝑎(𝑘), 𝑏(𝑘), 𝑐(𝑘), and 𝑑(𝑘) are the parameters 

of the model at the 𝑘th cycle, 𝜔𝑎(𝑘), 𝜔𝑏(𝑘), 𝜔𝑐(𝑘), and 𝜔𝑑(𝑘) are the process noises at the 𝑘th cycle, 

𝜈(𝑘) is the measurement noise at the 𝑘th cycle, and 𝑄(𝑘) is the measurement at the 𝑘th cycle. 

This model is simpler than the impedance increase model, but its accuracy is also sufficient. To 

simplify the parameters, Zhang et al. [32] expanded one of the indices by the Taylor formula and ob-

tained a simplified model. 

𝑄 = 𝑎 × exp(𝑏 × 𝑘) + 𝑐 × 𝑘𝑔                                                                                                                          (22) 

Here, 𝑔 is an integer variable determined by the degradation rate of batteries based on experi-

ence. 

Compared with the original model, it reduces one parameter but adds another variable, and its 

accuracy has not been improved. Considered comprehensively, the double exponential capacity degra-

dation model is the best choice. 

 

 

4. REMAINING USEFUL LIFE PREDICTION 

4.1 Preparatory work 

  Remaining useful life is defined as the number of cycles from the current cycle to the 𝐸𝑂𝐿 

threshold [14]. The 𝐸𝑂𝐿 threshold in this paper is 75% of the rated capacity. The RUL of the battery 

can be calculated using equation (23). 

𝑅𝑈𝐿 = 𝑘𝐸𝑂𝐿 − 𝑘𝐸𝑂𝑀                                                                                                                                            (23) 

  Here, 𝑅𝑈𝐿 is the cycle number of the remaining useful life of the battery. 

  The initial values of the model parameters are obtained by fitting the degradation data of bat-

tery1 and 2 that were used in the estimation phase and then regarding the averages of the fitting pa-

rameters as the initial values of battery2. The results are shown in Table Ⅰ. 
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Table Ⅰ. The initial values of the model parameters 

 

Battery ID a b c d 

Battery1 -0.0016930 0.04707 0.9505 -0.001096 

Battery2 -0.0002283 0.06325 0.9557 -0.001148 

Average -0.0009607 0.05516 0.9531 -0.001122 

 

4.2 RUL prediction 

  Battery2 is considered as the prediction object, and battery1 just helps to provide the initial 

parameters. Three 𝐸𝑂𝑀  thresholds are set to be the 40th, 50th, and 60th cycle, respectively. When 

𝑘𝐸𝑂𝑀 = 40, the actual values and the predicted values of 𝑎(𝑘), 𝑏(𝑘), 𝑐(𝑘), and 𝑑(𝑘) provided by the 

proposed method are shown in Fig. 3. The red solid lines represent the value of each parameter pre-

dicted by the particle filter in the estimation phase, and the black solid lines are the corresponding ac-

tual values. As seen from Fig. 3, the predicted values are very close to the actual values. 

 

 
 

Figure 3. Variation curves of parameters 𝑎, 𝑏, 𝑐, 𝑑. 

 

Fig. 4 shows the RUL prediction results under the corresponding EOM thresholds provided by 

the standard PF method and the proposed method in this paper. 
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Figure 4. Prediction result of battery2 (𝑘𝐸𝑂𝑀 = 40). 

 

When 𝑘𝐸𝑂𝑀 = 50, the actual values and the predicted values of 𝑎(𝑘), 𝑏(𝑘), 𝑐(𝑘), and 𝑑(𝑘) are 

shown in Fig. 5 (a). Fig. 5 (b) is the RUL prediction result under this 𝐸𝑂𝑀 threshold.  

 

 

(a)                                                                          (b) 

 

Figure 5. (a) Variation curves of parameters 𝑎, 𝑏, 𝑐, 𝑑, (b) prediction result of battery2 (𝑘𝐸𝑂𝑀 = 50). 
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When 𝑘𝐸𝑂𝑀 = 60, the actual values and the predicted values 𝑎(𝑘), 𝑏(𝑘), 𝑐(𝑘), and 𝑑(𝑘) are 

shown in Fig. 6 (a). The corresponding RUL prediction result is shown in Fig. 6 (b).  

 

(a)                                                                          (b) 

Figure 6. (a) Variation curves of parameters 𝑎, 𝑏, 𝑐, 𝑑, (b) prediction result of battery2 (𝑘𝐸𝑂𝑀 = 60). 

 

5. ANALYSIS OF PROGNOSTIC RESULTS 

5.1 Evaluation indicators 

Three indicators are chosen to evaluate the predicted results comprehensively [16]. 

(1) Absolute error (𝐴𝐸) 

The raw error between the actual RUL value and the predicted value can be reflected by the ab-

solute error. 

𝐴𝐸 = |𝑅𝑈𝐿𝑝𝑟𝑒 − 𝑅𝑈𝐿𝑎𝑐𝑡|                                                                                                                                   (24) 

  Here, 𝑅𝑈𝐿𝑝𝑟𝑒  represents the cycle number of the predicted RUL, and 𝑅𝑈𝐿𝑎𝑐𝑡  is the cycle 

number of the actual RUL. 

(2) Relative error (𝑅𝐸) 

  The confidence level of the result is revealed by the relative error. A smaller relative error re-

flects a higher confidence level, and vice versa. 

𝑅𝐸 =
|𝑅𝑈𝐿𝑝𝑟𝑒 − 𝑅𝑈𝐿𝑎𝑐𝑡|

𝑅𝑈𝐿𝑎𝑐𝑡
× 100%                                                                                                                  (25) 

(3) Stability error (𝑆𝐸) 

  The formula of the root mean square error is applied to calculate the stability error, which re-

flects the stability of the predicted results. A smaller stability error reveals higher robustness of the 

prediction method, and vice versa. 

𝑆𝐸 = √
1

𝑘𝐸𝑂𝐿 − 𝑘𝐸𝑂𝑀
∑ (𝑄𝑘 − �̂�𝑘)

2

𝑘𝐸𝑂𝐿

𝑘=𝑘𝐸𝑂𝑀

                                                                                                        (26) 
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  Here, 𝑄𝑘 represents the actual capacity at the 𝑘th cycle, and �̂�𝑘 is the predicted capacity at the 

𝑘th cycle. 

 

5.2 Result analysis 

  Table Ⅱ gives the predicted results and the evaluation indicators of battery2 under three dif-

ferent  𝐸𝑂𝑀 thresholds using the standard PF method and the proposed ES-PF method. 

 

Table Ⅱ. Prediction results and evaluation indicators of two methods for battery2. 

 

Group Method 𝑘𝐸𝑂𝑀 𝑅𝑈𝐿𝑎𝑐𝑡 𝑅𝑈𝐿𝑝𝑟𝑒 𝐴𝐸 𝑅𝐸 𝑆𝐸 

1 PF 40 56 62 6 10.71% 0.0150 

ES-PF 40 56 60 4 7.14% 0.0095 

        

2 PF 50 46 51 5 10.87% 0.0121 

ES-PF 50 46 49 3 6.52% 0.0085 

        

3 PF 60 36 39 3 8.33% 0.0090 

ES-PF 60 36 37 1 2.78% 0.0056 

 

 

From group 1 to group 3 in Table Ⅱ, the accuracy of the predicted results increases with the 

value of 𝑘𝐸𝑂𝑀 regardless of whether the PF method or the ES-PF method is used. This may be because 

more and more historical measurements are available as 𝑘𝐸𝑂𝑀 increases, and more reasonable parame-

ters can be provided to the model by learning these historical data. Or it may be that the prediction 

range will decrease when the 𝐸𝑂𝑀 threshold moves backwards, reducing the uncertainty of prediction.  

  From Table Ⅱ, the proposed ES-PF method has higher accuracy and robustness than the 

standard PF method under the same conditions. The ES-PF algorithm makes full use of the historical 

parameters obtained in the estimation phase, and the weights and averages of these parameters are used 

to provide model parameters that are more reliable than those provided by the standard PF method. 

  The lower cut-off voltages in the experiments were set below the standard value. The result 

shows that the cycle life of the batteries is shorter than that of batteries in normal use (the standard cy-

cle life provided by the manufacturer is 300 cycles), and therefore, over-discharge has a great influence 

on the battery life. 

  From the above analysis, the conclusions can be summarised as follows: (a) the accuracy of 

the predicted results increases as the value of 𝑘𝐸𝑂𝑀 increases regardless of whether the PF method or 

the ES-PF method is used; (b) the proposed ES-PF method has a higher accuracy and robustness than 

the standard PF method under the same conditions; and (c) the operation conditions have a certain im-

pact on the cycle life of lithium-ion batteries. 
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6. CONCLUSIONS 

This paper proposes a novel hybrid method, which consists of a particle filter (PF), exponential 

smoothing (ES) and an empirical capacity degradation model, that can utilise historical parameters ob-

tained in the estimation phase to sufficiently predict the RUL of lithium-ion batteries. The method can 

be divided into three phases: in the first phase, the parameters of the dynamic lithium-ion battery mod-

el are estimated by the PF algorithm, and the parameters in each estimation cycle are acquired; in the 

second phase, the parameters acquired by the PF are weighted and averaged by the ES algorithm, and 

then the weighted averages of these parameters are exported as the predictive parameters; in the final 

phase, the predictive parameters are brought into the empirical capacity degradation model to predict 

the remaining useful life of a lithium-ion battery. This hybrid method is interdisciplinary because par-

ticle filters are used in engineering while exponential smoothing is usually used in management sci-

ence. 

  The standard PF method and the proposed method are compared in RUL prediction experi-

ments with lithium-ion batteries. The experiments are divided into three groups with different 𝐸𝑂𝑀 

thresholds, and the results show that the accuracy of prediction is affected by the amount of historical 

data. However, the proposed method can achieve more accurate and stable results, which verifies the 

effectiveness and higher performance of the proposed method compared to the standard PF method. 

   Unlike with experimental conditions, the actual operation conditions of batteries are complex, 

particularly for power batteries in electric vehicles, which often work in poor conditions with frequent 

acceleration and deceleration. Therefore, future work should focus on improving the adaptability of the 

model and considering RUL prediction under multiple operation conditions. 
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