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Lithium-ion batteries have become the core energy supply component for many electronic devices. An 

accurate prediction of the remaining useful life (RUL) of lithium-ion batteries is of great significance 

for battery management and ensuring the reliability of electronic devices. The extreme learning machine 

(ELM) algorithm has been applied to predict the RUL of lithium-ion batteries; however, there are some 

disadvantages in this method: (i). the single hidden layer structure of the ELM necessarily restricts its 

ability to capture effective features in high-dimensional data. (ii). the input weights and biases of the 

ELM are generated randomly, which affects its prediction accuracy. To overcome these problems, this 

paper proposes an HKA-ML-ELM method for predicting the RUL of lithium-ion batteries. First, a new 

multi-layer ELM (ML-ELM) network is constructed. By adding an input layer into the last individual 

ELM of the ML-ELM and implementing the random selection of these input nodes to partially connect 

with the hidden layer, the network has higher robustness and can effectively prevent over-fitting. Second, 

the heuristic Kalman algorithm (HKA) is used to optimize the input weights and biases parameters of 

the ML-ELM, which improves the prediction accuracy. Finally, RUL prediction experiments are carried 

out for battery packs with different rated capacities and different discharge currents. The experimental 

results verify the effectiveness of the proposed method. The comparisons with other algorithms show 

that the proposed method has better prediction accuracy. 
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1. INTRODUCTION 

As an important energy storage device, lithium-ion batteries have been widely used in industrial 

systems, communication systems, electronic equipment and electric vehicles due to their high energy 

density, light weight and long life [1,2]. However, as the number of charges and discharges increases, 

the battery will gradually age, and its performance will inevitably decline or even fail [3]. An ageing 

battery directly affects the normal operation of equipment, reduces the system reliability, and may even 
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bring about a catastrophe. It is crucial to predict the RUL of lithium-ion batteries in advance for system 

safety considerations [4,5]. 

Recently, the prediction of the RUL of lithium-ion batteries has become a worldwide research 

hotspot, and the main task is to find a reliable and accurate prediction method. Scholars have conducted 

extensive research on methods for predicting the RUL of batteries [6,7]. The literature [8] proposed an 

RUL estimation method based on the internal resistance growth model, which used the particle filter 

(PF) method. In this method, according to the empirical model established by the test data based on 

electrochemical impedance spectroscopy (EIS), the internal resistance growth of the battery was taken 

as the ageing parameter, and then the model was used in a PF framework to predict the end of life (EOL) 

at various stages of the life cycle. Thus, a meta-heuristic optimization method was combined with a PF 

to solve the problem of sample degeneracy and impoverishment. In [9], the authors introduced a heuristic 

Kalman algorithm to predict the RUL of a battery. Zhang and Miao [10] proposed an unscented particle 

filter (UPF) based on linear optimizing combination resampling (U-LOCR-PF), which was considered 

an improved PF algorithm, to gain higher prediction accuracy. PFs have a promising prospect of life 

expectancy due to their strong non-linear and non-Gaussian processing ability, but they have two main 

problems, including particle degradation and sample deprivation. While re-sampling can reduce particle 

degradation to some extent, it may also lead to the lack of sample particles [11]. Moreover, due to the 

complex internal electrochemical characteristics of lithium-ion batteries and their susceptibility to 

external factors such as temperature and humidity, it is difficult to establish accurate mathematical or 

physical models [12]. Therefore, more methods have begun to use life characteristic parameters, 

including the capacity, current, voltage and impedance, of lithium-ion batteries to detect, analyse and 

predict the RUL distribution, performance degradation degree or failure probability. Among these 

methods, the most popular intelligent algorithms in recent years, such as artificial neural networks and 

support vector machines (SVMs), can be used effectively [13,14]. The literature [15] proposed a fusion 

RUL prediction method based on a deep belief network (DBN) and relevance vector machine (RVM). 

In this method, the DBN extracted features from the capacity degradation of lithium-ion batteries, and 

the RVM took these features as input to predict the RUL. The validity of this method was verified by 

calculating battery datasets. Zhao [16] extracted two kinds of real-time measurable health indicators and 

established a relationship model between the two HIs and capacity by combining feature vector selection 

(FVS) with SVR to evaluate the network capacity and predict the RUL. Compared with the SVM 

methods mentioned above, artificial neural networks have been widely used in the prediction of the RUL 

of lithium-ion batteries and have achieved satisfying prediction results due to their high level of 

flexibility and easy implementation. In [17], an online RUL estimation method was proposed for lithium-

ion batteries based on a FFNN, and the validity was verified by experiments and numerical comparison. 

The literature [18] proposed a method, that considered neural networks, data processing grouping 

methods, neuro-fuzzy networks and random forest algorithms as a whole system. By using the constant 

load experimental data collected from lithium-ion batteries, the prediction results showed the 

effectiveness of this method in estimating the RUL of lithium-ion batteries. In [19], the authors studied 

battery rule prediction based on deep learning and studied the long-term correlation among the degraded 

capacity of lithium-ion batteries using long-short-term memory (LSTM) recurrent neural networks 

(RNNs). This method can predict the RUL of batteries independent of the off-line training data. Once 
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the off-line data became available, it was able to predict the RUL earlier than the traditional methods 

and achieved good results. However, there are also some faults in artificial neural networks, especially 

the slow training speed, weak generalization ability and complex calculations. 

The ELM is a single hidden layer feedforward neural network that has been widely used in 

regression, fitting, classification and prediction and has the characteristics of fast speed, easy 

implementation and good generalization performance [20]. However, one of the characteristics of the 

ELM algorithm is that the input weights and biases are generated randomly, which greatly affects the 

accuracy of the algorithm while it is running at high speed [21]. The HKA algorithm can optimize the 

parameters that are randomly generated by the ELM. Its main idea is to treat the optimization problem 

as a measurement process, and its main feature is that only 3 parameters need to be set [22]. In [23], 

Yang proposed the HKA-ELM method, which combined an HKA with an ELM to predict the RUL of 

lithium-ion batteries. At present, research on ELMs has achieved remarkable results. The literature [24] 

proposed an incremental ELM to incrementally determine the number of nodes in the hidden layer. In 

[25], the authors proposed the optimally pruned extreme learning machine (OP-ELM) based on the 

original ELM algorithm, in which some steps were added to make it more robust and universal. However, 

the ELM and its above variants are all based on a single layer neural network. It is the shallow structure 

of the ELM, with a single hidden layer, that restricts its ability to capture effective features in high-

dimensional data. For this reason, Zhou [26] proposed the multilayer extreme learning machine (ML-

ELM). It has a kind of deep structure with multiple hidden layers, which enables it to extract high-level 

abstract information. In fact, the ML-ELM is based on the ELM-based AE (ELM-AE). It overlays 

multiple ELM-AEs for representation learning and then classifies them in the last layer of the ELM-AE. 

Once the parameters of each layer are fixed, there is no need for iterative training [27]. Containing an 

ELM, the ML-ELM reduces the randomness of training and has a large advantage over the ELM in terms 

of stability [28]. The ML-ELM has an extremely fast training speed and good learning efficiency. Its 

universality is higher than that of the SAE, deep belief network and deep Boltzmann machine, and its 

training speed is much faster than other existing multi-layer neural networks [29]. Unfortunately, the 

ML-ELM does not solve the problem that the ELM randomly generates the input weights and biases. 

The random projection of each layer leads to an unstable performance and sub-optimal performance, and 

its accuracy is still not high. In addition, the large hidden layer will cause time and storage-consuming 

problems in the training process. This paper proposes a new HKA-ML-ELM method. First, a new multi-

layer ELM (ML-ELM) network is constructed: the final data representation is taken as the input layer of 

the last individual ELM for prediction; at the same time, the input layer nodes are randomly selected for 

partial connection with the hidden layer. After adding the input layer, the information storage capacity 

and hidden information are improved, while the general approximation ability of the ELM is still 

maintained. Furthermore, by reducing the input nodes randomly, the structure is simplified, the 

complexity of the network is reduced, the network is more robust, and over-fitting can be effectively 

prevented. Second, the HKA algorithm is introduced into the ML-ELM network to optimize the input 

weights and biases parameters that are generated randomly. The HKA-ML-ELM method has some 

advantages, such as a fast learning speed, relative simplicity, high generalization and fast convergence, 

which are verified through experiments with the NASA dataset and the latest Oxford battery degradation 

https://www.sciencedirect.com/topics/engineering/extreme-learning-machine
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dataset. Compared with the original ELM and HKA-ELM methods, the HKA-ML-ELM has higher 

prediction accuracy. 

The rest of the article is organized as follows: 

The second part briefly introduces the basic principles of the ELM, new ML-ELM structure, 

HKA and HKA-ML-ELM. The third part introduces the experiments. The fourth part presents the 

experimental results, compares this method with other methods and ends with a discussion. The fifth 

part is the conclusion and summary. 

 

2. OUTLINE OF METHODS  

2.1. Extreme Learning Machine 

The ELM is a kind of machine learning algorithm based on the generalized single hidden layer 

feedforward neural network proposed by Huang, including the input layer, hidden layer and output layer. 

The ELM is classified and regressed by minimizing the predicted square loss and the norm of the output 

weight [30]. Its main characteristics are that the parameters of the hidden layer nodes can be set randomly 

or artificially without adjustment, and the learning process only needs to calculate the output weight. 

The high learning efficiency and strong generalization ability are the advantages of the ELM [31]. Its 

structure is shown in Fig. 1. 

 

 

Figure 1. An ELM model 

 

where  1 2, , , nx x x…  is the input matrix, W  represents the connection weights between the input 

layer and the hidden layer, and b  represents the biases of the hidden layer neurons. n represents the 

number of inputs, and L represents the number of hidden layer nodes: 
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Set the activation function of the hidden layer as ( )h  , then the hidden layer output matrix of L 

hidden neurons can be expressed as: 
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jy  is the output, and its expression is:  
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 1 2, , ,  L…  are the connection weights between the hidden layer and the output layer. That is: 

                                         H T =                                        (4) 

The algorithmic process of the ELM is as follows: 

 

Algorithm 1. The ELM algorithm 

Step1. Determine the number of hidden layer nodes L, and randomly generate the connection 

weights  1 2, , , LW W W  between the input layer and the hidden layer, as well as the biases  1 2, , , Lb b b ; 

Step2. Determine the activation function ( )h   and calculate the hidden layer output matrix H ; 

Step3. The connection weights of the output layer can be calculated by solving the least square 

solution of the following equation: 

                            min H T


 −                                   (5) 

The solution is: 

                              H T +=                                      (6) 

H +  is the generalized inverse of H . 

 

2.2. A New ML-ELM Algorithm  

The multilayer extreme learning machine (ML-ELM) was proposed by employing the ELM-

based AEs (ELM-AEs), and its input layer is equal to the output layer. The ML-ELM integrates 

representation learning and classification into a single learning process, where the multiple layers of the 

ELM-AE are used for representation learning and the final layer of the ELM is used for classification. 

The ML-ELM learns the transformation from the hidden layer to the output layer, fixes all the parameters 

of each layer, and completes the iterative training. Therefore, the ML-ELM has a faster training speed, 

which can solve the time consumption problem of deep learning. Compared with the shallow structure 

of the ELM, the multi-layer structure of the ML-ELM enables it to capture more effective features in 

high-dimensional data. However, the ML-ELM directly uses the final data representation as the hidden 

layer to calculate the output weight, which does not guarantee the universal approximation capability of 

the ELM and leads to a high probability of over-fitting and low robustness [29,32]. 

In this paper, a new ML-ELM is constructed. First, take the final data representation as the input 

layer of the last individual ELM of ML-ELM. Second, the nodes of this input layer are randomly selected 

and partially connected with the hidden layer nodes. Under this scheme, on the one hand, the universal 

approximation capability of ELM is maintained. On the other hand, the robustness of the network is 
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improved, and over-fitting can be effectively prevented. The new constructed ML-ELM is shown in Fig. 

2.  

 

 
Figure 2. Architecture of the new ML-ELM 

 

(a) The training mechanism randomly chooses input weights 1a  and biases 1b  for the input layer 

of the AE, and then the transformation matrix (1)  is obtained for representation learning in the ELM-

AE.  

(b) The learning process of the new input representation (2)x  is calculated by ( )(1) (1)( )Tg x  , where 

g  is an activation function. 

(c) (2)x  is used as the input to the ELM-AE for the next representation learning step.  

(d) The whole process of the ML-ELM from the input layer to the hidden layer and then to the 

output layer is shown. After the process of representation learning is completed, the final data 

representation finalx  is selected as the input layer of an individual ELM. The random function is used to 

generate several numbers, and the nodes corresponding to finalx  are partially connected with the hidden 

layer finalh , and then the output weight   is calculated. Here, c is the number of target classes. 

 

2.3. Heuristic Kalman Algorithm 

The HKA is an optimization algorithm that takes the optimization problem as a measurement 

process to obtain the optimal estimate [23]. The schematic diagram of the HKA [33] is shown in Fig. 3. 
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Figure 3. Schematic diagram of the HKA 

 

The HKA is an iterative process. In the kth iteration of the HKA, ( )x k is generated by the 

probability density function (pdf) ( )kp x , and ( )x k  is used as the input to the measurement process to 

generate the optimal value. In the Kalman estimation process, the optimal value is combined with ( )kp x  

to generate a new pdf ( )1kp x+  as a reference for the next iteration [34]. The steps of the HKA are listed 

below. 

 

Algorithm 2. The HKA algorithm 

Step1. Initialization. Set the HKA parameters: the number of particle groups, the number of best 

candidate groups, the deceleration coefficient, the number of iterations k = 0 and the maximum number 

of iterations. 

Step2. Gaussian random generator ( ),k km  . A sequence of N vectors is generated according to 

the parameterized Gaussian distribution of the mean vector km  and variance-covariance matrix k : X(k)= 
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kx  is the ith vector generated in the kth iteration. 
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Step4. Optimal estimation. In Kalman's framework, the estimators are expressed in the following 
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where ,i Kv  represents the ith component of the variance vector kV , and ,i Kw  is the ith component 

of the vector KW . 

Step5. Initialize the next step. Set 1K Km m +=  and 1K K + =  . 

Step6. The optimal value is obtained. If the termination rule is not satisfied, go back to Step2; 

otherwise, terminate the test and obtain the optimal value. 

 

2.4. The HKA-ML-ELM 

  Since the connection weights and biases of the ML-ELM are generated randomly, and these two 

important parts will affect the prediction results, this paper uses the HKA to optimize the prediction 

framework of the ML-ELM. The HKA-ML-ELM includes two links: Link One is the process of the first 

n-1 layers of the ML-ELM, and Link Two is the process of the nth layer of the ML-ELM. The flow chart 

of the HKA-ML-ELM algorithm is shown in Fig. 4. 

 

 

Figure 4. Architecture of the HKA-ML-ELM 

 

Algorithm 3. The HKA-ML-ELM algorithm 

(a)Link One: 

Step1. Initialize the parameter value of the ELM predictor and the total number of cycles n; 

Step2. Set the HKA parameters. Set the values of ,N N  and  , as well as the number of iterations 

k = 0 and the maximum number of cycles value; 

Step3. Generate ( ),K Km  . In each iteration, the normal distribution set is generated according to 

the mean Km  and standard deviation K  of the Gaussian generator. 

Step4. Random generator, According to the Gaussian distribution, N groups of X particles are 

randomly generated from ( ),K Km  . 

Step5. The generated particle X is used as the parameter of the ELM predictor, and the training 

set is brought into the ELM predictor for prediction. 
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Step6. The MSE of the predicted and real results is used as the cost function. 

Step7. Select the optimal particle group. According to the order of the MSE values, for the first 

group N  particles were selected from N groups as the candidate values. 

Step8. Calculate the values of K  and KV . The K  value and KV value are calculated according to 

formulas (7) and (8) respectively. 

Step9. The Kalman estimate. The values of 1Km +  and 1K +  are calculated according to formula (9). 

Step10. Initialize the next update. Set 1 1, , 1K K K Km m k k+ +=  =  = + . 

Step11. Determine if the condition is met. If the number of iterations is reached, the iteration 

terminates, otherwise, it enters Step4. 

Step12. Predict the test data. The optimum value Km  is used as input weights and biases and is 

brought into the HKA-ML-ELM predictor with the test set for prediction. 

Step13. Determine if the condition is met. If the maximum number of cycles is not reached, 

return to Step2. If the maximum number of cycles is reached, the cycle terminates, and Link Two is 

executed. 

(b)Link Two: 

Step1. Select the corresponding input nodes, based on the randomly generated number, to 

partially connect with the hidden layer. 

Steps2-12. Same as Link One. 

Step13. The predicted value is obtained. 

 

3. EXPERIMENTS 

3.1. Data Description 

 

Figure 5. Change in the capacity of batteries B5, B7 and B18 

 



Int. J. Electrochem. Sci., Vol. 14, 2019 

  

7746 

 

Figure 6. Change in the capacity of batteries C1, C3, C7 and C8 

 

In this paper, there are two kinds of battery datasets. 

The first is from the NASA PCoE Research Center, which is available for public download on 

their website. Three groups of lithium-ion batteries (B5, B7 and B18) with a rated capacity of 2 Ah were 

used to charge, discharge and measure the resistance at 25 °C, and the monitoring data were recorded. 

The charge and discharge experiment method: charge in 1.5 A constant current mode until the battery 

voltage increases to 4.2 V, then continue to charge in constant voltage mode until the charging current 

drops to 20 mA. The voltages of B5, B7 and B18 are reduced to 2.7 V, 2.2 V and 2.5 V, respectively, at 

a constant current of 2 A. Repeated charging and discharging cycles can lead to accelerated battery 

ageing, while the impedance measurements can provide insight into the internal parameters of the battery 

as it ages. When the actual capacity of the battery was reduced to 70% of the rated capacity, that is, from 

2Ah to 1.4Ah, the experiment was stopped [35]. The actual capacity of the B5, B7 and B18 batteries and 

the relationship between the charging and discharging cycles are shown in Fig. 5. Based on the HKA-

ML-ELM algorithm, the RUL predictions are made for the three groups of data. 

The second dataset is the Oxford University Battery Degradation dataset, which can be 

downloaded publicly on their website. Four groups of lithium-ion batteries (C1, C3, C7 and C8) with a 

rated capacity of 0.74 Ah were used in the experiment. The batteries were exposed to a constant-current-

constant-voltage charging mode at 40 °C. Then, the driving cycle discharge profile was obtained from 

the Artemis urban profile. The characterization measurements were taken every 100 cycles until the end 

of the battery life, and monitoring data were recorded. The failure threshold was set at 75% of the rated 

capacity; that is, when the rated capacity decreased from 0.74 Ah to 0.555 Ah, the experiment stopped. 

The actual capacity of the C1, C3, C7 and C8 batteries and the relationship between the charging and 

discharging cycles are shown in Fig. 6. Based on the HKA-ML-ELM algorithm, the RUL predictions 

are made for the four groups of data. 

 

3.2. Algorithmic Parameters and Evaluation Functions 

In the HKA-ML-ELM algorithm, some parameter values need to be set. Table 1 shows the 

parameter values in the experiment. 
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Table 1. HKA-ML-ELM parameter values 

 

B5            B7            B18            C1            C3            C7            C8 

N                         25             25              25             25             25             25             25 

N                        5               5                5               5               5                5               5 

                        0.4            0.4             0.4            0.4            0.4             0.4            0.4 

L                          1               1                1               1               1                1               1 

Training set                 83             83              65             38             37              37             37 

Test set                    82             82              64             37             36              37             36 

 

In the above table, N  and N  are parameters of the HKA. L, Training set and Test set are 

parameters of the ML-ELM. 

This paper selects mean square error (MSE), correlation coefficient (R2) and absolute error (AE) 

as the evaluation functions to evaluate the prediction results. 

 

4. RESULTS AND DISCUSSION 

Two different datasets are selected for the experiments, namely, the NASA and Oxford 

University battery degradation datasets. The same dataset is tested with the ELM predictor, HKA-ELM 

predictor and HKA-ML-ELM predictor. 

 

4.1. Results 

The ELM algorithm and the HKA-ELM algorithm are selected as comparative experiments in 

this paper. The ELM parameters of the experiments are the same. Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11, 

Fig. 12 and Fig. 13 correspond to the experimental results of B5, B7, B18, C1, C3, C7 and C8, 

respectively. 

 

 

Figure 7. Prediction of the RUL of B5 
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Fig. 7a, Fig. 7b and Fig. 7c represent the prediction results of the RUL of the B5 lithium-ion 

battery by using the ELM, HKA-ELM and HKA-ML-ELM algorithms, respectively. With the 

improvement of the algorithm, the predicted value is closer to the true value, and the predictive ability 

is continuously improved. Fig. 7d is a summary comparison of the predicted values and true value of all 

the methods used in this paper. Obviously, the HKA-ML-ELM algorithm has a higher prediction 

accuracy for the B5 lithium-ion battery. 

 

 

Figure 8. Prediction of the RUL of B7 

 

Fig. 8a, Fig. 8b and Fig. 8c represent the prediction results of the RUL of the B7 lithium-ion 

battery by using the ELM, HKA-ELM and HKA-ML-ELM algorithms, respectively. The predicted value 

of the HKA-ML-ELM algorithm is the closest to the true value. According to Fig. 8d, the HKA-ML-

ELM algorithm has higher prediction accuracy for the B7 lithium-ion battery. 

 

Figure 9. Prediction of the RUL of B18 

 

Fig. 9a, Fig. 9b and Fig. 9c represent the prediction results of the RUL of the B18 lithium-ion 

battery by using the ELM, HKA-ELM and HKA-ML-ELM algorithms, respectively. The predicted value 
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of the HKA-ML-ELM algorithm is the closest to the true value. According to Fig. 9d, the HKA-ML-

ELM algorithm has higher prediction accuracy for the B18 lithium-ion battery. 

To further evaluate the predictive effect of the proposed method, the above experiments are 

carried out on lithium-batteries C1, C3, C7 and C8. Fig. 10a, Fig. 11a , Fig. 12a and Fig. 13a are the 

prediction results of the ELM algorithm. Fig. 10b, Fig. 11b, Fig. 12b and Fig. 13b are the prediction 

results of the HKA-ELM algorithm. Fig. 10c, Fig. 11c, Fig. 12c and Fig. 13c are the prediction results 

of the HKA-ML-ELM algorithm. Fig. 10d, Fig. 11d, Fig. 12d and Fig. 13d are the comparison summaries 

of the prediction results and true values of the three algorithms. Therefore, it can be seen that the HKA-

ML-ELM algorithm has a better prediction effect. The experimental results are shown in the figures 

below. 

 

 

Figure 10. Prediction of the RUL of C1 

 

 

Figure 11. Prediction of the RUL of C3 
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Figure 12. Prediction of the RUL of C7 

 

 

Figure 13. Prediction of the RUL of C8 

4.2. Discussion 

The figures above show the predicted results of the seven experimental datasets. The HKA-ML-

ELM has a higher predictive ability for the different datasets. Table 2 lists the evaluation results of the 

seven datasets  using the three methods. 

 

Table 2. Three algorithm evaluation results for the different datasets 

 

Battery            Algorithm           RULs(cycle)           MSE                       R2                      AE 

 ELM 109 0.076218 0.88972 15 

B5 HKA-ELM 120 0.0013789         0.92651 4 

HKA-ML-ELM 124     0.0002155         0.96576 0 
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 ELM 138 0.0071209 0.92272 28 

B7 HKA-ELM 142 0.0032342 0.9299 24 

HKA-ML-ELM 167 0.0002862 0.93366 1 

 ELM 77 0.079349 0.63729 20 

B18 HKA-ELM 79 0.049146 0.73588 18 

HKA-ML-ELM 100 0.00057741 0.77763 3 

 ELM 69 0.00017446 0.94224 8 

C1 HKA-ELM 62 2.2202e-05 0.95975 1 

HKA-ML-ELM 61 3.1147e-06 0.99496 0 

 ELM 74 0.00011666 0.95418 13 

C3 HKA-ELM 66 2.4514e-05 0.98902 5 

HKA-ML-ELM 61 2.1577e-06 0.99414 0 

 ELM 69 7.9851e-05 0.98579 6 

C7 HKA-ELM 72 1.5704e-05 0.98951 3 

HKA-ML-ELM 75 1.7892e-06 0.99635 0 

 ELM 69 0.00014849 0.96003 11 

C8 HKA-ELM 65 3.3096e-05 0.98882 7 

HKA-ML-ELM 59 3.2007e-06 0.99462 1 

 

As shown in Table 2, compared with other methods, the HKA-ML-ELM algorithm has smaller 

MSE and AE values, and the R2 value is larger. The results show that the proposed algorithm in this 

paper has a better performance in prediction accuracy. 

The figures below show the changes in the values of the MSE, R2 and AE when the three 

algorithms are used for different datasets. Different colors represent different algorithms: blue represents 

the ELM algorithm, pink represents the HKA-ELM algorithm, and yellow represents the HKA-ML-

ELM algorithm. 

 

 
Figure 14. MSE comparison of  the three algorithms on the NASA datasets 
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Figure 15. MSE comparison of the three algorithms on the Oxford datasets 

 

The MSE can evaluate the change degree of the data, and the smaller the value of the MSE is, 

the higher the prediction performance of the prediction model is in describing the experimental data. In 

Fig. 14 and Fig. 15, yellow represents the HKA-ML-ELM algorithm, and its value is much smaller than 

that of the other two algorithms. Therefore, the HKA-ML-ELM algorithm has a better prediction 

performance than the other two algorithms. 

 

  
Figure 16. R2 comparison of the three algorithms on the NASA datasets              

 

 
Figure 17. R2 comparison of the three algorithms on the Oxford datasets 
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The R2 value can reflect the prediction effect; the closer the value is to 1, the better the prediction 

effect. As shown in Fig. 16 and Fig. 17, the R2 value of the HKA-ML-ELM algorithm is much larger 

than that of the other two algorithms and is closer to 1. Therefore, the HKA-ML-ELM algorithm has a 

better prediction effect. 

 

  
Figure 18. AE comparison of the three algorithms on the NASA datasets                   

 

 
Figure 19. AE comparison of the three algorithms on the Oxford datasets 

 

AE is the difference between the true value and the predicted value, which can reflect the 

prediction accuracy of the data. The closer the value is to 0, the closer the predicted value is to the true 

value. As shown in Fig. 18 and Fig. 19, the AE value of the HKA-ML-ELM algorithm is closer to 0 or 

even equal to 0 than the other two algorithms, so this algorithm has better accuracy in the prediction of 

the RUL. 

It can be known from the above figures that, in terms of all three of the evaluation criteria, the 

HKA-ML-ELM algorithm is better than the other two algorithms, so it can be concluded that the HKA-

ML-ELM algorithm has a better effect and performance in the RUL prediction of lithium-ion batteries. 

To further verify the effectiveness of the HKA-ML-ELM algorithm, the experimental results of 

the proposed method and other methods are compared on the same datasets. The literatures 

[10][36][37][38][39][40][41][42] used the U-LOCR-PF algorithm, the PF algorithm, R-RVM algorithm, 

the IP-RVM algorithm,PSO-ELM algorithm, EMD-ARIMA algorithm, MONESN algorithm, MSVM 
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algorithm, ELM-HI algorithm, the ELM-Indirect algorithm and BP algorithm, respectively. For the B7 

batteries, although the RUL value of the PSO-ELM algorithm in [38] is 118, which is relatively large, 

its AE value is much larger than that of the HKA-ML-ELM algorithm. Similarly, although the AE value 

of the U-LOCR-PF algorithm in [10] is 1, which is relatively small, its RUL value is much smaller than 

that of the HKA-ML-ELM algorithm. The AE value of the HKA-ML-ELM algorithm is 0, which is 

smaller than the other algorithms. The RUL value is 124, which is larger than the other algorithms. This 

shows that the HKA-ML-ELM algorithm has a higher prediction accuracy and better prediction effect 

for the B5 batteries. 

For the B7 batteries, although the RUL value of the IP-RVM algorithm in [37] is 94, which is 

relatively large, its AE value is 5 times that of the HKA-ML-ELM algorithm. Similarly, although the 

AE value of the EMD-ARIMA algorithm in [39] is 2, which is relatively small, its RUL value is far 

smaller than that of the HKA-ML-ELM algorithm.The AE value of the HKA-ML-ELM algorithm is 1, 

which is much smaller than that of the other algorithms, and the RUL value is 167, which is much larger 

than that of the other methods. This indicates that the HKA-ML-ELM algorithm has a higher prediction 

accuracy and better prediction effect for the B7 batteries. 

For the B18 batteries, although the RUL value of both the PF algorithm and the UPF algorithm 

in [36] is 96, which is relatively large, their AE values are much larger than that of the HKA-ML-ELM 

algorithm. Similarly, although the AE value of the R-RVM algorithm in [37] is 4, which is relatively 

small, its RUL value is much smaller than that of the HKA-ML-ELM algorithm. The AE value of the 

HKA-ML-ELM algorithm is 3, which is less than that of the other algorithms, and the RUL value is 100, 

which is far higher than that of the other algorithms. This shows that the HKA-ML-ELM algorithm has 

a higher prediction accuracy and better prediction effect for the B18 batteries. 

Table 3 shows  the  results of comparison between  the HKA-ML-ELM algorithm and other 

algorithms. 

 

Table 3. Comparison of the HKA-ML-ELM algorithm and other algorithms 

 

Data Algorithm RULs(cycle) AE 

B5 

PF[36] 113 14 

R-RVM[37] 70 2 

IP-RVM[37] 74 6 

PSO-ELM[38] 118 6 

EMD-ARIMA[39] 73 8 

MONESN[39] 74 9 

MSVM[40] 49 5 

ELM-HI[41] 40 4 

ELM-Indirect [41] 37 3 

U-LOCR-PF[10] 100 1 

BP[42] 116 8 

HKA-ML-ELM 124 0 
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B7 

PF[36] 93 5 

R-RVM[37] 86 13 

IP-RVM[37] 94 5 

EMD-ARIMA[39] 68 2 

ARIMA[39] 51 15 

HKA-ML-ELM 167 1 

B18 

PF[36] 96 14 

R-RVM[37] 44 4 

PSO-ELM[38] 80 16 

UPF[36] 96 7 

BP[42] 82 14 

HKA-ML-ELM 100 3 

 

By comparing the HKA-ML-ELM algorithm with other algorithms in two respects, it is  

concluded that the proposed method in this paper has a more prominent ability to predict the RUL of 

lithium-ion batteries. 
 

5. CONCLUSION 

In this paper, the HKA-ML-ELM algorithm is proposed to predict the RUL of lithium-ion 

batteries. First, a new multi-layer ELM network (the ML-ELM) is constructed, and the final data 

representation is used as the input layer of the last individual ELM in the ML-ELM. The random 

functions are used to generate several numbers so that the input nodes corresponding to these numbers 

are partially connected with the hidden layer nodes, which not only prevents over-fitting but also 

improves the robustness. Second, the HKA optimization algorithm is used to optimize the parameters 

that are randomly generated in the ML-ELM algorithm, and a better prediction effect and ability can be 

achieved in a shorter running time. The experimental results show that the algorithm proposed in this 

paper has better prediction accuracy.  
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